| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 | 
							- import copy
 
- import glob
 
- import os
 
- import time
 
- import operator
 
- from functools import reduce
 
- import gym
 
- import numpy as np
 
- import torch
 
- import torch.nn as nn
 
- import torch.nn.functional as F
 
- import torch.optim as optim
 
- from torch.autograd import Variable
 
- from arguments import get_args
 
- from vec_env.dummy_vec_env import DummyVecEnv
 
- from vec_env.subproc_vec_env import SubprocVecEnv
 
- from envs import make_env
 
- from kfac import KFACOptimizer
 
- from model import Policy
 
- from storage import RolloutStorage
 
- from visualize import visdom_plot
 
- args = get_args()
 
- assert args.algo in ['a2c', 'ppo', 'acktr']
 
- if args.recurrent_policy:
 
-     assert args.algo in ['a2c', 'ppo'], 'Recurrent policy is not implemented for ACKTR'
 
- num_updates = int(args.num_frames) // args.num_steps // args.num_processes
 
- torch.manual_seed(args.seed)
 
- if args.cuda:
 
-     torch.cuda.manual_seed(args.seed)
 
- try:
 
-     os.makedirs(args.log_dir)
 
- except OSError:
 
-     files = glob.glob(os.path.join(args.log_dir, '*.monitor.csv'))
 
-     for f in files:
 
-         os.remove(f)
 
- def main():
 
-     os.environ['OMP_NUM_THREADS'] = '1'
 
-     envs = [make_env(args.env_name, args.seed, i, args.log_dir) for i in range(args.num_processes)]
 
-     if args.num_processes > 1:
 
-         envs = SubprocVecEnv(envs)
 
-     else:
 
-         envs = DummyVecEnv(envs)
 
-     obs_shape = envs.observation_space.shape
 
-     obs_shape = (obs_shape[0] * args.num_stack, *obs_shape[1:])
 
-     obs_numel = reduce(operator.mul, obs_shape, 1)
 
-     actor_critic = Policy(obs_numel, envs.action_space)
 
-     # Maxime: log some info about the model and its size
 
-     modelSize = 0
 
-     for p in actor_critic.parameters():
 
-         pSize = reduce(operator.mul, p.size(), 1)
 
-         modelSize += pSize
 
-     print(str(actor_critic))
 
-     print('Total model size: %d' % modelSize)
 
-     if envs.action_space.__class__.__name__ == "Discrete":
 
-         action_shape = 1
 
-     else:
 
-         action_shape = envs.action_space.shape[0]
 
-     if args.cuda:
 
-         actor_critic.cuda()
 
-     if args.algo == 'a2c':
 
-         optimizer = optim.RMSprop(actor_critic.parameters(), args.lr, eps=args.eps, alpha=args.alpha)
 
-     elif args.algo == 'ppo':
 
-         optimizer = optim.Adam(actor_critic.parameters(), args.lr, eps=args.eps)
 
-     elif args.algo == 'acktr':
 
-         optimizer = KFACOptimizer(actor_critic)
 
-     rollouts = RolloutStorage(args.num_steps, args.num_processes, obs_shape, envs.action_space, actor_critic.state_size)
 
-     current_obs = torch.zeros(args.num_processes, *obs_shape)
 
-     def update_current_obs(obs):
 
-         shape_dim0 = envs.observation_space.shape[0]
 
-         obs = torch.from_numpy(obs).float()
 
-         if args.num_stack > 1:
 
-             current_obs[:, :-shape_dim0] = current_obs[:, shape_dim0:]
 
-         current_obs[:, -shape_dim0:] = obs
 
-     obs = envs.reset()
 
-     update_current_obs(obs)
 
-     rollouts.observations[0].copy_(current_obs)
 
-     # These variables are used to compute average rewards for all processes.
 
-     episode_rewards = torch.zeros([args.num_processes, 1])
 
-     final_rewards = torch.zeros([args.num_processes, 1])
 
-     if args.cuda:
 
-         current_obs = current_obs.cuda()
 
-         rollouts.cuda()
 
-     start = time.time()
 
-     for j in range(num_updates):
 
-         for step in range(args.num_steps):
 
-             # Sample actions
 
-             value, action, action_log_prob, states = actor_critic.act(
 
-                 Variable(rollouts.observations[step], volatile=True),
 
-                 Variable(rollouts.states[step], volatile=True),
 
-                 Variable(rollouts.masks[step], volatile=True)
 
-             )
 
-             cpu_actions = action.data.squeeze(1).cpu().numpy()
 
-             # Obser reward and next obs
 
-             obs, reward, done, info = envs.step(cpu_actions)
 
-             reward = torch.from_numpy(np.expand_dims(np.stack(reward), 1)).float()
 
-             episode_rewards += reward
 
-             # If done then clean the history of observations.
 
-             masks = torch.FloatTensor([[0.0] if done_ else [1.0] for done_ in done])
 
-             final_rewards *= masks
 
-             final_rewards += (1 - masks) * episode_rewards
 
-             episode_rewards *= masks
 
-             if args.cuda:
 
-                 masks = masks.cuda()
 
-             if current_obs.dim() == 4:
 
-                 current_obs *= masks.unsqueeze(2).unsqueeze(2)
 
-             elif current_obs.dim() == 3:
 
-                 current_obs *= masks.unsqueeze(2)
 
-             else:
 
-                 current_obs *= masks
 
-             update_current_obs(obs)
 
-             rollouts.insert(step, current_obs, states.data, action.data, action_log_prob.data, value.data, reward, masks)
 
-         next_value = actor_critic(
 
-             Variable(rollouts.observations[-1], volatile=True),
 
-             Variable(rollouts.states[-1], volatile=True),
 
-             Variable(rollouts.masks[-1], volatile=True)
 
-         )[0].data
 
-         rollouts.compute_returns(next_value, args.use_gae, args.gamma, args.tau)
 
-         if args.algo in ['a2c', 'acktr']:
 
-             values, action_log_probs, dist_entropy, states = actor_critic.evaluate_actions(
 
-                 Variable(rollouts.observations[:-1].view(-1, *obs_shape)),
 
-                 Variable(rollouts.states[:-1].view(-1, actor_critic.state_size)),
 
-                 Variable(rollouts.masks[:-1].view(-1, 1)),
 
-                 Variable(rollouts.actions.view(-1, action_shape))
 
-             )
 
-             values = values.view(args.num_steps, args.num_processes, 1)
 
-             action_log_probs = action_log_probs.view(args.num_steps, args.num_processes, 1)
 
-             advantages = Variable(rollouts.returns[:-1]) - values
 
-             value_loss = advantages.pow(2).mean()
 
-             action_loss = -(Variable(advantages.data) * action_log_probs).mean()
 
-             if args.algo == 'acktr' and optimizer.steps % optimizer.Ts == 0:
 
-                 # Sampled fisher, see Martens 2014
 
-                 actor_critic.zero_grad()
 
-                 pg_fisher_loss = -action_log_probs.mean()
 
-                 value_noise = Variable(torch.randn(values.size()))
 
-                 if args.cuda:
 
-                     value_noise = value_noise.cuda()
 
-                 sample_values = values + value_noise
 
-                 vf_fisher_loss = -(values - Variable(sample_values.data)).pow(2).mean()
 
-                 fisher_loss = pg_fisher_loss + vf_fisher_loss
 
-                 optimizer.acc_stats = True
 
-                 fisher_loss.backward(retain_graph=True)
 
-                 optimizer.acc_stats = False
 
-             optimizer.zero_grad()
 
-             (value_loss * args.value_loss_coef + action_loss - dist_entropy * args.entropy_coef).backward()
 
-             if args.algo == 'a2c':
 
-                 nn.utils.clip_grad_norm(actor_critic.parameters(), args.max_grad_norm)
 
-             optimizer.step()
 
-         elif args.algo == 'ppo':
 
-             advantages = rollouts.returns[:-1] - rollouts.value_preds[:-1]
 
-             advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-5)
 
-             for e in range(args.ppo_epoch):
 
-                 if args.recurrent_policy:
 
-                     data_generator = rollouts.recurrent_generator(advantages, args.num_mini_batch)
 
-                 else:
 
-                     data_generator = rollouts.feed_forward_generator(advantages, args.num_mini_batch)
 
-                 for sample in data_generator:
 
-                     observations_batch, states_batch, actions_batch, \
 
-                        return_batch, masks_batch, old_action_log_probs_batch, \
 
-                             adv_targ = sample
 
-                     # Reshape to do in a single forward pass for all steps
 
-                     values, action_log_probs, dist_entropy, states = actor_critic.evaluate_actions(
 
-                         Variable(observations_batch),
 
-                         Variable(states_batch),
 
-                         Variable(masks_batch),
 
-                         Variable(actions_batch)
 
-                     )
 
-                     adv_targ = Variable(adv_targ)
 
-                     ratio = torch.exp(action_log_probs - Variable(old_action_log_probs_batch))
 
-                     surr1 = ratio * adv_targ
 
-                     surr2 = torch.clamp(ratio, 1.0 - args.clip_param, 1.0 + args.clip_param) * adv_targ
 
-                     action_loss = -torch.min(surr1, surr2).mean() # PPO's pessimistic surrogate (L^CLIP)
 
-                     value_loss = (Variable(return_batch) - values).pow(2).mean()
 
-                     optimizer.zero_grad()
 
-                     (value_loss + action_loss - dist_entropy * args.entropy_coef).backward()
 
-                     nn.utils.clip_grad_norm(actor_critic.parameters(), args.max_grad_norm)
 
-                     optimizer.step()
 
-         rollouts.after_update()
 
-         if j % args.save_interval == 0 and args.save_dir != "":
 
-             save_path = os.path.join(args.save_dir, args.algo)
 
-             try:
 
-                 os.makedirs(save_path)
 
-             except OSError:
 
-                 pass
 
-             # A really ugly way to save a model to CPU
 
-             save_model = actor_critic
 
-             if args.cuda:
 
-                 save_model = copy.deepcopy(actor_critic).cpu()
 
-             save_model = [save_model,
 
-                             hasattr(envs, 'ob_rms') and envs.ob_rms or None]
 
-             torch.save(save_model, os.path.join(save_path, args.env_name + ".pt"))
 
-         if j % args.log_interval == 0:
 
-             end = time.time()
 
-             total_num_steps = (j + 1) * args.num_processes * args.num_steps
 
-             print(
 
-                 "Updates {}, num timesteps {}, FPS {}, mean/median reward {:.2f}/{:.2f}, min/max reward {:.2f}/{:.2f}, entropy {:.5f}, value loss {:.5f}, policy loss {:.5f}".
 
-                 format(
 
-                     j,
 
-                     total_num_steps,
 
-                     int(total_num_steps / (end - start)),
 
-                     final_rewards.mean(),
 
-                     final_rewards.median(),
 
-                     final_rewards.min(),
 
-                     final_rewards.max(), dist_entropy.data[0],
 
-                     value_loss.data[0], action_loss.data[0]
 
-                 )
 
-             )
 
-         if args.vis and j % args.vis_interval == 0:
 
-             win = visdom_plot(
 
-                 total_num_steps,
 
-                 final_rewards.mean()
 
-             )
 
- if __name__ == "__main__":
 
-     main()
 
 
  |