123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823 |
- import math
- import gym
- from enum import IntEnum
- import numpy as np
- from gym import error, spaces, utils
- from gym.utils import seeding
- from gym_minigrid.rendering import *
- # Size in pixels of a cell in the full-scale human view
- CELL_PIXELS = 32
- # Number of cells (width and height) in the agent view
- AGENT_VIEW_SIZE = 7
- # Size of the array given as an observation to the agent
- OBS_ARRAY_SIZE = (AGENT_VIEW_SIZE, AGENT_VIEW_SIZE, 3)
- COLORS = {
- 'red' : (255, 0, 0),
- 'green' : (0, 255, 0),
- 'blue' : (0, 0, 255),
- 'purple': (112, 39, 195),
- 'yellow': (255, 255, 0),
- 'grey' : (100, 100, 100)
- }
- # Used to map colors to integers
- COLOR_TO_IDX = {
- 'red' : 0,
- 'green' : 1,
- 'blue' : 2,
- 'purple': 3,
- 'yellow': 4,
- 'grey' : 5
- }
- IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys()))
- # Map of object type to integers
- OBJECT_TO_IDX = {
- 'empty' : 0,
- 'wall' : 1,
- 'door' : 2,
- 'locked_door' : 3,
- 'key' : 4,
- 'ball' : 5,
- 'box' : 6,
- 'goal' : 7
- }
- IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys()))
- class WorldObj:
- """
- Base class for grid world objects
- """
- def __init__(self, type, color):
- assert type in OBJECT_TO_IDX, type
- assert color in COLOR_TO_IDX, color
- self.type = type
- self.color = color
- self.contains = None
- def canOverlap(self):
- """Can the agent overlap with this?"""
- return False
- def canPickup(self):
- """Can the agent pick this up?"""
- return False
- def canContain(self):
- """Can this contain another object?"""
- return False
- def toggle(self, env, pos):
- """Method to trigger/toggle an action this object performs"""
- return False
- def render(self, r):
- assert False
- def _setColor(self, r):
- c = COLORS[self.color]
- r.setLineColor(c[0], c[1], c[2])
- r.setColor(c[0], c[1], c[2])
- class Goal(WorldObj):
- def __init__(self):
- super(Goal, self).__init__('goal', 'green')
- def render(self, r):
- self._setColor(r)
- r.drawPolygon([
- (0 , CELL_PIXELS),
- (CELL_PIXELS, CELL_PIXELS),
- (CELL_PIXELS, 0),
- (0 , 0)
- ])
- class Wall(WorldObj):
- def __init__(self, color='grey'):
- super(Wall, self).__init__('wall', color)
- def render(self, r):
- self._setColor(r)
- r.drawPolygon([
- (0 , CELL_PIXELS),
- (CELL_PIXELS, CELL_PIXELS),
- (CELL_PIXELS, 0),
- (0 , 0)
- ])
- class Door(WorldObj):
- def __init__(self, color, isOpen=False):
- super(Door, self).__init__('door', color)
- self.isOpen = isOpen
- def render(self, r):
- c = COLORS[self.color]
- r.setLineColor(c[0], c[1], c[2])
- r.setColor(0, 0, 0)
- if self.isOpen:
- r.drawPolygon([
- (CELL_PIXELS-2, CELL_PIXELS),
- (CELL_PIXELS , CELL_PIXELS),
- (CELL_PIXELS , 0),
- (CELL_PIXELS-2, 0)
- ])
- return
- r.drawPolygon([
- (0 , CELL_PIXELS),
- (CELL_PIXELS, CELL_PIXELS),
- (CELL_PIXELS, 0),
- (0 , 0)
- ])
- r.drawPolygon([
- (2 , CELL_PIXELS-2),
- (CELL_PIXELS-2, CELL_PIXELS-2),
- (CELL_PIXELS-2, 2),
- (2 , 2)
- ])
- r.drawCircle(CELL_PIXELS * 0.75, CELL_PIXELS * 0.5, 2)
- def toggle(self, env, pos):
- if not self.isOpen:
- self.isOpen = True
- return True
- return False
- def canOverlap(self):
- """The agent can only walk over this cell when the door is open"""
- return self.isOpen
- class LockedDoor(WorldObj):
- def __init__(self, color, isOpen=False):
- super(LockedDoor, self).__init__('locked_door', color)
- self.isOpen = isOpen
- def render(self, r):
- c = COLORS[self.color]
- r.setLineColor(c[0], c[1], c[2])
- r.setColor(0, 0, 0)
- if self.isOpen:
- r.drawPolygon([
- (CELL_PIXELS-2, CELL_PIXELS),
- (CELL_PIXELS , CELL_PIXELS),
- (CELL_PIXELS , 0),
- (CELL_PIXELS-2, 0)
- ])
- return
- r.drawPolygon([
- (0 , CELL_PIXELS),
- (CELL_PIXELS, CELL_PIXELS),
- (CELL_PIXELS, 0),
- (0 , 0)
- ])
- r.drawPolygon([
- (2 , CELL_PIXELS-2),
- (CELL_PIXELS-2, CELL_PIXELS-2),
- (CELL_PIXELS-2, 2),
- (2 , 2)
- ])
- r.drawLine(
- CELL_PIXELS * 0.75,
- CELL_PIXELS * 0.45,
- CELL_PIXELS * 0.75,
- CELL_PIXELS * 0.60
- )
- def toggle(self, env, pos):
- # If the player has the right key to open the door
- if isinstance(env.carrying, Key) and env.carrying.color == self.color:
- self.isOpen = True
- # The key has been used, remove it from the agent
- env.carrying = None
- return True
- return False
- def canOverlap(self):
- """The agent can only walk over this cell when the door is open"""
- return self.isOpen
- class Key(WorldObj):
- def __init__(self, color='blue'):
- super(Key, self).__init__('key', color)
- def canPickup(self):
- return True
- def render(self, r):
- self._setColor(r)
- # Vertical quad
- r.drawPolygon([
- (16, 10),
- (20, 10),
- (20, 28),
- (16, 28)
- ])
- # Teeth
- r.drawPolygon([
- (12, 19),
- (16, 19),
- (16, 21),
- (12, 21)
- ])
- r.drawPolygon([
- (12, 26),
- (16, 26),
- (16, 28),
- (12, 28)
- ])
- r.drawCircle(18, 9, 6)
- r.setLineColor(0, 0, 0)
- r.setColor(0, 0, 0)
- r.drawCircle(18, 9, 2)
- class Ball(WorldObj):
- def __init__(self, color='blue'):
- super(Ball, self).__init__('ball', color)
- def canPickup(self):
- return True
- def render(self, r):
- self._setColor(r)
- r.drawCircle(CELL_PIXELS * 0.5, CELL_PIXELS * 0.5, 10)
- class Box(WorldObj):
- def __init__(self, color, contains=None):
- super(Box, self).__init__('box', color)
- self.contains = contains
- def render(self, r):
- c = COLORS[self.color]
- r.setLineColor(c[0], c[1], c[2])
- r.setColor(0, 0, 0)
- r.setLineWidth(2)
- r.drawPolygon([
- (4 , CELL_PIXELS-4),
- (CELL_PIXELS-4, CELL_PIXELS-4),
- (CELL_PIXELS-4, 4),
- (4 , 4)
- ])
- r.drawLine(
- 4,
- CELL_PIXELS / 2,
- CELL_PIXELS - 4,
- CELL_PIXELS / 2
- )
- r.setLineWidth(1)
- def toggle(self, env, pos):
- # Replace the box by its contents
- env.grid.set(*pos, self.contains)
- return True
- class Grid:
- """
- Represent a grid and operations on it
- """
- def __init__(self, width, height):
- assert width >= 4
- assert height >= 4
- self.width = width
- self.height = height
- self.grid = [None] * width * height
- def copy(self):
- from copy import deepcopy
- return deepcopy(self)
- def set(self, i, j, v):
- assert i >= 0 and i < self.width
- assert j >= 0 and j < self.height
- self.grid[j * self.width + i] = v
- def get(self, i, j):
- assert i >= 0 and i < self.width
- assert j >= 0 and j < self.height
- return self.grid[j * self.width + i]
- def rotateLeft(self):
- """
- Rotate the grid to the left (counter-clockwise)
- """
- grid = Grid(self.width, self.height)
- for j in range(0, self.height):
- for i in range(0, self.width):
- v = self.get(self.width - 1 - j, i)
- grid.set(i, j, v)
- return grid
- def slice(self, topX, topY, width, height):
- """
- Get a subset of the grid
- """
- grid = Grid(width, height)
- for j in range(0, height):
- for i in range(0, width):
- x = topX + i
- y = topY + j
- if x >= 0 and x < self.width and \
- y >= 0 and y < self.height:
- v = self.get(x, y)
- else:
- v = Wall()
- grid.set(i, j, v)
- return grid
- def render(self, r, tileSize):
- """
- Render this grid at a given scale
- :param r: target renderer object
- :param tileSize: tile size in pixels
- """
- assert r.width == self.width * tileSize
- assert r.height == self.height * tileSize
- # Total grid size at native scale
- widthPx = self.width * CELL_PIXELS
- heightPx = self.height * CELL_PIXELS
- # Draw background (out-of-world) tiles the same colors as walls
- # so the agent understands these areas are not reachable
- c = COLORS['grey']
- r.setLineColor(c[0], c[1], c[2])
- r.setColor(c[0], c[1], c[2])
- r.drawPolygon([
- (0 , heightPx),
- (widthPx, heightPx),
- (widthPx, 0),
- (0 , 0)
- ])
- r.push()
- # Internally, we draw at the "large" full-grid resolution, but we
- # use the renderer to scale back to the desired size
- r.scale(tileSize / CELL_PIXELS, tileSize / CELL_PIXELS)
- # Draw the background of the in-world cells black
- r.fillRect(
- 0,
- 0,
- widthPx,
- heightPx,
- 0, 0, 0
- )
- # Draw grid lines
- r.setLineColor(100, 100, 100)
- for rowIdx in range(0, self.height):
- y = CELL_PIXELS * rowIdx
- r.drawLine(0, y, widthPx, y)
- for colIdx in range(0, self.width):
- x = CELL_PIXELS * colIdx
- r.drawLine(x, 0, x, heightPx)
- # Render the grid
- for j in range(0, self.height):
- for i in range(0, self.width):
- cell = self.get(i, j)
- if cell == None:
- continue
- r.push()
- r.translate(i * CELL_PIXELS, j * CELL_PIXELS)
- cell.render(r)
- r.pop()
- r.pop()
- def encode(self):
- """
- Produce a compact numpy encoding of the grid
- """
- codeSize = self.width * self.height * 3
- array = np.zeros(shape=(self.width, self.height, 3), dtype='uint8')
- for j in range(0, self.height):
- for i in range(0, self.width):
- v = self.get(i, j)
- if v == None:
- continue
- array[i, j, 0] = OBJECT_TO_IDX[v.type]
- array[i, j, 1] = COLOR_TO_IDX[v.color]
- if hasattr(v, 'isOpen') and v.isOpen:
- array[i, j, 2] = 1
- return array
- def decode(array):
- """
- Decode an array grid encoding back into a grid
- """
- width = array.shape[0]
- height = array.shape[1]
- assert array.shape[2] == 3
- grid = Grid(width, height)
- for j in range(0, height):
- for i in range(0, width):
- typeIdx = array[i, j, 0]
- colorIdx = array[i, j, 1]
- openIdx = array[i, j, 2]
- if typeIdx == 0:
- continue
- objType = IDX_TO_OBJECT[typeIdx]
- color = IDX_TO_COLOR[colorIdx]
- isOpen = True if openIdx == 1 else 0
- if objType == 'wall':
- v = Wall()
- elif objType == 'ball':
- v = Ball(color)
- elif objType == 'key':
- v = Key(color)
- elif objType == 'door':
- v = Door(color, isOpen)
- elif objType == 'locked_door':
- v = LockedDoor(color, isOpen)
- elif objType == 'goal':
- v = Goal()
- else:
- assert False, "unknown obj type in decode '%s'" % objType
- grid.set(i, j, v)
- return grid
- class MiniGridEnv(gym.Env):
- """
- 2D grid world game environment
- """
- metadata = {
- 'render.modes': ['human', 'rgb_array', 'pixmap'],
- 'video.frames_per_second' : 10
- }
- # Enumeration of possible actions
- class Actions(IntEnum):
- left = 0
- right = 1
- forward = 2
- toggle = 3
- def __init__(self, gridSize=16, maxSteps=100):
- # Action enumeration for this environment
- self.actions = MiniGridEnv.Actions
- # Actions are discrete integer values
- self.action_space = spaces.Discrete(len(self.actions))
- # The observations are RGB images
- self.observation_space = spaces.Box(
- low=0,
- high=255,
- shape=OBS_ARRAY_SIZE
- )
- # Range of possible rewards
- self.reward_range = (-1, 1000)
- # Renderer object used to render the whole grid (full-scale)
- self.gridRender = None
- # Renderer used to render observations (small-scale agent view)
- self.obsRender = None
- # Environment configuration
- self.gridSize = gridSize
- self.maxSteps = maxSteps
- self.startPos = (1, 1)
- self.startDir = 0
- # Initialize the state
- self.seed()
- self.reset()
- def _genGrid(self, width, height):
- """
- Generate a new grid
- """
- # Initialize the grid
- grid = Grid(width, height)
- # Place walls around the edges
- for i in range(0, width):
- grid.set(i, 0, Wall())
- grid.set(i, height - 1, Wall())
- for j in range(0, height):
- grid.set(0, j, Wall())
- grid.set(height - 1, j, Wall())
- # Place a goal in the bottom-left corner
- grid.set(width - 2, height - 2, Goal())
- return grid
- def _reset(self):
- # Generate a new random grid at the start of each episode
- # To prevent this behavior, call env.seed with the same
- # seed before env.reset
- self.grid = self._genGrid(self.gridSize, self.gridSize)
- # Place the agent in the starting position and direction
- self.agentPos = self.startPos
- self.agentDir = self.startDir
- # Item picked up, being carried, initially nothing
- self.carrying = None
- # Step count since episode start
- self.stepCount = 0
- # Return first observation
- obs = self._genObs()
- return obs
- def _seed(self, seed=1337):
- """
- The seed function sets the random elements of the environment,
- and initializes the world.
- """
- # Seed the random number generator
- self.np_random, _ = seeding.np_random(seed)
- return [seed]
- def _randInt(self, low, high):
- return self.np_random.randint(low, high)
- def _randElem(self, iterable):
- lst = list(iterable)
- idx = self._randInt(0, len(lst))
- return lst[idx]
- def getStepsRemaining(self):
- return self.maxSteps - self.stepCount
- def getDirVec(self):
- """
- Get the direction vector for the agent, pointing in the direction
- of forward movement.
- """
- # Pointing right
- if self.agentDir == 0:
- return (1, 0)
- # Down (positive Y)
- elif self.agentDir == 1:
- return (0, 1)
- # Pointing left
- elif self.agentDir == 2:
- return (-1, 0)
- # Up (negative Y)
- elif self.agentDir == 3:
- return (0, -1)
- else:
- assert False
- def getViewExts(self):
- """
- Get the extents of the square set of tiles visible to the agent
- Note: the bottom extent indices are not included in the set
- """
- # Facing right
- if self.agentDir == 0:
- topX = self.agentPos[0]
- topY = self.agentPos[1] - AGENT_VIEW_SIZE // 2
- # Facing down
- elif self.agentDir == 1:
- topX = self.agentPos[0] - AGENT_VIEW_SIZE // 2
- topY = self.agentPos[1]
- # Facing right
- elif self.agentDir == 2:
- topX = self.agentPos[0] - AGENT_VIEW_SIZE + 1
- topY = self.agentPos[1] - AGENT_VIEW_SIZE // 2
- # Facing up
- elif self.agentDir == 3:
- topX = self.agentPos[0] - AGENT_VIEW_SIZE // 2
- topY = self.agentPos[1] - AGENT_VIEW_SIZE + 1
- else:
- assert False
- botX = topX + AGENT_VIEW_SIZE
- botY = topY + AGENT_VIEW_SIZE
- return (topX, topY, botX, botY)
- def _step(self, action):
- self.stepCount += 1
- reward = 0
- done = False
- # Rotate left
- if action == self.actions.left:
- self.agentDir -= 1
- if self.agentDir < 0:
- self.agentDir += 4
- # Rotate right
- elif action == self.actions.right:
- self.agentDir = (self.agentDir + 1) % 4
- # Move forward
- elif action == self.actions.forward:
- u, v = self.getDirVec()
- newPos = (self.agentPos[0] + u, self.agentPos[1] + v)
- targetCell = self.grid.get(newPos[0], newPos[1])
- if targetCell == None or targetCell.canOverlap():
- self.agentPos = newPos
- elif targetCell.type == 'goal':
- done = True
- reward = 1000 - self.stepCount
- # Pick up or trigger/activate an item
- elif action == self.actions.toggle:
- u, v = self.getDirVec()
- objPos = (self.agentPos[0] + u, self.agentPos[1] + v)
- cell = self.grid.get(*objPos)
- if cell and cell.canPickup():
- if self.carrying is None:
- self.carrying = cell
- self.grid.set(*objPos, None)
- elif cell:
- cell.toggle(self, objPos)
- else:
- assert False, "unknown action"
- if self.stepCount >= self.maxSteps:
- done = True
- obs = self._genObs()
- return obs, reward, done, {}
- def _genObs(self):
- """
- Generate the agent's view (partially observable, low-resolution encoding)
- """
- topX, topY, botX, botY = self.getViewExts()
- grid = self.grid.slice(topX, topY, AGENT_VIEW_SIZE, AGENT_VIEW_SIZE)
- for i in range(self.agentDir + 1):
- grid = grid.rotateLeft()
- # Make it so the agent sees what it's carrying
- # We do this by placing the carried object at the agent's position
- # in the agent's partially observable view
- agentPos = grid.width // 2, grid.height - 1
- if self.carrying:
- grid.set(*agentPos, self.carrying)
- else:
- grid.set(*agentPos, None)
- # Encode the partially observable view into a numpy array
- obs = grid.encode()
- return obs
- def getObsRender(self, obs):
- """
- Render an agent observation for visualization
- """
- if self.obsRender == None:
- self.obsRender = Renderer(
- AGENT_VIEW_SIZE * CELL_PIXELS // 2,
- AGENT_VIEW_SIZE * CELL_PIXELS // 2
- )
- r = self.obsRender
- r.beginFrame()
- grid = Grid.decode(obs)
- # Render the whole grid
- grid.render(r, CELL_PIXELS // 2)
- # Draw the agent
- r.push()
- r.scale(0.5, 0.5)
- r.translate(
- CELL_PIXELS * (0.5 + AGENT_VIEW_SIZE // 2),
- CELL_PIXELS * (AGENT_VIEW_SIZE - 0.5)
- )
- r.rotate(3 * 90)
- r.setLineColor(255, 0, 0)
- r.setColor(255, 0, 0)
- r.drawPolygon([
- (-12, 10),
- ( 12, 0),
- (-12, -10)
- ])
- r.pop()
- r.endFrame()
- return r.getPixmap()
- def _render(self, mode='human', close=False):
- """
- Render the whole-grid human view
- """
- if close:
- if self.gridRender:
- self.gridRender.close()
- return
- if self.gridRender is None:
- self.gridRender = Renderer(
- self.gridSize * CELL_PIXELS,
- self.gridSize * CELL_PIXELS,
- True if mode == 'human' else False
- )
- r = self.gridRender
- r.beginFrame()
- # Render the whole grid
- self.grid.render(r, CELL_PIXELS)
- # Draw the agent
- r.push()
- r.translate(
- CELL_PIXELS * (self.agentPos[0] + 0.5),
- CELL_PIXELS * (self.agentPos[1] + 0.5)
- )
- r.rotate(self.agentDir * 90)
- r.setLineColor(255, 0, 0)
- r.setColor(255, 0, 0)
- r.drawPolygon([
- (-12, 10),
- ( 12, 0),
- (-12, -10)
- ])
- r.pop()
- # Highlight what the agent can see
- topX, topY, botX, botY = self.getViewExts()
- r.fillRect(
- topX * CELL_PIXELS,
- topY * CELL_PIXELS,
- AGENT_VIEW_SIZE * CELL_PIXELS,
- AGENT_VIEW_SIZE * CELL_PIXELS,
- 200, 200, 200, 75
- )
- r.endFrame()
- if mode == 'rgb_array':
- return r.getArray()
- elif mode == 'pixmap':
- return r.getPixmap()
- return r
|