Minimalistic Gridworld Environment (MiniGrid)
|
il y a 7 ans | |
---|---|---|
basicrl | il y a 7 ans | |
gym_minigrid | il y a 7 ans | |
.gitignore | il y a 7 ans | |
LICENSE | il y a 7 ans | |
README.md | il y a 7 ans | |
setup.py | il y a 7 ans | |
standalone.py | il y a 7 ans |
Simple and minimailistic grid world environment for OpenAI Gym.
Requirements:
basicrl
training code)basicrl
training code)Start by manually installing PyTorch.
Then, clone the repository and install the other dependencies with pip3
:
git clone https://github.com/maximecb/gym-minigrid.git
cd gym-minigrid
pip3 install -e .
To run the standalone UI application, which allows you to manually control the agent with the arrow keys:
./standalone.py
The environment being run can be selected with the --env-name
option, eg:
./standalone.py --env-name MiniGrid-Fetch-8x8-v0
To see available environments and their implementation, look at simple_envs.py.
Basic reinforcement learning code is provided in the basicrl
subdirectory.
You can perform training using the ACKTR algorithm with:
python3 basicrl/main.py --env-name MiniGrid-Empty-8x8-v0 --no-vis --num-processes 32 --algo acktr
You can view the result of training using the enjoy.py
script:
python3 basicrl/enjoy.py --env-name MiniGrid-Empty-8x8-v0 --load-dir ./trained_models/acktr