123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445 |
- from gym.envs.registration import register
- from gym_minigrid.envs.minigrid_env import *
- class EmptyEnv(MiniGridEnv):
- """
- Empty grid environment, no obstacles, sparse reward
- """
- def __init__(self, size=8):
- super(EmptyEnv, self).__init__(gridSize=size, maxSteps=2 * size)
- class EmptyEnv6x6(EmptyEnv):
- def __init__(self):
- super(EmptyEnv6x6, self).__init__(size=6)
- register(
- id='MiniGrid-Empty-8x8-v0',
- entry_point='gym_minigrid.envs:EmptyEnv',
- reward_threshold=1000.0
- )
- register(
- id='-Empty-6x6-v0',
- entry_point='gym_minigrid.envs:EmptyEnv6x6',
- reward_threshold=1000.0
- )
- class DoorKeyEnv(MiniGridEnv):
- """
- Environment with a door and key, sparse reward
- """
- def __init__(self, size=8):
- super(DoorKeyEnv, self).__init__(gridSize=size, maxSteps=4 * size)
- def _genGrid(self, width, height):
- grid = super(DoorKeyEnv, self)._genGrid(width, height)
- assert width == height
- gridSz = width
- # Create a vertical splitting wall
- splitIdx = self._randInt(2, gridSz-3)
- for i in range(0, gridSz):
- grid.set(splitIdx, i, Wall())
- # Place a door in the wall
- doorIdx = self._randInt(1, gridSz-2)
- grid.set(splitIdx, doorIdx, Door('yellow'))
- # Place a key on the left side
- #keyIdx = self._randInt(1 + gridSz // 2, gridSz-2)
- keyIdx = gridSz-2
- grid.set(1, keyIdx, Key('yellow'))
- return grid
- class DoorKeyEnv16x16(DoorKeyEnv):
- def __init__(self):
- super(DoorKeyEnv16x16, self).__init__(size=16)
- register(
- id='-Door-Key-8x8-v0',
- entry_point='gym_minigrid.envs:DoorKeyEnv',
- reward_threshold=1000.0
- )
- register(
- id='-Door-Key-16x16-v0',
- entry_point='gym_minigrid.envs:DoorKeyEnv16x16',
- reward_threshold=1000.0
- )
- class Room:
- def __init__(self,
- top,
- size,
- entryDoorPos,
- exitDoorPos
- ):
- self.top = top
- self.size = size
- self.entryDoorPos = entryDoorPos
- self.exitDoorPos = exitDoorPos
- class MultiRoomEnv(MiniGridEnv):
- """
- Environment with multiple rooms (subgoals)
- """
- def __init__(self,
- minNumRooms,
- maxNumRooms,
- maxRoomSize=10
- ):
- assert minNumRooms > 0
- assert maxNumRooms >= minNumRooms
- assert maxRoomSize >= 4
- self.minNumRooms = minNumRooms
- self.maxNumRooms = maxNumRooms
- self.maxRoomSize = maxRoomSize
- self.rooms = []
- super(MultiRoomEnv, self).__init__(
- gridSize=25,
- maxSteps=self.maxNumRooms * 20
- )
- def _genGrid(self, width, height):
- roomList = []
- # Choose a random number of rooms to generate
- numRooms = self._randInt(self.minNumRooms, self.maxNumRooms+1)
- while len(roomList) < numRooms:
- curRoomList = []
- entryDoorPos = (
- self._randInt(0, width - 2),
- self._randInt(0, width - 2)
- )
- # Recursively place the rooms
- self._placeRoom(
- numRooms,
- roomList=curRoomList,
- minSz=4,
- maxSz=self.maxRoomSize,
- entryDoorWall=2,
- entryDoorPos=entryDoorPos
- )
- if len(curRoomList) > len(roomList):
- roomList = curRoomList
- # Store the list of rooms in this environment
- assert len(roomList) > 0
- self.rooms = roomList
- # Randomize the starting agent position and direction
- topX, topY = roomList[0].top
- sizeX, sizeY = roomList[0].size
- self.startPos = (
- self._randInt(topX + 1, topX + sizeX - 2),
- self._randInt(topY + 1, topY + sizeY - 2)
- )
- self.startDir = self._randInt(0, 4)
- # Create the grid
- grid = Grid(width, height)
- wall = Wall()
- prevDoorColor = None
- # For each room
- for idx, room in enumerate(roomList):
- topX, topY = room.top
- sizeX, sizeY = room.size
- # Draw the top and bottom walls
- for i in range(0, sizeX):
- grid.set(topX + i, topY, wall)
- grid.set(topX + i, topY + sizeY - 1, wall)
- # Draw the left and right walls
- for j in range(0, sizeY):
- grid.set(topX, topY + j, wall)
- grid.set(topX + sizeX - 1, topY + j, wall)
- # If this isn't the first room, place the entry door
- if idx > 0:
- # Pick a door color different from the previous one
- doorColors = set(COLORS.keys())
- if prevDoorColor:
- doorColors.remove(prevDoorColor)
- doorColor = self._randElem(doorColors)
- entryDoor = Door(doorColor)
- grid.set(*room.entryDoorPos, entryDoor)
- prevDoorColor = doorColor
- prevRoom = roomList[idx-1]
- prevRoom.exitDoorPos = entryDoorPos
- # Place the final goal
- while True:
- goalX = self._randInt(topX + 1, topX + sizeX - 1)
- goalY = self._randInt(topY + 1, topY + sizeY - 1)
- # Make sure the goal doesn't overlap with the agent
- if (goalX, goalY) != self.startPos:
- grid.set(goalX, goalY, Goal())
- break
- return grid
- def _placeRoom(
- self,
- numLeft,
- roomList,
- minSz,
- maxSz,
- entryDoorWall,
- entryDoorPos
- ):
- # Choose the room size randomly
- sizeX = self._randInt(minSz, maxSz+1)
- sizeY = self._randInt(minSz, maxSz+1)
- # The first room will be at the door position
- if len(roomList) == 0:
- topX, topY = entryDoorPos
- # Entry on the right
- elif entryDoorWall == 0:
- topX = entryDoorPos[0] - sizeX + 1
- y = entryDoorPos[1]
- topY = self._randInt(y - sizeY + 2, y)
- # Entry wall on the south
- elif entryDoorWall == 1:
- x = entryDoorPos[0]
- topX = self._randInt(x - sizeX + 2, x)
- topY = entryDoorPos[1] - sizeY + 1
- # Entry wall on the left
- elif entryDoorWall == 2:
- topX = entryDoorPos[0]
- y = entryDoorPos[1]
- topY = self._randInt(y - sizeY + 2, y)
- # Entry wall on the top
- elif entryDoorWall == 3:
- x = entryDoorPos[0]
- topX = self._randInt(x - sizeX + 2, x)
- topY = entryDoorPos[1]
- else:
- assert False, entryDoorWall
- # If the room is out of the grid, can't place a room here
- if topX < 0 or topY < 0:
- return False
- if topX + sizeX > self.gridSize or topY + sizeY >= self.gridSize:
- return False
- # If the room intersects with previous rooms, can't place it here
- for room in roomList[:-1]:
- nonOverlap = \
- topX + sizeX < room.top[0] or \
- room.top[0] + room.size[0] <= topX or \
- topY + sizeY < room.top[1] or \
- room.top[1] + room.size[1] <= topY
- if not nonOverlap:
- return False
- # Add this room to the list
- roomList.append(Room(
- (topX, topY),
- (sizeX, sizeY),
- entryDoorPos,
- None
- ))
- # If this was the last room, stop
- if numLeft == 1:
- return True
- # Try placing the next room
- for i in range(0, 8):
- # Pick which wall to place the out door on
- wallSet = set((0, 1, 2, 3))
- wallSet.remove(entryDoorWall)
- exitDoorWall = self._randElem(wallSet)
- nextEntryWall = (exitDoorWall + 2) % 4
- # Pick the exit door position
- # Exit on right wall
- if exitDoorWall == 0:
- exitDoorPos = (
- topX + sizeX - 1,
- topY + self._randInt(1, sizeY - 1)
- )
- # Exit on south wall
- elif exitDoorWall == 1:
- exitDoorPos = (
- topX + self._randInt(1, sizeX - 1),
- topY + sizeY - 1
- )
- # Exit on left wall
- elif exitDoorWall == 2:
- exitDoorPos = (
- topX,
- topY + self._randInt(1, sizeY - 1)
- )
- # Exit on north wall
- elif exitDoorWall == 3:
- exitDoorPos = (
- topX + self._randInt(1, sizeX - 1),
- topY
- )
- else:
- assert False
- # Recursively create the other rooms
- success = self._placeRoom(
- numLeft - 1,
- roomList=roomList,
- minSz=minSz,
- maxSz=maxSz,
- entryDoorWall=nextEntryWall,
- entryDoorPos=exitDoorPos
- )
- if success:
- break
- return True
- class MultiRoomEnvN6(MultiRoomEnv):
- def __init__(self):
- super(MultiRoomEnvN6, self).__init__(
- minNumRooms=6,
- maxNumRooms=6
- )
- register(
- id='MiniGrid-Multi-Room-N6-v0',
- entry_point='gym_minigrid.envs:MultiRoomEnvN6',
- reward_threshold=1000.0
- )
- class FetchEnv(MiniGridEnv):
- """
- Environment in which the agent has to fetch a random object
- named using English text strings
- """
- def __init__(
- self,
- size=8,
- numObjs=3):
- self.numObjs = numObjs
- super(FetchEnv, self).__init__(gridSize=size, maxSteps=5*size)
- def _genGrid(self, width, height):
- assert width == height
- gridSz = width
- # Create a grid surrounded by walls
- grid = Grid(width, height)
- for i in range(0, width):
- grid.set(i, 0, Wall())
- grid.set(i, height-1, Wall())
- for j in range(0, height):
- grid.set(0, j, Wall())
- grid.set(width-1, j, Wall())
- types = ['key', 'ball']
- colors = list(COLORS.keys())
- objs = []
- # For each object to be generated
- for i in range(0, self.numObjs):
- objType = self._randElem(types)
- objColor = self._randElem(colors)
- if objType == 'key':
- obj = Key(objColor)
- elif objType == 'ball':
- obj = Ball(objColor)
- while True:
- pos = (
- self._randInt(1, gridSz - 1),
- self._randInt(1, gridSz - 1)
- )
- if pos != self.startPos:
- grid.set(*pos, obj)
- break
- objs.append(obj)
- # Choose a random object to be picked up
- target = objs[self._randInt(0, len(objs))]
- self.targetType = target.type
- self.targetColor = target.color
- descStr = '%s %s' % (self.targetColor, self.targetType)
- # Generate the mission string
- idx = self._randInt(0, 5)
- if idx == 0:
- self.mission = 'get a %s' % descStr
- elif idx == 1:
- self.mission = 'go get a %s' % descStr
- elif idx == 2:
- self.mission = 'fetch a %s' % descStr
- elif idx == 3:
- self.mission = 'go fetch a %s' % descStr
- elif idx == 4:
- self.mission = 'you must fetch a %s' % descStr
- assert hasattr(self, 'mission')
- return grid
- def _reset(self):
- obs = MiniGridEnv._reset(self)
- obs = {
- 'image': obs,
- 'mission': self.mission,
- 'advice' : ''
- }
- return obs
- def _step(self, action):
- obs, reward, done, info = MiniGridEnv._step(self, action)
- if self.carrying:
- if self.carrying.color == self.targetColor and \
- self.carrying.type == self.targetType:
- reward = 1000 - self.stepCount
- done = True
- else:
- reward = -1000
- done = True
- obs = {
- 'image': obs,
- 'mission': self.mission,
- 'advice': ''
- }
- return obs, reward, done, info
- register(
- id='MiniGrid-Fetch-8x8-v0',
- entry_point='gym_minigrid.envs:FetchEnv',
- reward_threshold=900.0
- )
|