123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- from gym_minigrid.minigrid import *
- from gym_minigrid.register import register
- from operator import add
- class DynamicObstaclesEnv(MiniGridEnv):
- """
- Single-room square grid environment with moving obstacles
- """
- def __init__(
- self,
- size=8,
- agent_start_pos=(1, 1),
- agent_start_dir=0,
- n_obstacles=4
- ):
- self.agent_start_pos = agent_start_pos
- self.agent_start_dir = agent_start_dir
- # Reduce obstacles if there are too many
- if n_obstacles <= size/2 + 1:
- self.n_obstacles = int(n_obstacles)
- else:
- self.n_obstacles = int(size/2)
- super().__init__(
- grid_size=size,
- max_steps=4 * size * size,
- # Set this to True for maximum speed
- see_through_walls=True,
- )
- # Allow only 3 actions permitted: left, right, forward
- self.action_space = spaces.Discrete(self.actions.forward + 1)
- self.reward_range = (-1, 1)
- def _gen_grid(self, width, height):
- # Create an empty grid
- self.grid = Grid(width, height)
- # Generate the surrounding walls
- self.grid.wall_rect(0, 0, width, height)
- # Place a goal square in the bottom-right corner
- self.grid.set(width - 2, height - 2, Goal())
- # Place the agent
- if self.agent_start_pos is not None:
- self.agent_pos = self.agent_start_pos
- self.agent_dir = self.agent_start_dir
- else:
- self.place_agent()
- # Place obstacles
- self.obstacles = []
- for i_obst in range(self.n_obstacles):
- self.obstacles.append(Ball())
- self.place_obj(self.obstacles[i_obst], max_tries=100)
- self.mission = "get to the green goal square"
- def step(self, action):
- # Invalid action
- if action >= self.action_space.n:
- action = 0
- # Check if there is an obstacle in front of the agent
- front_cell = self.grid.get(*self.front_pos)
- not_clear = front_cell and front_cell.type != 'goal'
- obs, reward, done, info = MiniGridEnv.step(self, action)
- # If the agent tries to walk over an obstacle
- if action == self.actions.forward and not_clear:
- reward = -1
- done = True
- return obs, reward, done, info
- # Update obstacle positions
- for i_obst in range(len(self.obstacles)):
- old_pos = self.obstacles[i_obst].cur_pos
- top = tuple(map(add, old_pos, (-1, -1)))
- try:
- self.place_obj(self.obstacles[i_obst], top=top, size=(3,3), max_tries=100)
- self.grid.set(*old_pos, None)
- except:
- pass
- return obs, reward, done, info
- class DynamicObstaclesEnv5x5(DynamicObstaclesEnv):
- def __init__(self):
- super().__init__(size=5, n_obstacles=2)
- class DynamicObstaclesRandomEnv5x5(DynamicObstaclesEnv):
- def __init__(self):
- super().__init__(size=5, agent_start_pos=None, n_obstacles=2)
- class DynamicObstaclesEnv6x6(DynamicObstaclesEnv):
- def __init__(self):
- super().__init__(size=6, n_obstacles=3)
- class DynamicObstaclesRandomEnv6x6(DynamicObstaclesEnv):
- def __init__(self):
- super().__init__(size=6, agent_start_pos=None, n_obstacles=3)
- class DynamicObstaclesEnv16x16(DynamicObstaclesEnv):
- def __init__(self):
- super().__init__(size=16, n_obstacles=8)
- register(
- id='MiniGrid-Dynamic-Obstacles-5x5-v0',
- entry_point='gym_minigrid.envs:DynamicObstaclesEnv5x5'
- )
- register(
- id='MiniGrid-Dynamic-Obstacles-Random-5x5-v0',
- entry_point='gym_minigrid.envs:DynamicObstaclesRandomEnv5x5'
- )
- register(
- id='MiniGrid-Dynamic-Obstacles-6x6-v0',
- entry_point='gym_minigrid.envs:DynamicObstaclesEnv6x6'
- )
- register(
- id='MiniGrid-Dynamic-Obstacles-Random-6x6-v0',
- entry_point='gym_minigrid.envs:DynamicObstaclesRandomEnv6x6'
- )
- register(
- id='MiniGrid-Dynamic-Obstacles-8x8-v0',
- entry_point='gym_minigrid.envs:DynamicObstaclesEnv'
- )
- register(
- id='MiniGrid-Dynamic-Obstacles-16x16-v0',
- entry_point='gym_minigrid.envs:DynamicObstaclesEnv16x16'
- )
|