123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- #!/usr/bin/env python3
- import random
- import numpy as np
- import gym
- from gym_minigrid.register import env_list
- from gym_minigrid.minigrid import Grid, OBJECT_TO_IDX
- # Test specifically importing a specific environment
- from gym_minigrid.envs import DoorKeyEnv
- # Test importing wrappers
- from gym_minigrid.wrappers import *
- ##############################################################################
- print('%d environments registered' % len(env_list))
- for env_name in env_list:
- print('testing "%s"' % env_name)
- # Load the gym environment
- env = gym.make(env_name)
- env.max_steps = min(env.max_steps, 200)
- env.reset()
- env.render('rgb_array')
- # Verify that the same seed always produces the same environment
- for i in range(0, 5):
- seed = 1337 + i
- env.seed(seed)
- grid1 = env.grid
- env.seed(seed)
- grid2 = env.grid
- assert grid1 == grid2
- env.reset()
- # Run for a few episodes
- num_episodes = 0
- while num_episodes < 5:
- # Pick a random action
- action = random.randint(0, env.action_space.n - 1)
- obs, reward, done, info = env.step(action)
- # Validate the agent position
- assert env.agent_pos[0] < env.width
- assert env.agent_pos[1] < env.height
- # Test observation encode/decode roundtrip
- img = obs['image']
- grid, vis_mask = Grid.decode(img)
- img2 = grid.encode(vis_mask=vis_mask)
- assert np.array_equal(img, img2)
- # Test the env to string function
- str(env)
- # Check that the reward is within the specified range
- assert reward >= env.reward_range[0], reward
- assert reward <= env.reward_range[1], reward
- if done:
- num_episodes += 1
- env.reset()
- env.render('rgb_array')
- # Test the close method
- env.close()
- env = gym.make(env_name)
- env = ReseedWrapper(env)
- for _ in range(10):
- env.reset()
- env.step(0)
- env.close()
- env = gym.make(env_name)
- env = ImgObsWrapper(env)
- env.reset()
- env.step(0)
- env.close()
- # Test the fully observable wrapper
- env = gym.make(env_name)
- env = FullyObsWrapper(env)
- env.reset()
- obs, _, _, _ = env.step(0)
- assert obs['image'].shape == env.observation_space.spaces['image'].shape
- env.close()
- # RGB image observation wrapper
- env = gym.make(env_name)
- env = RGBImgPartialObsWrapper(env)
- env.reset()
- obs, _, _, _ = env.step(0)
- assert obs['image'].mean() > 0
- env.close()
- env = gym.make(env_name)
- env = FlatObsWrapper(env)
- env.reset()
- env.step(0)
- env.close()
- env = gym.make(env_name)
- env = ViewSizeWrapper(env, 5)
- env.reset()
- env.step(0)
- env.close()
- # Test the wrappers return proper observation spaces.
- wrappers = [
- RGBImgObsWrapper,
- RGBImgPartialObsWrapper,
- OneHotPartialObsWrapper
- ]
- for wrapper in wrappers:
- env = wrapper(gym.make(env_name))
- obs_space, wrapper_name = env.observation_space, wrapper.__name__
- assert isinstance(
- obs_space, spaces.Dict
- ), "Observation space for {0} is not a Dict: {1}.".format(
- wrapper_name, obs_space
- )
- # This should not fail either
- ImgObsWrapper(env)
- ##############################################################################
- print('testing agent_sees method')
- env = gym.make('MiniGrid-DoorKey-6x6-v0')
- goal_pos = (env.grid.width - 2, env.grid.height - 2)
- # Test the "in" operator on grid objects
- assert ('green', 'goal') in env.grid
- assert ('blue', 'key') not in env.grid
- # Test the env.agent_sees() function
- env.reset()
- for i in range(0, 500):
- action = random.randint(0, env.action_space.n - 1)
- obs, reward, done, info = env.step(action)
- grid, _ = Grid.decode(obs['image'])
- goal_visible = ('green', 'goal') in grid
- agent_sees_goal = env.agent_sees(*goal_pos)
- assert agent_sees_goal == goal_visible
- if done:
- env.reset()
|