123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- from gym import spaces
- from gym_minigrid.minigrid import *
- from gym_minigrid.register import register
- class GoToDoorEnv(MiniGridEnv):
- """
- Environment in which the agent is instructed to go to a given object
- named using an English text string
- """
- def __init__(
- self,
- size=5
- ):
- assert size >= 5
- super().__init__(gridSize=size, maxSteps=10*size)
- self.observation_space = spaces.Dict({
- 'image': self.observation_space
- })
- self.reward_range = (-1, 1)
- def _genGrid(self, width, height):
- # Create the grid
- grid = Grid(width, height)
- # Randomly vary the room width and height
- width = self._randInt(5, width+1)
- height = self._randInt(5, height+1)
- # Generate the surrounding walls
- for i in range(0, width):
- grid.set(i, 0, Wall())
- grid.set(i, height-1, Wall())
- for j in range(0, height):
- grid.set(0, j, Wall())
- grid.set(width-1, j, Wall())
- # Randomize the player start position and orientation
- self.startPos = self._randPos(
- 1, width-1,
- 1, height-1
- )
- self.startDir = self._randInt(0, 4)
- # Generate the 4 doors at random positions
- doorPos = []
- doorPos.append((self._randInt(2, width-2), 0))
- doorPos.append((self._randInt(2, width-2), height-1))
- doorPos.append((0, self._randInt(2, height-2)))
- doorPos.append((width-1, self._randInt(2, height-2)))
- # Generate the door colors
- doorColors = []
- while len(doorColors) < len(doorPos):
- color = self._randElem(COLOR_NAMES)
- if color in doorColors:
- continue
- doorColors.append(color)
- # Place the doors in the grid
- for idx, pos in enumerate(doorPos):
- color = doorColors[idx]
- grid.set(*pos, Door(color))
- # Select a random target door
- doorIdx = self._randInt(0, len(doorPos))
- self.targetPos = doorPos[doorIdx]
- self.targetColor = doorColors[doorIdx]
- # Generate the mission string
- self.mission = 'go to the %s door' % self.targetColor
- #print(self.mission)
- return grid
- def _observation(self, obs):
- """
- Encode observations
- """
- obs = {
- 'image': obs,
- 'mission': self.mission
- }
- return obs
- def _reset(self):
- obs = MiniGridEnv._reset(self)
- return self._observation(obs)
- def _step(self, action):
- obs, reward, done, info = MiniGridEnv._step(self, action)
- ax, ay = self.agentPos
- tx, ty = self.targetPos
- # Don't let the agent open any of the doors
- if action == self.actions.toggle:
- done = True
- # Reward waiting in front of the target door
- if action == self.actions.wait:
- if (ax == tx and abs(ay - ty) == 1) or (ay == ty and abs(ax - tx) == 1):
- reward = 1
- done = True
- obs = self._observation(obs)
- return obs, reward, done, info
- class GoToDoor8x8Env(GoToDoorEnv):
- def __init__(self):
- super().__init__(size=8)
- class GoToDoor6x6Env(GoToDoorEnv):
- def __init__(self):
- super().__init__(size=6)
- register(
- id='MiniGrid-GoToDoor-5x5-v0',
- entry_point='gym_minigrid.envs:GoToDoorEnv'
- )
- register(
- id='MiniGrid-GoToDoor-6x6-v0',
- entry_point='gym_minigrid.envs:GoToDoor6x6Env'
- )
- register(
- id='MiniGrid-GoToDoor-8x8-v0',
- entry_point='gym_minigrid.envs:GoToDoor8x8Env'
- )
|