main.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. import copy
  2. import glob
  3. import os
  4. import time
  5. import operator
  6. from functools import reduce
  7. import gym
  8. import numpy as np
  9. import torch
  10. import torch.nn as nn
  11. import torch.nn.functional as F
  12. import torch.optim as optim
  13. from torch.autograd import Variable
  14. from arguments import get_args
  15. from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
  16. from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
  17. from baselines.common.vec_env.vec_normalize import VecNormalize
  18. from envs import make_env
  19. from kfac import KFACOptimizer
  20. from model import RecMLPPolicy, MLPPolicy, CNNPolicy
  21. from storage import RolloutStorage
  22. from visualize import visdom_plot
  23. args = get_args()
  24. assert args.algo in ['a2c', 'ppo', 'acktr']
  25. if args.recurrent_policy:
  26. assert args.algo in ['a2c', 'ppo'], 'Recurrent policy is not implemented for ACKTR'
  27. num_updates = int(args.num_frames) // args.num_steps // args.num_processes
  28. torch.manual_seed(args.seed)
  29. if args.cuda:
  30. torch.cuda.manual_seed(args.seed)
  31. try:
  32. os.makedirs(args.log_dir)
  33. except OSError:
  34. files = glob.glob(os.path.join(args.log_dir, '*.monitor.csv'))
  35. for f in files:
  36. os.remove(f)
  37. def main():
  38. print("#######")
  39. print("WARNING: All rewards are clipped or normalized so you need to use a monitor (see envs.py) or visdom plot to get true rewards")
  40. print("#######")
  41. os.environ['OMP_NUM_THREADS'] = '1'
  42. if args.vis:
  43. from visdom import Visdom
  44. viz = Visdom()
  45. win = None
  46. envs = [make_env(args.env_name, args.seed, i, args.log_dir)
  47. for i in range(args.num_processes)]
  48. if args.num_processes > 1:
  49. envs = SubprocVecEnv(envs)
  50. else:
  51. envs = DummyVecEnv(envs)
  52. # Maxime: commented this out because it very much changes the behavior
  53. # of the code for seemingly arbitrary reasons
  54. #if len(envs.observation_space.shape) == 1:
  55. # envs = VecNormalize(envs)
  56. obs_shape = envs.observation_space.shape
  57. obs_shape = (obs_shape[0] * args.num_stack, *obs_shape[1:])
  58. obs_numel = reduce(operator.mul, obs_shape, 1)
  59. if len(obs_shape) == 3 and obs_numel > 1024:
  60. actor_critic = CNNPolicy(obs_shape[0], envs.action_space, args.recurrent_policy)
  61. elif args.recurrent_policy:
  62. actor_critic = RecMLPPolicy(obs_numel, envs.action_space)
  63. else:
  64. actor_critic = MLPPolicy(obs_numel, envs.action_space)
  65. # Maxime: log some info about the model and its size
  66. modelSize = 0
  67. for p in actor_critic.parameters():
  68. pSize = reduce(operator.mul, p.size(), 1)
  69. modelSize += pSize
  70. print(str(actor_critic))
  71. print('Total model size: %d' % modelSize)
  72. if envs.action_space.__class__.__name__ == "Discrete":
  73. action_shape = 1
  74. else:
  75. action_shape = envs.action_space.shape[0]
  76. if args.cuda:
  77. actor_critic.cuda()
  78. if args.algo == 'a2c':
  79. optimizer = optim.RMSprop(actor_critic.parameters(), args.lr, eps=args.eps, alpha=args.alpha)
  80. elif args.algo == 'ppo':
  81. optimizer = optim.Adam(actor_critic.parameters(), args.lr, eps=args.eps)
  82. elif args.algo == 'acktr':
  83. optimizer = KFACOptimizer(actor_critic)
  84. rollouts = RolloutStorage(args.num_steps, args.num_processes, obs_shape, envs.action_space, actor_critic.state_size)
  85. current_obs = torch.zeros(args.num_processes, *obs_shape)
  86. def update_current_obs(obs):
  87. shape_dim0 = envs.observation_space.shape[0]
  88. obs = torch.from_numpy(obs).float()
  89. if args.num_stack > 1:
  90. current_obs[:, :-shape_dim0] = current_obs[:, shape_dim0:]
  91. current_obs[:, -shape_dim0:] = obs
  92. obs = envs.reset()
  93. update_current_obs(obs)
  94. rollouts.observations[0].copy_(current_obs)
  95. # These variables are used to compute average rewards for all processes.
  96. episode_rewards = torch.zeros([args.num_processes, 1])
  97. final_rewards = torch.zeros([args.num_processes, 1])
  98. if args.cuda:
  99. current_obs = current_obs.cuda()
  100. rollouts.cuda()
  101. start = time.time()
  102. for j in range(num_updates):
  103. for step in range(args.num_steps):
  104. # Sample actions
  105. value, action, action_log_prob, states = actor_critic.act(Variable(rollouts.observations[step], volatile=True),
  106. Variable(rollouts.states[step], volatile=True),
  107. Variable(rollouts.masks[step], volatile=True))
  108. cpu_actions = action.data.squeeze(1).cpu().numpy()
  109. # Obser reward and next obs
  110. obs, reward, done, info = envs.step(cpu_actions)
  111. reward = torch.from_numpy(np.expand_dims(np.stack(reward), 1)).float()
  112. episode_rewards += reward
  113. # If done then clean the history of observations.
  114. masks = torch.FloatTensor([[0.0] if done_ else [1.0] for done_ in done])
  115. final_rewards *= masks
  116. final_rewards += (1 - masks) * episode_rewards
  117. episode_rewards *= masks
  118. if args.cuda:
  119. masks = masks.cuda()
  120. if current_obs.dim() == 4:
  121. current_obs *= masks.unsqueeze(2).unsqueeze(2)
  122. else:
  123. current_obs *= masks
  124. update_current_obs(obs)
  125. rollouts.insert(step, current_obs, states.data, action.data, action_log_prob.data, value.data, reward, masks)
  126. next_value = actor_critic(Variable(rollouts.observations[-1], volatile=True),
  127. Variable(rollouts.states[-1], volatile=True),
  128. Variable(rollouts.masks[-1], volatile=True))[0].data
  129. rollouts.compute_returns(next_value, args.use_gae, args.gamma, args.tau)
  130. if args.algo in ['a2c', 'acktr']:
  131. values, action_log_probs, dist_entropy, states = actor_critic.evaluate_actions(Variable(rollouts.observations[:-1].view(-1, *obs_shape)),
  132. Variable(rollouts.states[0].view(-1, actor_critic.state_size)),
  133. Variable(rollouts.masks[:-1].view(-1, 1)),
  134. Variable(rollouts.actions.view(-1, action_shape)))
  135. values = values.view(args.num_steps, args.num_processes, 1)
  136. action_log_probs = action_log_probs.view(args.num_steps, args.num_processes, 1)
  137. advantages = Variable(rollouts.returns[:-1]) - values
  138. value_loss = advantages.pow(2).mean()
  139. action_loss = -(Variable(advantages.data) * action_log_probs).mean()
  140. if args.algo == 'acktr' and optimizer.steps % optimizer.Ts == 0:
  141. # Sampled fisher, see Martens 2014
  142. actor_critic.zero_grad()
  143. pg_fisher_loss = -action_log_probs.mean()
  144. value_noise = Variable(torch.randn(values.size()))
  145. if args.cuda:
  146. value_noise = value_noise.cuda()
  147. sample_values = values + value_noise
  148. vf_fisher_loss = -(values - Variable(sample_values.data)).pow(2).mean()
  149. fisher_loss = pg_fisher_loss + vf_fisher_loss
  150. optimizer.acc_stats = True
  151. fisher_loss.backward(retain_graph=True)
  152. optimizer.acc_stats = False
  153. optimizer.zero_grad()
  154. (value_loss * args.value_loss_coef + action_loss - dist_entropy * args.entropy_coef).backward()
  155. if args.algo == 'a2c':
  156. nn.utils.clip_grad_norm(actor_critic.parameters(), args.max_grad_norm)
  157. optimizer.step()
  158. elif args.algo == 'ppo':
  159. advantages = rollouts.returns[:-1] - rollouts.value_preds[:-1]
  160. advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-5)
  161. for e in range(args.ppo_epoch):
  162. if args.recurrent_policy:
  163. data_generator = rollouts.recurrent_generator(advantages,
  164. args.num_mini_batch)
  165. else:
  166. data_generator = rollouts.feed_forward_generator(advantages,
  167. args.num_mini_batch)
  168. for sample in data_generator:
  169. observations_batch, states_batch, actions_batch, \
  170. return_batch, masks_batch, old_action_log_probs_batch, \
  171. adv_targ = sample
  172. # Reshape to do in a single forward pass for all steps
  173. values, action_log_probs, dist_entropy, states = actor_critic.evaluate_actions(Variable(observations_batch),
  174. Variable(states_batch),
  175. Variable(masks_batch),
  176. Variable(actions_batch))
  177. adv_targ = Variable(adv_targ)
  178. ratio = torch.exp(action_log_probs - Variable(old_action_log_probs_batch))
  179. surr1 = ratio * adv_targ
  180. surr2 = torch.clamp(ratio, 1.0 - args.clip_param, 1.0 + args.clip_param) * adv_targ
  181. action_loss = -torch.min(surr1, surr2).mean() # PPO's pessimistic surrogate (L^CLIP)
  182. value_loss = (Variable(return_batch) - values).pow(2).mean()
  183. optimizer.zero_grad()
  184. (value_loss + action_loss - dist_entropy * args.entropy_coef).backward()
  185. nn.utils.clip_grad_norm(actor_critic.parameters(), args.max_grad_norm)
  186. optimizer.step()
  187. rollouts.after_update()
  188. if j % args.save_interval == 0 and args.save_dir != "":
  189. save_path = os.path.join(args.save_dir, args.algo)
  190. try:
  191. os.makedirs(save_path)
  192. except OSError:
  193. pass
  194. # A really ugly way to save a model to CPU
  195. save_model = actor_critic
  196. if args.cuda:
  197. save_model = copy.deepcopy(actor_critic).cpu()
  198. save_model = [save_model,
  199. hasattr(envs, 'ob_rms') and envs.ob_rms or None]
  200. torch.save(save_model, os.path.join(save_path, args.env_name + ".pt"))
  201. if j % args.log_interval == 0:
  202. end = time.time()
  203. total_num_steps = (j + 1) * args.num_processes * args.num_steps
  204. print("Updates {}, num timesteps {}, FPS {}, mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}, entropy {:.5f}, value loss {:.5f}, policy loss {:.5f}".
  205. format(j, total_num_steps,
  206. int(total_num_steps / (end - start)),
  207. final_rewards.mean(),
  208. final_rewards.median(),
  209. final_rewards.min(),
  210. final_rewards.max(), dist_entropy.data[0],
  211. value_loss.data[0], action_loss.data[0]))
  212. if args.vis and j % args.vis_interval == 0:
  213. try:
  214. # Sometimes monitor doesn't properly flush the outputs
  215. win = visdom_plot(viz, win, args.log_dir, args.env_name, args.algo)
  216. except IOError:
  217. pass
  218. if __name__ == "__main__":
  219. main()