123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- import argparse
- import os
- import sys
- import types
- import time
- import numpy as np
- import torch
- from torch.autograd import Variable
- from vec_env.dummy_vec_env import DummyVecEnv
- from envs import make_env
- parser = argparse.ArgumentParser(description='RL')
- parser.add_argument('--seed', type=int, default=1,
- help='random seed (default: 1)')
- parser.add_argument('--num-stack', type=int, default=1,
- help='number of frames to stack (default: 1)')
- parser.add_argument('--log-interval', type=int, default=10,
- help='log interval, one log per n updates (default: 10)')
- parser.add_argument('--env-name', default='PongNoFrameskip-v4',
- help='environment to train on (default: PongNoFrameskip-v4)')
- parser.add_argument('--load-dir', default='./trained_models/',
- help='directory to save agent logs (default: ./trained_models/)')
- args = parser.parse_args()
- env = make_env(args.env_name, args.seed, 0, None)
- env = DummyVecEnv([env])
- actor_critic, ob_rms = torch.load(os.path.join(args.load_dir, args.env_name + ".pt"))
- render_func = env.envs[0].render
- obs_shape = env.observation_space.shape
- obs_shape = (obs_shape[0] * args.num_stack, *obs_shape[1:])
- current_obs = torch.zeros(1, *obs_shape)
- states = torch.zeros(1, actor_critic.state_size)
- masks = torch.zeros(1, 1)
- def update_current_obs(obs):
- shape_dim0 = env.observation_space.shape[0]
- obs = torch.from_numpy(obs).float()
- if args.num_stack > 1:
- current_obs[:, :-shape_dim0] = current_obs[:, shape_dim0:]
- current_obs[:, -shape_dim0:] = obs
- render_func('human')
- obs = env.reset()
- update_current_obs(obs)
- while True:
- value, action, _, states = actor_critic.act(
- Variable(current_obs, volatile=True),
- Variable(states, volatile=True),
- Variable(masks, volatile=True),
- deterministic=True
- )
- states = states.data
- cpu_actions = action.data.squeeze(1).cpu().numpy()
- # Observation, reward and next obs
- obs, reward, done, _ = env.step(cpu_actions)
- time.sleep(0.05)
- masks.fill_(0.0 if done else 1.0)
- if current_obs.dim() == 4:
- current_obs *= masks.unsqueeze(2).unsqueeze(2)
- else:
- current_obs *= masks
- update_current_obs(obs)
- renderer = render_func('human')
- if not renderer.window:
- sys.exit(0)
|