12345678910111213141516171819202122232425262728293031323334353637383940414243 |
- import os
- import numpy
- import gym
- from gym import spaces
- try:
- import gym_minigrid
- from gym_minigrid.wrappers import *
- except:
- pass
- def make_env(env_id, seed, rank, log_dir):
- def _thunk():
- env = gym.make(env_id)
- env.seed(seed + rank)
- # Maxime: until RL code supports dict observations, squash observations into a flat vector
- if isinstance(env.observation_space, spaces.Dict):
- env = FlatObsWrapper(env)
- # If the input has shape (W,H,3), wrap for PyTorch convolutions
- obs_shape = env.observation_space.shape
- if len(obs_shape) == 3 and obs_shape[2] == 3:
- env = WrapPyTorch(env)
- return env
- return _thunk
- class WrapPyTorch(gym.ObservationWrapper):
- def __init__(self, env=None):
- super(WrapPyTorch, self).__init__(env)
- obs_shape = self.observation_space.shape
- self.observation_space = spaces.Box(
- self.observation_space.low[0,0,0],
- self.observation_space.high[0,0,0],
- [obs_shape[2], obs_shape[1], obs_shape[0]]
- )
- def _observation(self, observation):
- return observation.transpose(2, 0, 1)
|