123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- import numpy as np
- # TODO: anti-aliased version, fill_coords_aa?
- def fill_coords(img, fn, color):
- """
- Fill pixels of an image with coordinates matching a filter function
- """
- for y in range(img.shape[0]):
- for x in range(img.shape[1]):
- yf = y / img.shape[0]
- xf = x / img.shape[1]
- if fn(xf, yf):
- img[y, x] = color
- return img
- def point_in_circle(cx, cy, r):
- def fn(x, y):
- return (x-cx)*(x-cx) + (y-cy)*(y-cy) <= r * r
- return fn
- def point_in_rect(xmin, xmax, ymin, ymax):
- def fn(x, y):
- return x >= xmin and x <= xmax and y >= ymin and y <= ymax
- return fn
- def point_in_triangle(a, b, c):
- a = np.array(a)
- b = np.array(b)
- c = np.array(c)
- def fn(x, y):
- v0 = c - a
- v1 = b - a
- v2 = np.array((x, y)) - a
- # Compute dot products
- dot00 = np.dot(v0, v0)
- dot01 = np.dot(v0, v1)
- dot02 = np.dot(v0, v2)
- dot11 = np.dot(v1, v1)
- dot12 = np.dot(v1, v2)
- # Compute barycentric coordinates
- inv_denom = 1 / (dot00 * dot11 - dot01 * dot01)
- u = (dot11 * dot02 - dot01 * dot12) * inv_denom
- v = (dot00 * dot12 - dot01 * dot02) * inv_denom
- # Check if point is in triangle
- return (u >= 0) and (v >= 0) and (u + v) < 1
- return fn
|