123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- from gym_minigrid.minigrid import *
- from gym_minigrid.register import register
- import itertools as itt
- class LavaCrossingEnv(MiniGridEnv):
- """
- Environment with lava obstacles, sparse reward
- """
- def __init__(self, size=9, num_crossings=1, seed=None):
- self.num_crossings = num_crossings
- super().__init__(
- grid_size=size,
- max_steps=4*size*size,
- # Set this to True for maximum speed
- see_through_walls=False,
- seed=None
- )
- def _gen_grid(self, width, height):
- assert width % 2 == 1 and height % 2 == 1 # odd size
- # Create an empty grid
- self.grid = Grid(width, height)
- # Generate the surrounding walls
- self.grid.wall_rect(0, 0, width, height)
- # Place the agent in the top-left corner
- self.start_pos = (1, 1)
- self.start_dir = 0
- # Place a goal square in the bottom-right corner
- self.grid.set(width - 2, height - 2, Goal())
- # Place lava tiles
- v, h = object(), object() # singleton `vertical` and `horizontal` objects
- # Lava river specified by direction and position in grid
- rivers = [(v, i) for i in range(2, height - 2, 2)]
- rivers += [(h, j) for j in range(2, width - 2, 2)]
- self.np_random.shuffle(rivers)
- rivers = rivers[:self.num_crossings] # sample random rivers
- rivers_v = sorted([pos for direction, pos in rivers if direction is v])
- rivers_h = sorted([pos for direction, pos in rivers if direction is h])
- lava_pos = itt.chain(
- itt.product(range(1, width - 1), rivers_h),
- itt.product(rivers_v, range(1, height - 1)),
- )
- for i, j in lava_pos:
- self.grid.set(i, j, Lava())
- # Sample path to goal
- path = [h] * len(rivers_v) + [v] * len(rivers_h)
- self.np_random.shuffle(path)
- # Create openings in lava rivers
- limits_v = [0] + rivers_v + [height - 1]
- limits_h = [0] + rivers_h + [width - 1]
- room_i, room_j = 0, 0
- for direction in path:
- if direction is h:
- i = limits_v[room_i + 1]
- j = self.np_random.choice(
- range(limits_h[room_j] + 1, limits_h[room_j + 1]))
- room_i += 1
- elif direction is v:
- i = self.np_random.choice(
- range(limits_v[room_i] + 1, limits_v[room_i + 1]))
- j = limits_h[room_j + 1]
- room_j += 1
- else:
- assert False
- self.grid.set(i, j, None)
- self.mission = "avoid the lava and get to the green goal square"
- class LavaCrossingS9N2Env(LavaCrossingEnv):
- def __init__(self):
- super().__init__(size=9, num_crossings=2)
- class LavaCrossingS9N3Env(LavaCrossingEnv):
- def __init__(self):
- super().__init__(size=9, num_crossings=3)
- class LavaCrossingS11N5Env(LavaCrossingEnv):
- def __init__(self):
- super().__init__(size=11, num_crossings=5)
- register(
- id='MiniGrid-LavaCrossingS9N1-v0',
- entry_point='gym_minigrid.envs:LavaCrossingEnv'
- )
- register(
- id='MiniGrid-LavaCrossingS9N2-v0',
- entry_point='gym_minigrid.envs:LavaCrossingS9N2Env'
- )
- register(
- id='MiniGrid-LavaCrossingS9N3-v0',
- entry_point='gym_minigrid.envs:LavaCrossingS9N3Env'
- )
- register(
- id='MiniGrid-LavaCrossingS11N5-v0',
- entry_point='gym_minigrid.envs:LavaCrossingS11N5Env'
- )
|