run_tests.py 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. #!/usr/bin/env python3
  2. import random
  3. import numpy as np
  4. import gym
  5. from gym_minigrid.register import env_list
  6. from gym_minigrid.minigrid import Grid, OBJECT_TO_IDX
  7. # Test specifically importing a specific environment
  8. from gym_minigrid.envs import DoorKeyEnv
  9. # Test importing wrappers
  10. from gym_minigrid.wrappers import *
  11. ##############################################################################
  12. print('%d environments registered' % len(env_list))
  13. for env_name in env_list:
  14. print('testing "%s"' % env_name)
  15. # Load the gym environment
  16. env = gym.make(env_name)
  17. env.max_steps = min(env.max_steps, 200)
  18. env.reset()
  19. env.render('rgb_array')
  20. # Verify that the same seed always produces the same environment
  21. for i in range(0, 5):
  22. seed = 1337 + i
  23. env.seed(seed)
  24. grid1 = env.grid
  25. env.seed(seed)
  26. grid2 = env.grid
  27. assert grid1 == grid2
  28. env.reset()
  29. # Run for a few episodes
  30. num_episodes = 0
  31. while num_episodes < 5:
  32. # Pick a random action
  33. action = random.randint(0, env.action_space.n - 1)
  34. obs, reward, done, info = env.step(action)
  35. # Validate the agent position
  36. assert env.agent_pos[0] < env.width
  37. assert env.agent_pos[1] < env.height
  38. # Test observation encode/decode roundtrip
  39. img = obs['image']
  40. vis_mask = img[:, :, 0] != OBJECT_TO_IDX['unseen'] # hackish
  41. img2 = Grid.decode(img).encode(vis_mask=vis_mask)
  42. assert np.array_equal(img, img2)
  43. # Test the env to string function
  44. str(env)
  45. # Check that the reward is within the specified range
  46. assert reward >= env.reward_range[0], reward
  47. assert reward <= env.reward_range[1], reward
  48. if done:
  49. num_episodes += 1
  50. env.reset()
  51. env.render('rgb_array')
  52. # Test the close method
  53. env.close()
  54. env = gym.make(env_name)
  55. env = ReseedWrapper(env)
  56. for _ in range(10):
  57. env.reset()
  58. env.step(0)
  59. env.close()
  60. env = gym.make(env_name)
  61. env = ImgObsWrapper(env)
  62. env.reset()
  63. env.step(0)
  64. env.close()
  65. # Test the fully observable wrapper
  66. env = gym.make(env_name)
  67. env = FullyObsWrapper(env)
  68. env.reset()
  69. obs, _, _, _ = env.step(0)
  70. assert obs['image'].shape == env.observation_space.spaces['image'].shape
  71. env.close()
  72. env = gym.make(env_name)
  73. env = FlatObsWrapper(env)
  74. env.reset()
  75. env.step(0)
  76. env.close()
  77. env = gym.make(env_name)
  78. env = ViewSizeWrapper(env, 5)
  79. env.reset()
  80. env.step(0)
  81. env.close()
  82. # Test the wrappers return proper observation spaces.
  83. wrappers = [
  84. RGBImgObsWrapper,
  85. RGBImgPartialObsWrapper,
  86. OneHotPartialObsWrapper
  87. ]
  88. for wrapper in wrappers:
  89. env = wrapper(gym.make(env_name))
  90. obs_space, wrapper_name = env.observation_space, wrapper.__name__
  91. assert isinstance(
  92. obs_space, spaces.Dict
  93. ), "Observation space for {0} is not a Dict: {1}.".format(
  94. wrapper_name, obs_space
  95. )
  96. # this shuld not fail either
  97. ImgObsWrapper(env)
  98. ##############################################################################
  99. print('testing agent_sees method')
  100. env = gym.make('MiniGrid-DoorKey-6x6-v0')
  101. goal_pos = (env.grid.width - 2, env.grid.height - 2)
  102. # Test the "in" operator on grid objects
  103. assert ('green', 'goal') in env.grid
  104. assert ('blue', 'key') not in env.grid
  105. # Test the env.agent_sees() function
  106. env.reset()
  107. for i in range(0, 500):
  108. action = random.randint(0, env.action_space.n - 1)
  109. obs, reward, done, info = env.step(action)
  110. goal_visible = ('green', 'goal') in Grid.decode(obs['image'])
  111. agent_sees_goal = env.agent_sees(*goal_pos)
  112. assert agent_sees_goal == goal_visible
  113. if done:
  114. env.reset()
  115. #############################################################################