123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 |
- import copy
- import glob
- import os
- import time
- import operator
- from functools import reduce
- import gym
- import numpy as np
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.optim as optim
- from torch.autograd import Variable
- from arguments import get_args
- from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
- from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
- from baselines.common.vec_env.vec_normalize import VecNormalize
- from envs import make_env
- from kfac import KFACOptimizer
- from model import CNNPolicy, MLPPolicy
- from storage import RolloutStorage
- from visualize import visdom_plot
- args = get_args()
- assert args.algo in ['a2c', 'ppo', 'acktr']
- if args.recurrent_policy:
- assert args.algo in ['a2c', 'ppo'], \
- 'Recurrent policy is not implemented for ACKTR'
- num_updates = int(args.num_frames) // args.num_steps // args.num_processes
- torch.manual_seed(args.seed)
- if args.cuda:
- torch.cuda.manual_seed(args.seed)
- try:
- os.makedirs(args.log_dir)
- except OSError:
- files = glob.glob(os.path.join(args.log_dir, '*.monitor.csv'))
- for f in files:
- os.remove(f)
- def main():
- print("#######")
- print("WARNING: All rewards are clipped or normalized so you need to use a monitor (see envs.py) or visdom plot to get true rewards")
- print("#######")
- os.environ['OMP_NUM_THREADS'] = '1'
- if args.vis:
- from visdom import Visdom
- viz = Visdom()
- win = None
- envs = [make_env(args.env_name, args.seed, i, args.log_dir)
- for i in range(args.num_processes)]
- if args.num_processes > 1:
- envs = SubprocVecEnv(envs)
- else:
- envs = DummyVecEnv(envs)
- # Maxime: commented this out because it very much changes the behavior
- # of the code for seemingly arbitrary reasons
- #if len(envs.observation_space.shape) == 1:
- # envs = VecNormalize(envs)
- obs_shape = envs.observation_space.shape
- obs_shape = (obs_shape[0] * args.num_stack, *obs_shape[1:])
- obs_numel = reduce(operator.mul, obs_shape, 1)
- if len(obs_shape) == 3 and obs_numel > 1024:
- actor_critic = CNNPolicy(obs_shape[0], envs.action_space, args.recurrent_policy)
- else:
- assert not args.recurrent_policy, \
- "Recurrent policy is not implemented for the MLP controller"
- actor_critic = MLPPolicy(obs_numel, envs.action_space)
- # Maxime: log some info about the model and its size
- modelSize = 0
- for p in actor_critic.parameters():
- pSize = reduce(operator.mul, p.size(), 1)
- modelSize += pSize
- print(str(actor_critic))
- print('Total model size: %d' % modelSize)
- if envs.action_space.__class__.__name__ == "Discrete":
- action_shape = 1
- else:
- action_shape = envs.action_space.shape[0]
- if args.cuda:
- actor_critic.cuda()
- if args.algo == 'a2c':
- optimizer = optim.RMSprop(actor_critic.parameters(), args.lr, eps=args.eps, alpha=args.alpha)
- elif args.algo == 'ppo':
- optimizer = optim.Adam(actor_critic.parameters(), args.lr, eps=args.eps)
- elif args.algo == 'acktr':
- optimizer = KFACOptimizer(actor_critic)
- rollouts = RolloutStorage(args.num_steps, args.num_processes, obs_shape, envs.action_space, actor_critic.state_size)
- current_obs = torch.zeros(args.num_processes, *obs_shape)
- def update_current_obs(obs):
- shape_dim0 = envs.observation_space.shape[0]
- obs = torch.from_numpy(obs).float()
- if args.num_stack > 1:
- current_obs[:, :-shape_dim0] = current_obs[:, shape_dim0:]
- current_obs[:, -shape_dim0:] = obs
- obs = envs.reset()
- update_current_obs(obs)
- rollouts.observations[0].copy_(current_obs)
- # These variables are used to compute average rewards for all processes.
- episode_rewards = torch.zeros([args.num_processes, 1])
- final_rewards = torch.zeros([args.num_processes, 1])
- if args.cuda:
- current_obs = current_obs.cuda()
- rollouts.cuda()
- start = time.time()
- for j in range(num_updates):
- for step in range(args.num_steps):
- # Sample actions
- value, action, action_log_prob, states = actor_critic.act(Variable(rollouts.observations[step], volatile=True),
- Variable(rollouts.states[step], volatile=True),
- Variable(rollouts.masks[step], volatile=True))
- cpu_actions = action.data.squeeze(1).cpu().numpy()
- # Obser reward and next obs
- obs, reward, done, info = envs.step(cpu_actions)
- reward = torch.from_numpy(np.expand_dims(np.stack(reward), 1)).float()
- episode_rewards += reward
- # If done then clean the history of observations.
- masks = torch.FloatTensor([[0.0] if done_ else [1.0] for done_ in done])
- final_rewards *= masks
- final_rewards += (1 - masks) * episode_rewards
- episode_rewards *= masks
- if args.cuda:
- masks = masks.cuda()
- if current_obs.dim() == 4:
- current_obs *= masks.unsqueeze(2).unsqueeze(2)
- else:
- current_obs *= masks
- update_current_obs(obs)
- rollouts.insert(step, current_obs, states.data, action.data, action_log_prob.data, value.data, reward, masks)
- next_value = actor_critic(Variable(rollouts.observations[-1], volatile=True),
- Variable(rollouts.states[-1], volatile=True),
- Variable(rollouts.masks[-1], volatile=True))[0].data
- rollouts.compute_returns(next_value, args.use_gae, args.gamma, args.tau)
- if args.algo in ['a2c', 'acktr']:
- values, action_log_probs, dist_entropy, states = actor_critic.evaluate_actions(Variable(rollouts.observations[:-1].view(-1, *obs_shape)),
- Variable(rollouts.states[0].view(-1, actor_critic.state_size)),
- Variable(rollouts.masks[:-1].view(-1, 1)),
- Variable(rollouts.actions.view(-1, action_shape)))
- values = values.view(args.num_steps, args.num_processes, 1)
- action_log_probs = action_log_probs.view(args.num_steps, args.num_processes, 1)
- advantages = Variable(rollouts.returns[:-1]) - values
- value_loss = advantages.pow(2).mean()
- action_loss = -(Variable(advantages.data) * action_log_probs).mean()
- if args.algo == 'acktr' and optimizer.steps % optimizer.Ts == 0:
- # Sampled fisher, see Martens 2014
- actor_critic.zero_grad()
- pg_fisher_loss = -action_log_probs.mean()
- value_noise = Variable(torch.randn(values.size()))
- if args.cuda:
- value_noise = value_noise.cuda()
- sample_values = values + value_noise
- vf_fisher_loss = -(values - Variable(sample_values.data)).pow(2).mean()
- fisher_loss = pg_fisher_loss + vf_fisher_loss
- optimizer.acc_stats = True
- fisher_loss.backward(retain_graph=True)
- optimizer.acc_stats = False
- optimizer.zero_grad()
- (value_loss * args.value_loss_coef + action_loss - dist_entropy * args.entropy_coef).backward()
- if args.algo == 'a2c':
- nn.utils.clip_grad_norm(actor_critic.parameters(), args.max_grad_norm)
- optimizer.step()
- elif args.algo == 'ppo':
- advantages = rollouts.returns[:-1] - rollouts.value_preds[:-1]
- advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-5)
- for e in range(args.ppo_epoch):
- if args.recurrent_policy:
- data_generator = rollouts.recurrent_generator(advantages,
- args.num_mini_batch)
- else:
- data_generator = rollouts.feed_forward_generator(advantages,
- args.num_mini_batch)
- for sample in data_generator:
- observations_batch, states_batch, actions_batch, \
- return_batch, masks_batch, old_action_log_probs_batch, \
- adv_targ = sample
- # Reshape to do in a single forward pass for all steps
- values, action_log_probs, dist_entropy, states = actor_critic.evaluate_actions(Variable(observations_batch),
- Variable(states_batch),
- Variable(masks_batch),
- Variable(actions_batch))
- adv_targ = Variable(adv_targ)
- ratio = torch.exp(action_log_probs - Variable(old_action_log_probs_batch))
- surr1 = ratio * adv_targ
- surr2 = torch.clamp(ratio, 1.0 - args.clip_param, 1.0 + args.clip_param) * adv_targ
- action_loss = -torch.min(surr1, surr2).mean() # PPO's pessimistic surrogate (L^CLIP)
- value_loss = (Variable(return_batch) - values).pow(2).mean()
- optimizer.zero_grad()
- (value_loss + action_loss - dist_entropy * args.entropy_coef).backward()
- nn.utils.clip_grad_norm(actor_critic.parameters(), args.max_grad_norm)
- optimizer.step()
- rollouts.after_update()
- if j % args.save_interval == 0 and args.save_dir != "":
- save_path = os.path.join(args.save_dir, args.algo)
- try:
- os.makedirs(save_path)
- except OSError:
- pass
- # A really ugly way to save a model to CPU
- save_model = actor_critic
- if args.cuda:
- save_model = copy.deepcopy(actor_critic).cpu()
- save_model = [save_model,
- hasattr(envs, 'ob_rms') and envs.ob_rms or None]
- torch.save(save_model, os.path.join(save_path, args.env_name + ".pt"))
- if j % args.log_interval == 0:
- end = time.time()
- total_num_steps = (j + 1) * args.num_processes * args.num_steps
- print("Updates {}, num timesteps {}, FPS {}, mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}, entropy {:.5f}, value loss {:.5f}, policy loss {:.5f}".
- format(j, total_num_steps,
- int(total_num_steps / (end - start)),
- final_rewards.mean(),
- final_rewards.median(),
- final_rewards.min(),
- final_rewards.max(), dist_entropy.data[0],
- value_loss.data[0], action_loss.data[0]))
- if args.vis and j % args.vis_interval == 0:
- try:
- # Sometimes monitor doesn't properly flush the outputs
- win = visdom_plot(viz, win, args.log_dir, args.env_name, args.algo)
- except IOError:
- pass
- if __name__ == "__main__":
- main()
|