train_classifier_img_small.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219
  1. #!/usr/bin/env python3
  2. import time
  3. import random
  4. import numpy as np
  5. import gym
  6. from gym_minigrid.register import env_list
  7. from gym_minigrid.minigrid import Grid, OBJECT_TO_IDX
  8. import babyai
  9. import matplotlib.pyplot as plt
  10. import torch
  11. import torch.nn as nn
  12. import torch.optim as optim
  13. import torch.nn.functional as F
  14. from torch.autograd import Variable
  15. import torchvision
  16. import numpy as np
  17. import cv2
  18. import PIL
  19. ##############################################################################
  20. def make_var(arr):
  21. arr = np.ascontiguousarray(arr)
  22. #arr = torch.from_numpy(arr).float()
  23. arr = torch.from_numpy(arr)
  24. arr = Variable(arr)
  25. if torch.cuda.is_available():
  26. arr = arr.cuda()
  27. return arr
  28. def init_weights(m):
  29. classname = m.__class__.__name__
  30. if classname.startswith('Conv'):
  31. nn.init.orthogonal_(m.weight.data)
  32. m.bias.data.fill_(0)
  33. elif classname.find('Linear') != -1:
  34. nn.init.xavier_uniform_(m.weight)
  35. m.bias.data.fill_(0)
  36. elif classname.find('BatchNorm') != -1:
  37. m.weight.data.normal_(1.0, 0.02)
  38. m.bias.data.fill_(0)
  39. def num_params(model):
  40. pp=0
  41. for p in list(model.parameters()):
  42. nn=1
  43. for s in list(p.size()):
  44. nn = nn*s
  45. pp += nn
  46. return pp
  47. class Flatten(nn.Module):
  48. """
  49. Flatten layer, to flatten convolutional layer output
  50. """
  51. def forward(self, input):
  52. return input.view(input.size(0), -1)
  53. class Print(nn.Module):
  54. def forward(self, input):
  55. print(input.size())
  56. return input
  57. class Model(nn.Module):
  58. def __init__(self):
  59. super().__init__()
  60. self.layers = nn.Sequential(
  61. #Print(),
  62. nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=2),
  63. nn.LeakyReLU(),
  64. nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, stride=2),
  65. nn.LeakyReLU(),
  66. nn.Conv2d(in_channels=16, out_channels=16, kernel_size=2, stride=2),
  67. nn.LeakyReLU(),
  68. #Print(),
  69. Flatten(),
  70. nn.Linear(144, 128),
  71. nn.LeakyReLU(),
  72. nn.Linear(128, 2),
  73. )
  74. self.apply(init_weights)
  75. def forward(self, obs):
  76. obs = obs / 16
  77. out = self.layers(obs)
  78. return out
  79. def present_prob(self, obs):
  80. obs = make_var(obs).unsqueeze(0)
  81. logits = self(obs)
  82. probs = F.softmax(logits, dim=-1)
  83. probs = probs.detach().cpu().squeeze().numpy()
  84. return probs[1]
  85. env = gym.make('BabyAI-GoToRedBall-v0')
  86. def sample_batch(batch_size=128):
  87. imgs = []
  88. labels = []
  89. for i in range(batch_size):
  90. obs = env.reset()['image']
  91. ball_visible = ('red', 'ball') in Grid.decode(obs)
  92. obs = env.get_obs_render(obs, tile_size=4, mode='rgb_array')
  93. #plt.imshow(obs)
  94. #plt.show()
  95. obs = obs.transpose([2, 0, 1])
  96. imgs.append(np.copy(obs))
  97. labels.append(ball_visible)
  98. imgs = np.stack(imgs).astype(np.float32)
  99. labels = np.array(labels, dtype=np.long)
  100. return imgs, labels
  101. print('Generating test set')
  102. test_imgs, test_labels = sample_batch(256)
  103. def eval_model(model):
  104. num_true = 0
  105. for idx in range(test_imgs.shape[0]):
  106. img = test_imgs[idx]
  107. label = test_labels[idx]
  108. p = model.present_prob(img)
  109. out_label = p > 0.5
  110. #print(out_label)
  111. if np.equal(out_label, label):
  112. num_true += 1
  113. #else:
  114. # if label:
  115. # print("incorrectly predicted as absent")
  116. # else:
  117. # print("incorrectly predicted as present")
  118. acc = 100 * (num_true / test_imgs.shape[0])
  119. return acc
  120. ##############################################################################
  121. batch_size = 64
  122. model = Model()
  123. model.cuda()
  124. print('Num params:', num_params(model))
  125. optimizer = optim.Adam(
  126. model.parameters(),
  127. lr=5e-4
  128. )
  129. criterion = nn.CrossEntropyLoss()
  130. running_loss = None
  131. for batch_no in range(1, 10000):
  132. batch_imgs, labels = sample_batch(batch_size)
  133. batch_imgs = make_var(batch_imgs)
  134. labels = make_var(labels)
  135. pred = model(batch_imgs)
  136. loss = criterion(pred, labels)
  137. optimizer.zero_grad()
  138. loss.backward()
  139. optimizer.step()
  140. loss = loss.data.detach().item()
  141. running_loss = loss if running_loss is None else 0.99 * running_loss + 0.01 * loss
  142. print('batch #{}, frames={}, loss={:.5f}'.format(
  143. batch_no,
  144. batch_no * batch_size,
  145. running_loss
  146. ))
  147. if batch_no % 25 == 0:
  148. acc = eval_model(model)
  149. print('accuracy: {:.2f}%'.format(acc))