1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- #!/usr/bin/env python3
- import random
- import gym
- import numpy as np
- from gym_minigrid.register import envList
- from gym_minigrid.minigrid import Grid
- # Test specifically importing a specific environment
- from gym_minigrid.envs import DoorKeyEnv
- # Test importing wrappers
- from gym_minigrid.wrappers import *
- ##############################################################################
- print('%d environments registered' % len(envList))
- for envName in envList:
- print('testing "%s"' % envName)
- # Load the gym environment
- env = gym.make(envName)
- env.reset()
- env.render('rgb_array')
- # Verify that the same seed always produces the same environment
- for i in range(0, 5):
- seed = 1337 + i
- env.seed(seed)
- grid1 = env.grid.encode()
- env.seed(seed)
- grid2 = env.grid.encode()
- assert np.array_equal(grid2, grid1)
- env.reset()
- # Run for a few episodes
- for i in range(5 * env.maxSteps):
- # Pick a random action
- action = random.randint(0, env.action_space.n - 1)
- obs, reward, done, info = env.step(action)
- # Test observation encode/decode roundtrip
- img = obs['image']
- grid = Grid.decode(img)
- img2 = grid.encode()
- assert np.array_equal(img2, img)
- # Check that the reward is within the specified range
- assert reward >= env.reward_range[0], reward
- assert reward <= env.reward_range[1], reward
- if done:
- env.reset()
- # Check that the agent doesn't overlap with an object
- assert env.grid.get(*env.agentPos) is None
- env.render('rgb_array')
- env.close()
- ##############################################################################
- env = gym.make('MiniGrid-Empty-6x6-v0')
- goalPos = (env.grid.width - 2, env.grid.height - 2)
- # Test the "in" operator on grid objects
- assert ('green', 'goal') in env.grid
- assert ('blue', 'key') not in env.grid
- # Test the env.agentSees() function
- env.reset()
- for i in range(0, 200):
- action = random.randint(0, env.action_space.n - 1)
- obs, reward, done, info = env.step(action)
- goalVisible = ('green', 'goal') in Grid.decode(obs['image'])
- assert env.agentSees(*goalPos) == goalVisible
- if done:
- env.reset()
|