minigrid.py 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911
  1. import math
  2. import gym
  3. from enum import IntEnum
  4. import numpy as np
  5. from gym import error, spaces, utils
  6. from gym.utils import seeding
  7. from gym_minigrid.rendering import *
  8. # Size in pixels of a cell in the full-scale human view
  9. CELL_PIXELS = 32
  10. # Number of cells (width and height) in the agent view
  11. AGENT_VIEW_SIZE = 7
  12. # Size of the array given as an observation to the agent
  13. OBS_ARRAY_SIZE = (AGENT_VIEW_SIZE, AGENT_VIEW_SIZE, 3)
  14. # Map of color names to RGB values
  15. COLORS = {
  16. 'red' : (255, 0, 0),
  17. 'green' : (0, 255, 0),
  18. 'blue' : (0, 0, 255),
  19. 'purple': (112, 39, 195),
  20. 'yellow': (255, 255, 0),
  21. 'grey' : (100, 100, 100)
  22. }
  23. COLOR_NAMES = sorted(list(COLORS.keys()))
  24. # Used to map colors to integers
  25. COLOR_TO_IDX = {
  26. 'red' : 0,
  27. 'green' : 1,
  28. 'blue' : 2,
  29. 'purple': 3,
  30. 'yellow': 4,
  31. 'grey' : 5
  32. }
  33. IDX_TO_COLOR = dict(zip(COLOR_TO_IDX.values(), COLOR_TO_IDX.keys()))
  34. # Map of object type to integers
  35. OBJECT_TO_IDX = {
  36. 'empty' : 0,
  37. 'wall' : 1,
  38. 'door' : 2,
  39. 'locked_door' : 3,
  40. 'key' : 4,
  41. 'ball' : 5,
  42. 'box' : 6,
  43. 'goal' : 7
  44. }
  45. IDX_TO_OBJECT = dict(zip(OBJECT_TO_IDX.values(), OBJECT_TO_IDX.keys()))
  46. class WorldObj:
  47. """
  48. Base class for grid world objects
  49. """
  50. def __init__(self, type, color):
  51. assert type in OBJECT_TO_IDX, type
  52. assert color in COLOR_TO_IDX, color
  53. self.type = type
  54. self.color = color
  55. self.contains = None
  56. def canOverlap(self):
  57. """Can the agent overlap with this?"""
  58. return False
  59. def canPickup(self):
  60. """Can the agent pick this up?"""
  61. return False
  62. def canContain(self):
  63. """Can this contain another object?"""
  64. return False
  65. def toggle(self, env, pos):
  66. """Method to trigger/toggle an action this object performs"""
  67. return False
  68. def render(self, r):
  69. assert False
  70. def _setColor(self, r):
  71. c = COLORS[self.color]
  72. r.setLineColor(c[0], c[1], c[2])
  73. r.setColor(c[0], c[1], c[2])
  74. class Goal(WorldObj):
  75. def __init__(self):
  76. super(Goal, self).__init__('goal', 'green')
  77. def render(self, r):
  78. self._setColor(r)
  79. r.drawPolygon([
  80. (0 , CELL_PIXELS),
  81. (CELL_PIXELS, CELL_PIXELS),
  82. (CELL_PIXELS, 0),
  83. (0 , 0)
  84. ])
  85. class Wall(WorldObj):
  86. def __init__(self, color='grey'):
  87. super(Wall, self).__init__('wall', color)
  88. def render(self, r):
  89. self._setColor(r)
  90. r.drawPolygon([
  91. (0 , CELL_PIXELS),
  92. (CELL_PIXELS, CELL_PIXELS),
  93. (CELL_PIXELS, 0),
  94. (0 , 0)
  95. ])
  96. class Door(WorldObj):
  97. def __init__(self, color, isOpen=False):
  98. super(Door, self).__init__('door', color)
  99. self.isOpen = isOpen
  100. def render(self, r):
  101. c = COLORS[self.color]
  102. r.setLineColor(c[0], c[1], c[2])
  103. r.setColor(0, 0, 0)
  104. if self.isOpen:
  105. r.drawPolygon([
  106. (CELL_PIXELS-2, CELL_PIXELS),
  107. (CELL_PIXELS , CELL_PIXELS),
  108. (CELL_PIXELS , 0),
  109. (CELL_PIXELS-2, 0)
  110. ])
  111. return
  112. r.drawPolygon([
  113. (0 , CELL_PIXELS),
  114. (CELL_PIXELS, CELL_PIXELS),
  115. (CELL_PIXELS, 0),
  116. (0 , 0)
  117. ])
  118. r.drawPolygon([
  119. (2 , CELL_PIXELS-2),
  120. (CELL_PIXELS-2, CELL_PIXELS-2),
  121. (CELL_PIXELS-2, 2),
  122. (2 , 2)
  123. ])
  124. r.drawCircle(CELL_PIXELS * 0.75, CELL_PIXELS * 0.5, 2)
  125. def toggle(self, env, pos):
  126. if not self.isOpen:
  127. self.isOpen = True
  128. return True
  129. return False
  130. def canOverlap(self):
  131. """The agent can only walk over this cell when the door is open"""
  132. return self.isOpen
  133. class LockedDoor(WorldObj):
  134. def __init__(self, color, isOpen=False):
  135. super(LockedDoor, self).__init__('locked_door', color)
  136. self.isOpen = isOpen
  137. def render(self, r):
  138. c = COLORS[self.color]
  139. r.setLineColor(c[0], c[1], c[2])
  140. r.setColor(c[0], c[1], c[2], 50)
  141. if self.isOpen:
  142. r.drawPolygon([
  143. (CELL_PIXELS-2, CELL_PIXELS),
  144. (CELL_PIXELS , CELL_PIXELS),
  145. (CELL_PIXELS , 0),
  146. (CELL_PIXELS-2, 0)
  147. ])
  148. return
  149. r.drawPolygon([
  150. (0 , CELL_PIXELS),
  151. (CELL_PIXELS, CELL_PIXELS),
  152. (CELL_PIXELS, 0),
  153. (0 , 0)
  154. ])
  155. r.drawPolygon([
  156. (2 , CELL_PIXELS-2),
  157. (CELL_PIXELS-2, CELL_PIXELS-2),
  158. (CELL_PIXELS-2, 2),
  159. (2 , 2)
  160. ])
  161. r.drawLine(
  162. CELL_PIXELS * 0.55,
  163. CELL_PIXELS * 0.5,
  164. CELL_PIXELS * 0.75,
  165. CELL_PIXELS * 0.5
  166. )
  167. def toggle(self, env, pos):
  168. # If the player has the right key to open the door
  169. if isinstance(env.carrying, Key) and env.carrying.color == self.color:
  170. self.isOpen = True
  171. # The key has been used, remove it from the agent
  172. env.carrying = None
  173. return True
  174. return False
  175. def canOverlap(self):
  176. """The agent can only walk over this cell when the door is open"""
  177. return self.isOpen
  178. class Key(WorldObj):
  179. def __init__(self, color='blue'):
  180. super(Key, self).__init__('key', color)
  181. def canPickup(self):
  182. return True
  183. def render(self, r):
  184. self._setColor(r)
  185. # Vertical quad
  186. r.drawPolygon([
  187. (16, 10),
  188. (20, 10),
  189. (20, 28),
  190. (16, 28)
  191. ])
  192. # Teeth
  193. r.drawPolygon([
  194. (12, 19),
  195. (16, 19),
  196. (16, 21),
  197. (12, 21)
  198. ])
  199. r.drawPolygon([
  200. (12, 26),
  201. (16, 26),
  202. (16, 28),
  203. (12, 28)
  204. ])
  205. r.drawCircle(18, 9, 6)
  206. r.setLineColor(0, 0, 0)
  207. r.setColor(0, 0, 0)
  208. r.drawCircle(18, 9, 2)
  209. class Ball(WorldObj):
  210. def __init__(self, color='blue'):
  211. super(Ball, self).__init__('ball', color)
  212. def canPickup(self):
  213. return True
  214. def render(self, r):
  215. self._setColor(r)
  216. r.drawCircle(CELL_PIXELS * 0.5, CELL_PIXELS * 0.5, 10)
  217. class Box(WorldObj):
  218. def __init__(self, color, contains=None):
  219. super(Box, self).__init__('box', color)
  220. self.contains = contains
  221. def render(self, r):
  222. c = COLORS[self.color]
  223. r.setLineColor(c[0], c[1], c[2])
  224. r.setColor(0, 0, 0)
  225. r.setLineWidth(2)
  226. r.drawPolygon([
  227. (4 , CELL_PIXELS-4),
  228. (CELL_PIXELS-4, CELL_PIXELS-4),
  229. (CELL_PIXELS-4, 4),
  230. (4 , 4)
  231. ])
  232. r.drawLine(
  233. 4,
  234. CELL_PIXELS / 2,
  235. CELL_PIXELS - 4,
  236. CELL_PIXELS / 2
  237. )
  238. r.setLineWidth(1)
  239. def toggle(self, env, pos):
  240. # Replace the box by its contents
  241. env.grid.set(*pos, self.contains)
  242. return True
  243. class Grid:
  244. """
  245. Represent a grid and operations on it
  246. """
  247. def __init__(self, width, height):
  248. assert width >= 4
  249. assert height >= 4
  250. self.width = width
  251. self.height = height
  252. self.grid = [None] * width * height
  253. def __contains__(self, key):
  254. if isinstance(key, WorldObj):
  255. for e in self.grid:
  256. if e is key:
  257. return True
  258. elif isinstance(key, tuple):
  259. for e in self.grid:
  260. if e is None:
  261. continue
  262. if (e.color, e.type) == key:
  263. return True
  264. return False
  265. def copy(self):
  266. from copy import deepcopy
  267. return deepcopy(self)
  268. def set(self, i, j, v):
  269. assert i >= 0 and i < self.width
  270. assert j >= 0 and j < self.height
  271. self.grid[j * self.width + i] = v
  272. def get(self, i, j):
  273. assert i >= 0 and i < self.width
  274. assert j >= 0 and j < self.height
  275. return self.grid[j * self.width + i]
  276. def horzWall(self, x, y, length=None):
  277. if length is None:
  278. length = self.width - x
  279. for i in range(0, length):
  280. self.set(x + i, y, Wall())
  281. def vertWall(self, x, y, length=None):
  282. if length is None:
  283. length = self.height - y
  284. for j in range(0, length):
  285. self.set(x, y + j, Wall())
  286. def rotateLeft(self):
  287. """
  288. Rotate the grid to the left (counter-clockwise)
  289. """
  290. grid = Grid(self.width, self.height)
  291. for j in range(0, self.height):
  292. for i in range(0, self.width):
  293. v = self.get(self.width - 1 - j, i)
  294. grid.set(i, j, v)
  295. return grid
  296. def slice(self, topX, topY, width, height):
  297. """
  298. Get a subset of the grid
  299. """
  300. grid = Grid(width, height)
  301. for j in range(0, height):
  302. for i in range(0, width):
  303. x = topX + i
  304. y = topY + j
  305. if x >= 0 and x < self.width and \
  306. y >= 0 and y < self.height:
  307. v = self.get(x, y)
  308. else:
  309. v = Wall()
  310. grid.set(i, j, v)
  311. return grid
  312. def render(self, r, tileSize):
  313. """
  314. Render this grid at a given scale
  315. :param r: target renderer object
  316. :param tileSize: tile size in pixels
  317. """
  318. assert r.width == self.width * tileSize
  319. assert r.height == self.height * tileSize
  320. # Total grid size at native scale
  321. widthPx = self.width * CELL_PIXELS
  322. heightPx = self.height * CELL_PIXELS
  323. # Draw background (out-of-world) tiles the same colors as walls
  324. # so the agent understands these areas are not reachable
  325. c = COLORS['grey']
  326. r.setLineColor(c[0], c[1], c[2])
  327. r.setColor(c[0], c[1], c[2])
  328. r.drawPolygon([
  329. (0 , heightPx),
  330. (widthPx, heightPx),
  331. (widthPx, 0),
  332. (0 , 0)
  333. ])
  334. r.push()
  335. # Internally, we draw at the "large" full-grid resolution, but we
  336. # use the renderer to scale back to the desired size
  337. r.scale(tileSize / CELL_PIXELS, tileSize / CELL_PIXELS)
  338. # Draw the background of the in-world cells black
  339. r.fillRect(
  340. 0,
  341. 0,
  342. widthPx,
  343. heightPx,
  344. 0, 0, 0
  345. )
  346. # Draw grid lines
  347. r.setLineColor(100, 100, 100)
  348. for rowIdx in range(0, self.height):
  349. y = CELL_PIXELS * rowIdx
  350. r.drawLine(0, y, widthPx, y)
  351. for colIdx in range(0, self.width):
  352. x = CELL_PIXELS * colIdx
  353. r.drawLine(x, 0, x, heightPx)
  354. # Render the grid
  355. for j in range(0, self.height):
  356. for i in range(0, self.width):
  357. cell = self.get(i, j)
  358. if cell == None:
  359. continue
  360. r.push()
  361. r.translate(i * CELL_PIXELS, j * CELL_PIXELS)
  362. cell.render(r)
  363. r.pop()
  364. r.pop()
  365. def encode(self):
  366. """
  367. Produce a compact numpy encoding of the grid
  368. """
  369. codeSize = self.width * self.height * 3
  370. array = np.zeros(shape=(self.width, self.height, 3), dtype='uint8')
  371. for j in range(0, self.height):
  372. for i in range(0, self.width):
  373. v = self.get(i, j)
  374. if v == None:
  375. continue
  376. array[i, j, 0] = OBJECT_TO_IDX[v.type]
  377. array[i, j, 1] = COLOR_TO_IDX[v.color]
  378. if hasattr(v, 'isOpen') and v.isOpen:
  379. array[i, j, 2] = 1
  380. return array
  381. def decode(array):
  382. """
  383. Decode an array grid encoding back into a grid
  384. """
  385. width = array.shape[0]
  386. height = array.shape[1]
  387. assert array.shape[2] == 3
  388. grid = Grid(width, height)
  389. for j in range(0, height):
  390. for i in range(0, width):
  391. typeIdx = array[i, j, 0]
  392. colorIdx = array[i, j, 1]
  393. openIdx = array[i, j, 2]
  394. if typeIdx == 0:
  395. continue
  396. objType = IDX_TO_OBJECT[typeIdx]
  397. color = IDX_TO_COLOR[colorIdx]
  398. isOpen = True if openIdx == 1 else 0
  399. if objType == 'wall':
  400. v = Wall(color)
  401. elif objType == 'ball':
  402. v = Ball(color)
  403. elif objType == 'key':
  404. v = Key(color)
  405. elif objType == 'box':
  406. v = Box(color)
  407. elif objType == 'door':
  408. v = Door(color, isOpen)
  409. elif objType == 'locked_door':
  410. v = LockedDoor(color, isOpen)
  411. elif objType == 'goal':
  412. v = Goal()
  413. else:
  414. assert False, "unknown obj type in decode '%s'" % objType
  415. grid.set(i, j, v)
  416. return grid
  417. class MiniGridEnv(gym.Env):
  418. """
  419. 2D grid world game environment
  420. """
  421. metadata = {
  422. 'render.modes': ['human', 'rgb_array', 'pixmap'],
  423. 'video.frames_per_second' : 10
  424. }
  425. # Enumeration of possible actions
  426. class Actions(IntEnum):
  427. left = 0
  428. right = 1
  429. forward = 2
  430. # Toggle/pick up/activate object
  431. toggle = 3
  432. # Wait/stay put/do nothing
  433. wait = 4
  434. def __init__(self, gridSize=16, maxSteps=100):
  435. # Action enumeration for this environment
  436. self.actions = MiniGridEnv.Actions
  437. # Actions are discrete integer values
  438. self.action_space = spaces.Discrete(len(self.actions))
  439. # Observations are dictionaries containing an
  440. # encoding of the grid and a textual 'mission' string
  441. self.observation_space = spaces.Box(
  442. low=0,
  443. high=255,
  444. shape=OBS_ARRAY_SIZE,
  445. dtype='uint8'
  446. )
  447. self.observation_space = spaces.Dict({
  448. 'image': self.observation_space
  449. })
  450. # Range of possible rewards
  451. self.reward_range = (-1, 1000)
  452. # Renderer object used to render the whole grid (full-scale)
  453. self.gridRender = None
  454. # Renderer used to render observations (small-scale agent view)
  455. self.obsRender = None
  456. # Environment configuration
  457. self.gridSize = gridSize
  458. self.maxSteps = maxSteps
  459. self.startPos = (1, 1)
  460. self.startDir = 0
  461. # Initialize the state
  462. self.seed()
  463. self.reset()
  464. def _genGrid(self, width, height):
  465. assert False, "_genGrid needs to be implemented by each environment"
  466. def reset(self):
  467. # Generate a new random grid at the start of each episode
  468. # To keep the same grid for each episode, call env.seed() with
  469. # the same seed before calling env.reset()
  470. self._genGrid(self.gridSize, self.gridSize)
  471. # Place the agent in the starting position and direction
  472. self.agentPos = self.startPos
  473. self.agentDir = self.startDir
  474. # Item picked up, being carried, initially nothing
  475. self.carrying = None
  476. # Step count since episode start
  477. self.stepCount = 0
  478. # Return first observation
  479. obs = self._genObs()
  480. return obs
  481. def seed(self, seed=1337):
  482. # Seed the random number generator
  483. self.np_random, _ = seeding.np_random(seed)
  484. return [seed]
  485. def _randInt(self, low, high):
  486. """
  487. Generate random integer in [low,high[
  488. """
  489. return self.np_random.randint(low, high)
  490. def _randElem(self, iterable):
  491. """
  492. Pick a random element in a list
  493. """
  494. lst = list(iterable)
  495. idx = self._randInt(0, len(lst))
  496. return lst[idx]
  497. def _randPos(self, xLow, xHigh, yLow, yHigh):
  498. """
  499. Generate a random (x,y) position tuple
  500. """
  501. return (
  502. self.np_random.randint(xLow, xHigh),
  503. self.np_random.randint(yLow, yHigh)
  504. )
  505. def placeObj(self, obj):
  506. """
  507. Place an object at an empty position in the grid
  508. """
  509. while True:
  510. pos = (
  511. self._randInt(0, self.grid.width),
  512. self._randInt(0, self.grid.height)
  513. )
  514. if self.grid.get(*pos) != None:
  515. continue
  516. if pos == self.startPos:
  517. continue
  518. break
  519. self.grid.set(*pos, obj)
  520. return pos
  521. def placeAgent(self, randDir=True):
  522. """
  523. Set the agent's starting point at an empty position in the grid
  524. """
  525. pos = self.placeObj(None)
  526. self.startPos = pos
  527. if randDir:
  528. self.startDir = self._randInt(0, 4)
  529. return pos
  530. def getStepsRemaining(self):
  531. return self.maxSteps - self.stepCount
  532. def getDirVec(self):
  533. """
  534. Get the direction vector for the agent, pointing in the direction
  535. of forward movement.
  536. """
  537. # Pointing right
  538. if self.agentDir == 0:
  539. return (1, 0)
  540. # Down (positive Y)
  541. elif self.agentDir == 1:
  542. return (0, 1)
  543. # Pointing left
  544. elif self.agentDir == 2:
  545. return (-1, 0)
  546. # Up (negative Y)
  547. elif self.agentDir == 3:
  548. return (0, -1)
  549. else:
  550. assert False
  551. def getViewExts(self):
  552. """
  553. Get the extents of the square set of tiles visible to the agent
  554. Note: the bottom extent indices are not included in the set
  555. """
  556. # Facing right
  557. if self.agentDir == 0:
  558. topX = self.agentPos[0]
  559. topY = self.agentPos[1] - AGENT_VIEW_SIZE // 2
  560. # Facing down
  561. elif self.agentDir == 1:
  562. topX = self.agentPos[0] - AGENT_VIEW_SIZE // 2
  563. topY = self.agentPos[1]
  564. # Facing right
  565. elif self.agentDir == 2:
  566. topX = self.agentPos[0] - AGENT_VIEW_SIZE + 1
  567. topY = self.agentPos[1] - AGENT_VIEW_SIZE // 2
  568. # Facing up
  569. elif self.agentDir == 3:
  570. topX = self.agentPos[0] - AGENT_VIEW_SIZE // 2
  571. topY = self.agentPos[1] - AGENT_VIEW_SIZE + 1
  572. else:
  573. assert False, "invalid agent direction"
  574. botX = topX + AGENT_VIEW_SIZE
  575. botY = topY + AGENT_VIEW_SIZE
  576. return (topX, topY, botX, botY)
  577. def agentSees(self, x, y):
  578. """
  579. Check if a grid position is visible to the agent
  580. """
  581. topX, topY, botX, botY = self.getViewExts()
  582. return (x >= topX and x < botX and y >= topY and y < botY)
  583. def step(self, action):
  584. self.stepCount += 1
  585. reward = 0
  586. done = False
  587. # Rotate left
  588. if action == self.actions.left:
  589. self.agentDir -= 1
  590. if self.agentDir < 0:
  591. self.agentDir += 4
  592. # Rotate right
  593. elif action == self.actions.right:
  594. self.agentDir = (self.agentDir + 1) % 4
  595. # Move forward
  596. elif action == self.actions.forward:
  597. u, v = self.getDirVec()
  598. newPos = (self.agentPos[0] + u, self.agentPos[1] + v)
  599. targetCell = self.grid.get(newPos[0], newPos[1])
  600. if targetCell == None or targetCell.canOverlap():
  601. self.agentPos = newPos
  602. elif targetCell.type == 'goal':
  603. done = True
  604. reward = 1000 - self.stepCount
  605. # Pick up or trigger/activate an item
  606. elif action == self.actions.toggle:
  607. u, v = self.getDirVec()
  608. objPos = (self.agentPos[0] + u, self.agentPos[1] + v)
  609. cell = self.grid.get(*objPos)
  610. if cell and cell.canPickup():
  611. if self.carrying is None:
  612. self.carrying = cell
  613. self.grid.set(*objPos, None)
  614. elif cell:
  615. cell.toggle(self, objPos)
  616. elif self.carrying:
  617. self.grid.set(*objPos, self.carrying)
  618. self.carrying = None
  619. # Wait/do nothing
  620. elif action == self.actions.wait:
  621. pass
  622. else:
  623. assert False, "unknown action"
  624. if self.stepCount >= self.maxSteps:
  625. done = True
  626. obs = self._genObs()
  627. return obs, reward, done, {}
  628. def _genObs(self):
  629. """
  630. Generate the agent's view (partially observable, low-resolution encoding)
  631. """
  632. topX, topY, botX, botY = self.getViewExts()
  633. grid = self.grid.slice(topX, topY, AGENT_VIEW_SIZE, AGENT_VIEW_SIZE)
  634. for i in range(self.agentDir + 1):
  635. grid = grid.rotateLeft()
  636. # Make it so the agent sees what it's carrying
  637. # We do this by placing the carried object at the agent's position
  638. # in the agent's partially observable view
  639. agentPos = grid.width // 2, grid.height - 1
  640. if self.carrying:
  641. grid.set(*agentPos, self.carrying)
  642. else:
  643. grid.set(*agentPos, None)
  644. # Encode the partially observable view into a numpy array
  645. image = grid.encode()
  646. assert hasattr(self, 'mission'), "environments must define a textual mission string"
  647. # Observations are dictionaries with both an image
  648. # and a textual mission string
  649. obs = {
  650. 'image': image,
  651. 'mission': self.mission
  652. }
  653. return obs
  654. def getObsRender(self, obs):
  655. """
  656. Render an agent observation for visualization
  657. """
  658. if self.obsRender == None:
  659. self.obsRender = Renderer(
  660. AGENT_VIEW_SIZE * CELL_PIXELS // 2,
  661. AGENT_VIEW_SIZE * CELL_PIXELS // 2
  662. )
  663. r = self.obsRender
  664. r.beginFrame()
  665. grid = Grid.decode(obs)
  666. # Render the whole grid
  667. grid.render(r, CELL_PIXELS // 2)
  668. # Draw the agent
  669. r.push()
  670. r.scale(0.5, 0.5)
  671. r.translate(
  672. CELL_PIXELS * (0.5 + AGENT_VIEW_SIZE // 2),
  673. CELL_PIXELS * (AGENT_VIEW_SIZE - 0.5)
  674. )
  675. r.rotate(3 * 90)
  676. r.setLineColor(255, 0, 0)
  677. r.setColor(255, 0, 0)
  678. r.drawPolygon([
  679. (-12, 10),
  680. ( 12, 0),
  681. (-12, -10)
  682. ])
  683. r.pop()
  684. r.endFrame()
  685. return r.getPixmap()
  686. def render(self, mode='human', close=False):
  687. """
  688. Render the whole-grid human view
  689. """
  690. if close:
  691. if self.gridRender:
  692. self.gridRender.close()
  693. return
  694. if self.gridRender is None:
  695. self.gridRender = Renderer(
  696. self.gridSize * CELL_PIXELS,
  697. self.gridSize * CELL_PIXELS,
  698. True if mode == 'human' else False
  699. )
  700. r = self.gridRender
  701. r.beginFrame()
  702. # Render the whole grid
  703. self.grid.render(r, CELL_PIXELS)
  704. # Draw the agent
  705. r.push()
  706. r.translate(
  707. CELL_PIXELS * (self.agentPos[0] + 0.5),
  708. CELL_PIXELS * (self.agentPos[1] + 0.5)
  709. )
  710. r.rotate(self.agentDir * 90)
  711. r.setLineColor(255, 0, 0)
  712. r.setColor(255, 0, 0)
  713. r.drawPolygon([
  714. (-12, 10),
  715. ( 12, 0),
  716. (-12, -10)
  717. ])
  718. r.pop()
  719. # Highlight what the agent can see
  720. topX, topY, botX, botY = self.getViewExts()
  721. r.fillRect(
  722. topX * CELL_PIXELS,
  723. topY * CELL_PIXELS,
  724. AGENT_VIEW_SIZE * CELL_PIXELS,
  725. AGENT_VIEW_SIZE * CELL_PIXELS,
  726. 200, 200, 200, 75
  727. )
  728. r.endFrame()
  729. if mode == 'rgb_array':
  730. return r.getArray()
  731. elif mode == 'pixmap':
  732. return r.getPixmap()
  733. return r