|
@@ -460,6 +460,7 @@
|
|
- [LMDeploy](https://github.com/InternLM/lmdeploy) - A high-throughput and low-latency inference and serving framework for LLMs and VLs
|
|
- [LMDeploy](https://github.com/InternLM/lmdeploy) - A high-throughput and low-latency inference and serving framework for LLMs and VLs
|
|
- [Liger-Kernel](https://github.com/linkedin/Liger-Kernel) - Efficient Triton Kernels for LLM Training.
|
|
- [Liger-Kernel](https://github.com/linkedin/Liger-Kernel) - Efficient Triton Kernels for LLM Training.
|
|
- [prima.cpp](https://github.com/Lizonghang/prima.cpp) - A distributed implementation of llama.cpp that lets you run 70B-level LLMs on your everyday devices.
|
|
- [prima.cpp](https://github.com/Lizonghang/prima.cpp) - A distributed implementation of llama.cpp that lets you run 70B-level LLMs on your everyday devices.
|
|
|
|
+- [deploy-llms-with-ansible](https://github.com/xamey/deploy-llms-with-ansible) - Easily deploy any LLM on a VM with minimal configuration, using Ansible.
|
|
|
|
|
|
</details>
|
|
</details>
|
|
|
|
|