# Awesome-LLM [![Awesome](https://awesome.re/badge.svg)](https://awesome.re) 🔥 Large Language Models(LLM) have taken the ~~NLP community~~ **the Whole World** by storm. Here is a comprehensive list of papers about large language models, especially relating to ChatGPT. It also contains codes, courses and related websites as shown below: - [Awesome-LLM](#awesome-llm) - [Milestone Papers](#milestone-papers) - [ChatGPT Evaluation](#chatgpt-evaluation) - [Tools for Training LLM](#tools-for-training-llm) - [Tutorials about LLM](#tutorials-about-llm) - [Course about LLM](#course-about-llm) - [Useful Resources](#useful-resources) - [Publicly Available LLM APIs](#publicly-available-llm-apis) - [Publicly Available LLM Checkpoints](#publicly-available-llm-checkpoints) - [Contributing](#contributing) ## Milestone Papers |
Year
| keywords | Institute | Paper | Publication | | :--: | :-----------: | :-------: | :----------------------------------------------------------- | :---------: | | 2017-06 | Transformers | Google | [Attention Is All You Need](https://arxiv.org/pdf/1706.03762.pdf) | NeurIPS | | 2018-06 | GPT 1.0 | OpenAI | [Improving Language Understanding by Generative Pre-Training](https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf) | | | 2018-10 | BERT | Google | [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://aclanthology.org/N19-1423.pdf) | NAACL | | 2019-02 | GPT 2.0 | OpenAI | [Language Models are Unsupervised Multitask Learners](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) | | | 2019-09 | Megatron-LM | NVIDIA | [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/pdf/1909.08053.pdf) || | 2019-10 | T5 | Google | [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://jmlr.org/papers/v21/20-074.html) | JMLR | | 2020-01 | Scaling Law | OpenAI | [Scaling Laws for Neural Language Models](https://arxiv.org/pdf/2001.08361.pdf) | | | 2020-05 | GPT 3.0 | OpenAI | [Language models are few-shot learners](https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf) | NeurIPS | | 2020-12 | LM-BFF | Princeton | [Making Pre-trained Language Models Better Few-shot Learners](https://arxiv.org/pdf/2012.15723.pdf) | ACL| | 2021-08 | Codex | OpenAI | [Evaluating Large Language Models Trained on Code](https://arxiv.org/pdf/2107.03374.pdf) | | | 2021-08 | Foundation Models | Stanford |[On the Opportunities and Risks of Foundation Models](https://arxiv.org/pdf/2108.07258.pdf) | | | 2021-09 | FLAN | Google | [Finetuned Language Models are Zero-Shot Learners](https://openreview.net/forum?id=gEZrGCozdqR) | ICLR | | 2021-12 | WebGPT | OpenAI | [WebGPT: Improving the Factual Accuracy of Language Models through Web Browsing](https://openai.com/blog/webgpt/) | | | 2021-12 | Retro | DeepMind | [Improving language models by retrieving from trillions of tokens](https://www.deepmind.com/publications/improving-language-models-by-retrieving-from-trillions-of-tokens) | ICML | | 2022-01 | COT | Google | [Chain-of-Thought Prompting Elicits Reasoning in Large Language Models](https://arxiv.org/pdf/2201.11903.pdf) | NeurIPS | | 2022-01 | LaMDA| Google | [LaMDA: Language Models for Dialog Applications](https://arxiv.org/pdf/2201.08239.pdf) | | | 2022-03 | InstructGPT | OpenAI | [Training language models to follow instructions with human feedback](https://arxiv.org/pdf/2203.02155.pdf) | | | 2022-04 | PaLM | Google | [PaLM: Scaling Language Modeling with Pathways](https://arxiv.org/pdf/2204.02311.pdf) | | | 2022-04 | Chinchilla| DeepMind | [An empirical analysis of compute-optimal large language model training](https://www.deepmind.com/publications/an-empirical-analysis-of-compute-optimal-large-language-model-training) | NeurIPS | | 2022-05 | OPT | Meta | [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/pdf/2205.01068.pdf) | | | 2022-06 | Emergent Abilities | Google | [Emergent Abilities of Large Language Models](https://openreview.net/pdf?id=yzkSU5zdwD) | TMLR | | 2022-06 | BIG-bench | Google | [Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models](https://github.com/google/BIG-bench) | | | 2022-06 | METALM | Microsoft | [Language Models are General-Purpose Interfaces](https://arxiv.org/pdf/2206.06336.pdf) | | | 2022-09 | Sparrow | DeepMind | [Improving alignment of dialogue agents via targeted human judgements](https://arxiv.org/pdf/2209.14375.pdf) | | | 2022-10 | Flan-T5 | Google | [Scaling Instruction-Finetuned Language Models](https://arxiv.org/pdf/2210.11416.pdf) | | | 2022-10 | GLM-130B | Tsinghua | [GLM-130B: An Open Bilingual Pre-trained Model](https://arxiv.org/pdf/2210.02414.pdf) | ICLR | | 2022-11 | HELM | Stanford | [Holistic Evaluation of Language Models](https://arxiv.org/pdf/2211.09110.pdf) | | | 2022-11 | BLOOM | BigScience | [BLOOM: A 176B-Parameter Open-Access Multilingual Language Model](https://arxiv.org/pdf/2211.05100.pdf) | | | 2022-11 | Galactica | Meta | [Galactica: A Large Language Model for Science](https://arxiv.org/pdf/2211.09085.pdf) | | | 2023-01 | Flan 2022 Collection | Google | [The Flan Collection: Designing Data and Methods for Effective Instruction Tuning](https://arxiv.org/pdf/2301.13688.pdf) | | ## ChatGPT Evaluation - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [Link](https://arxiv.org/pdf/2302.06476.pdf) - Is ChatGPT A Good Translator? A Preliminary Study [Link](https://arxiv.org/pdf/2301.08745.pdf) ## Tools for Training LLM
> [Alpa](https://github.com/alpa-projects/alpa) is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
> DeepSpeed is an easy-to-use deep learning optimization software suite that enables unprecedented scale and speed for DL Training and Inference. Visit us at [deepspeed.ai](https://www.deepspeed.ai) or our [Github repo](https://github.com/microsoft/DeepSpeed).
> Megatron-LM could be visited [here](https://github.com/NVIDIA/Megatron-LM). Megatron ([1](https://arxiv.org/pdf/1909.08053.pdf), [2](https://arxiv.org/pdf/2104.04473.pdf), and [3](https://arxiv.org/pdf/2205.05198)) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel ([tensor](https://arxiv.org/pdf/1909.08053.pdf), [sequence](https://arxiv.org/pdf/2205.05198), and [pipeline](https://arxiv.org/pdf/2104.04473.pdf)), and multi-node pre-training of transformer based models such as [GPT](https://arxiv.org/abs/2005.14165), [BERT](https://arxiv.org/pdf/1810.04805.pdf), and [T5](https://arxiv.org/abs/1910.10683) using mixed precision.
> Colossal-AI provides a collection of parallel components for you. We aim to support you to write your distributed deep learning models just like how you write your model on your laptop. We provide user-friendly tools to kickstart distributed training and inference in a few lines. You can visit it [here](https://colossalai.org).
> Mesh TensorFlow `(mtf)` is a language for distributed deep learning, capable of specifying a broad class of distributed tensor computations. The purpose of Mesh TensorFlow is to formalize and implement distribution strategies for your computation graph over your hardware/processors. For example: "Split the batch over rows of processors and split the units in the hidden layer across columns of processors." Mesh TensorFlow is implemented as a layer over TensorFlow. You can visite it [here](https://github.com/tensorflow/mesh)
> [This tutorial](https://jax.readthedocs.io/en/latest/notebooks/Distributed_arrays_and_automatic_parallelization.html) discusses parallelism via jax.Array. ## Tutorials about LLM - [ICML 2022] Welcome to the "Big Model" Era: Techniques and Systems to Train and Serve Bigger Models [Link](https://icml.cc/virtual/2022/tutorial/18440) - [NeurIPS 2022] Foundational Robustness of Foundation Models [Link](https://nips.cc/virtual/2022/tutorial/55796) - [Andrej Karpathy] Let's build GPT: from scratch, in code, spelled out. [Video](https://www.youtube.com/watch?v=kCc8FmEb1nY)|[Code](https://github.com/karpathy/ng-video-lecture) - [DAIR.AI] Prompt Engineering Guide [Link](https://github.com/dair-ai/Prompt-Engineering-Guide) ## Course about LLM - [Stanford] CS224N-Lecture 11: Prompting, Instruction Finetuning, and RLHF [Slides](https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-prompting-rlhf.pdf) - [Stanford] CS324-Large Language Models [Homepage](https://stanford-cs324.github.io/winter2022/) - [Stanford] CS25-Transformers United V2 [Homepage](https://web.stanford.edu/class/cs25/) - [李沐] InstructGPT论文精读 [Bilibili](https://www.bilibili.com/video/BV1hd4y187CR/?spm_id_from=333.337.search-card.all.click&vd_source=1e55c5426b48b37e901ff0f78992e33f) [Youtube](https://www.youtube.com/watch?v=zfIGAwD1jOQ) - [李沐] HELM全面语言模型评测 [Bilibili](https://www.bilibili.com/video/BV1z24y1B7uX/?spm_id_from=333.337.search-card.all.click&vd_source=1e55c5426b48b37e901ff0f78992e33f) - [李沐] GPT,GPT-2,GPT-3 论文精读 [Bilibili](https://www.bilibili.com/video/BV1AF411b7xQ/?spm_id_from=333.788&vd_source=1e55c5426b48b37e901ff0f78992e33f) [Youtube](https://www.youtube.com/watch?v=t70Bl3w7bxY&list=PLFXJ6jwg0qW-7UM8iUTj3qKqdhbQULP5I&index=18) - [Aston Zhang] Chain of Thought论文 [Bilibili](https://www.bilibili.com/video/BV1t8411e7Ug/?spm_id_from=333.788&vd_source=1e55c5426b48b37e901ff0f78992e33f) [Youtube](https://www.youtube.com/watch?v=H4J59iG3t5o&list=PLFXJ6jwg0qW-7UM8iUTj3qKqdhbQULP5I&index=29) ## Useful Resources - \[2023-02-16][知乎][旷视科技]**对话旷视研究院张祥雨|ChatGPT的科研价值可能更大 [Link](https://zhuanlan.zhihu.com/p/606918875)** - \[2023-02-15][知乎][张家俊]**关于ChatGPT八个技术问题的猜想** [Link](https://zhuanlan.zhihu.com/p/606478660) - \[2023-02-14][Stephen Wolfram]**What Is ChatGPT Doing … and Why Does It Work? [Link](https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/)** - \[2023-02-13]\[知乎][熊德意] **对ChatGPT的二十点看法 [Link](https://zhuanlan.zhihu.com/p/605882945?utm_medium=social&utm_oi=939485757606461440&utm_psn=1609870392121860096&utm_source=wechat_session)** - \[2023-02-12]\[Jingfeng Yang] **Why did all of the public reproduction of GPT-3 fail?[Link](https://jingfengyang.github.io/gpt)** - \[2023-02-11]\[知乎][刘聪NLP] **ChatGPT-所见、所闻、所感 [Link](https://zhuanlan.zhihu.com/p/605331104)** - \[2023-02-07][Forbes] **The Next Generation Of Large Language Models [Link](https://www.notion.so/Awesome-LLM-40c8aa3f2b444ecc82b79ae8bbd2696b)** - \[2023-01-26][NVIDIA] **What Are Large Language Models Used For? [Link](https://www.notion.so/Awesome-LLM-40c8aa3f2b444ecc82b79ae8bbd2696b)** - \[2023-01-18]\[知乎][张俊林] **通向AGI之路:大型语言模型(LLM)技术精要 [Link](https://zhuanlan.zhihu.com/p/597586623)** - \[2023-01-06\][Shayne Longpre] **Major LLMs + Data Availability [Link](https://docs.google.com/spreadsheets/d/1bmpDdLZxvTCleLGVPgzoMTQ0iDP2-7v7QziPrzPdHyM/edit#gid=0)** - \[2022-12-07\][Hung-yi Lee] **ChatGPT (可能)是怎麼煉成的 - GPT 社會化的過程 [Link](https://www.youtube.com/watch?v=e0aKI2GGZNg)** - \[2021-10-26\]\[Huggingface\] **Large Language Models: A New Moore's Law [Link](https://huggingface.co/blog/large-language-models)** ## Publicly Available LLM APIs - [Alpa/OPT-175B](https://opt.alpa.ai) - [BLOOM](https://huggingface.co/bigscience/bloom) - [ChatGPT](https://openai.com/blog/chatgpt/) - [OpenAI](https://openai.com/api/) - [GLM-130B](https://huggingface.co/spaces/THUDM/GLM-130B) ## Publicly Available LLM Checkpoints ### Google/Flan-T5 | Size | Parameters | Link | | ----- | ---------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | | small | 80 M | [Huggingface](https://huggingface.co/google/flan-t5-small) \| [Original](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) | | base | 250 M | [Huggingface](https://huggingface.co/google/flan-t5-base) \| [Original](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) | | large | 780 M | [Huggingface](https://huggingface.co/google/flan-t5-large) \| [Original](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) | | xl | 3 B | [Huggingface](https://huggingface.co/google/flan-t5-xl) \| [Original](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) | | xxl | 11 B | [Huggingface](https://huggingface.co/google/flan-t5-xxl) \| [Original](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) | ### Meta/OPT | Size | Parameters | Link | | ----- | ---------- | ---------------------------------------------------- | | 125 M | 125 M | [Huggingface](https://huggingface.co/facebook/opt-125m) | | 350 M | 350 M | [Huggingface](https://huggingface.co/facebook/opt-350m) | | 1.3 B | 1.3 B | [Huggingface](https://huggingface.co/facebook/opt-1.3b) | | 2.7 B | 2.7 B | [Huggingface](https://huggingface.co/facebook/opt-2.7b) | | 6.7 B | 6.7 B | [Huggingface](https://huggingface.co/facebook/opt-6.7b) | | 13 B | 13 B | [Huggingface](https://huggingface.co/facebook/opt-13b) | | 30 B | 30 B | [Huggingface](https://huggingface.co/facebook/opt-30b) | | 66 B | 66 B | [Huggingface](https://huggingface.co/facebook/opt-66b) | ### Meta/Galactica | Size | Parameters | Link | | -------- | ---------- | ---------------------------------------------------------- | | mini | 125 M | [Huggingface](https://huggingface.co/facebook/galactica-125m) | | base | 1.3 B | [Huggingface](https://huggingface.co/facebook/galactica-1.3b) | | standard | 6.7 B | [Huggingface](https://huggingface.co/facebook/galactica-6.7b) | | large | 30 B | [Huggingface](https://huggingface.co/facebook/galactica-30b) | | huge | 120 B | [Huggingface](https://huggingface.co/facebook/galactica-120b) | ### BigScience/BLOOM | Size | Parameters | Link | | ----- | ---------- | --------------------------------------------------- | | 760 B | 760 B | [Huggingface](https://huggingface.co/bigscience/bloom) | ### EleutherAI/GPT-NeoX | Size | Parameters | Link | | ----- | ---------- | --------------------------------------------------- | | 20 B | 20 B | [Huggingface](https://huggingface.co/docs/transformers/model_doc/gpt_neox)\|[Original](https://github.com/EleutherAI/gpt-neox) | ### Tsinghua/GLM | Size | Parameters | Link | | ----- | ---------- | --------------------------------------------------- | | GLM-Base | 110M | [Original](https://github.com/THUDM/GLM)| | GLM-Large | 335M | [Original](https://github.com/THUDM/GLM)| | GLM-Large-Chinese | 335M | [Original](https://github.com/THUDM/GLM)| | GLM-Doc | 335M | [Original](https://github.com/THUDM/GLM)| | GLM-410M | 410M | [Original](https://github.com/THUDM/GLM)| | GLM-515M | 515M | [Original](https://github.com/THUDM/GLM)| | GLM-RoBERTa | 335M | [Original](https://github.com/THUDM/GLM)| | GLM-2B | 2B | [Original](https://github.com/THUDM/GLM)| | GLM-10B | 10B | [Original](https://github.com/THUDM/GLM)| | GLM-10B-Chinese | 10B | [Original](https://github.com/THUDM/GLM)| | GLM-130B | 130B | [Original](https://github.com/THUDM/GLM-130B)| ## Contributing This is an active repository and your contributions are always welcome! I will keep some pull requests open if I'm not sure if they are awesome for LLM, you could vote for them by adding 👍 to them. ------ If you have any question about this opinionated list, do not hesitate to contact me chengxin1998@stu.pku.edu.cn.