# Awesome-LLM 🔥 Large Language Models(LLM) have taken the ~~NLP community~~ **the Whole World** by storm. Here is a comprehensive list of papers about large language models, especially relating to ChatGPT. It also contains codes, courses and related websites as shown below: - [Awesome-LLM](#awesome-llm) - [Milestone Papers](#milestone-papers) - [ChatGPT Evaluation](#chatgpt-evaluation) - [Tools for Training LLM](#tools-for-training-llm) - [](#) - [Tutorials about LLM](#tutorials-about-llm) - [Course about LLM](#course-about-llm) - [Useful Resources](#useful-resources) - [Contributing](#contributing) ## Milestone Papers | Year | keywords | Institute | Paper | Publication | | :--: | :----------- | :-------: | :----------------------------------------------------------- | :---------: | | 2017 | Transformers | Google | [Attention Is All You Need](https://arxiv.org/pdf/1706.03762.pdf) | NeurIPS | | 2018 | GPT 1.0 | OpenAI | [Improving Language Understanding by Generative Pre-Training](https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf) | | | 2019 | BERT | Google | [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://aclanthology.org/N19-1423.pdf) | NAACL | | 2019 | T5 | Google | [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://jmlr.org/papers/v21/20-074.html) | JMLR | | 2019 | GPT 2.0 | OpenAI | [Language Models are Unsupervised Multitask Learners](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) | | | 2020 | GPT 3.0 | OpenAI | [Language models are few-shot learners](https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf) | NeurIPS | | 2020 | Scaling Law | OpenAI | [Scaling Laws for Neural Language Models](https://arxiv.org/pdf/2001.08361.pdf) | | | 2020 | Megatron-LM | NVIDIA | [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/pdf/1909.08053.pdf) || | 2022 | Flan-T5 | Google | [Scaling Instruction-Finetuned Language Models](https://arxiv.org/pdf/2210.11416.pdf) | | | 2021 | LM-BFF | Princeton | [Making Pre-trained Language Models Better Few-shot Learners](https://arxiv.org/pdf/2012.15723.pdf) | ACL| | 2021 | WebGPT | OpenAI | [WebGPT: Improving the Factual Accuracy of Language Models through Web Browsing](https://openai.com/blog/webgpt/) | | | 2021 | Codex | OpenAI | [Evaluating Large Language Models Trained on Code](https://arxiv.org/pdf/2107.03374.pdf) | | | 2022 | Foundation Models | Stanford |[On the Opportunities and Risks of Foundation Models](https://arxiv.org/pdf/2108.07258.pdf) | | | 2022 | HELM | Stanford | [Holistic Evaluation of Language Models](https://arxiv.org/pdf/2211.09110.pdf) | | | 2022 | InstructGPT | OpenAI | [Training language models to follow instructions with human feedback](https://arxiv.org/pdf/2203.02155.pdf) | | | 2022 | Emergent Abilities | Google | [Emergent Abilities of Large Language Models](https://openreview.net/pdf?id=yzkSU5zdwD) | TMLR | | 2022 | COT | Google | [Chain-of-Thought Prompting Elicits Reasoning in Large Language Models](https://arxiv.org/pdf/2201.11903.pdf) | NeurIPS | | 2022 | PaLM | Google | [PaLM: Scaling Language Modeling with Pathways](https://arxiv.org/pdf/2204.02311.pdf) | | | 2022 | FLAN | Google | [Finetuned Language Models are Zero-Shot Learners](https://openreview.net/forum?id=gEZrGCozdqR) | ICLR | | 2022 | Chinchilla| DeepMind | [An empirical analysis of compute-optimal large language model training](https://www.deepmind.com/publications/an-empirical-analysis-of-compute-optimal-large-language-model-training) | NeurIPS | | 2022 | BIG-bench | Google | [Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models](https://github.com/google/BIG-bench) | | | 2022 | BLOOM | BigScience | [BLOOM: A 176B-Parameter Open-Access Multilingual Language Model](https://arxiv.org/pdf/2211.05100.pdf) | | | 2022 | OPT | Meta | [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/pdf/2205.01068.pdf) | | | 2022 | LaMDA| Google | [LaMDA: Language Models for Dialog Applications](https://arxiv.org/pdf/2201.08239.pdf) | | | 2022 | Sparrow | DeepMind | [Improving alignment of dialogue agents via targeted human judgements](https://arxiv.org/pdf/2209.14375.pdf) | | | 2022 | Retro | DeepMind | [Improving language models by retrieving from trillions of tokens](https://www.deepmind.com/publications/improving-language-models-by-retrieving-from-trillions-of-tokens) | ICML | | 2022 | METALM | Microsoft | [Language Models are General-Purpose Interfaces](https://arxiv.org/pdf/2206.06336.pdf) | | | 2022 | Galactica | Meta | [Galactica: A Large Language Model for Science](https://arxiv.org/pdf/2211.09085.pdf) | | | 2023 | Flan 2022 Collection | Google | [The Flan Collection: Designing Data and Methods for Effective Instruction Tuning](https://arxiv.org/pdf/2301.13688.pdf) | | ## ChatGPT Evaluation - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [Link](https://arxiv.org/pdf/2302.06476.pdf) - Is ChatGPT A Good Translator? A Preliminary Study [Link](https://arxiv.org/pdf/2301.08745.pdf) ## Tools for Training LLM  > DeepSpeed is an easy-to-use deep learning optimization software suite that enables unprecedented scale and speed for DL Training and Inference. Visit us at [deepspeed.ai](https://www.deepspeed.ai) or our [Github repo](https://github.com/microsoft/DeepSpeed). - Megatron-LM [Link](https://github.com/NVIDIA/Megatron-LM)