|
@@ -1,4 +1,4 @@
|
|
|
-# Awesome Deep Learning [](https://github.com/sindresorhus/awesome)
|
|
|
+# Awesome Deep Learning [](https://github.com/sindresorhus/awesome)
|
|
|
|
|
|
## Table of Contents
|
|
|
|
|
@@ -150,11 +150,13 @@
|
|
|
35. [Residual Learning](https://arxiv.org/pdf/1512.03385v1.pdf)
|
|
|
36. [Image-to-Image Translation with Conditional Adversarial Networks](https://arxiv.org/pdf/1611.07004v1.pdf)
|
|
|
37. [Berkeley AI Research (BAIR) Laboratory](https://arxiv.org/pdf/1611.07004v1.pdf)
|
|
|
-38. [MobileNets by Google](https://arxiv.org/abs/1704.04861)
|
|
|
+38. [MobileNets by Google](https://arxiv.org/abs/1704.04861)s
|
|
|
39. [Cross Audio-Visual Recognition in the Wild Using Deep Learning](https://arxiv.org/abs/1706.05739)
|
|
|
40. [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829)
|
|
|
41. [Matrix Capsules With Em Routing](https://openreview.net/pdf?id=HJWLfGWRb)
|
|
|
42. [Efficient BackProp](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf)
|
|
|
+43. [Generative Adversarial Nets](https://arxiv.org/pdf/1406.2661v1.pdf)
|
|
|
+44. [Fast R-CNN](https://arxiv.org/pdf/1504.08083.pdf)
|
|
|
|
|
|
### Tutorials
|
|
|
|