|
@@ -37,6 +37,7 @@
|
|
|
6. [An introduction to genetic algorithms](https://svn-d1.mpi-inf.mpg.de/AG1/MultiCoreLab/papers/ebook-fuzzy-mitchell-99.pdf)
|
|
|
7. [Artificial Intelligence: A Modern Approach](http://aima.cs.berkeley.edu/)
|
|
|
8. [Deep Learning in Neural Networks: An Overview](http://arxiv.org/pdf/1404.7828v4.pdf)
|
|
|
+9. [Artificial intelligence and machine learning: Topic wise explanation](https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/)
|
|
|
|
|
|
### Courses
|
|
|
|
|
@@ -88,6 +89,7 @@
|
|
|
16. [Deep Learning: Intelligence from Big Data](https://www.youtube.com/watch?v=czLI3oLDe8M) by Steve Jurvetson (and panel) at VLAB in Stanford.
|
|
|
17. [Introduction to Artificial Neural Networks and Deep Learning](https://www.youtube.com/watch?v=FoO8qDB8gUU) by Leo Isikdogan at Motorola Mobility HQ
|
|
|
18. [NIPS 2016 lecture and workshop videos](https://nips.cc/Conferences/2016/Schedule) - NIPS 2016
|
|
|
+19. [Deep Learning Crash Course](https://www.youtube.com/watch?v=oS5fz_mHVz0&list=PLWKotBjTDoLj3rXBL-nEIPRN9V3a9Cx07): a series of mini-lectures by Leo Isikdogan on YouTube (2018)
|
|
|
|
|
|
### Papers
|
|
|
*You can also find the most cited deep learning papers from [here](https://github.com/terryum/awesome-deep-learning-papers)*
|
|
@@ -133,6 +135,7 @@
|
|
|
39. [Cross Audio-Visual Recognition in the Wild Using Deep Learning](https://arxiv.org/abs/1706.05739)
|
|
|
40. [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829)
|
|
|
41. [Matrix Capsules With Em Routing](https://openreview.net/pdf?id=HJWLfGWRb)
|
|
|
+42. [Efficient BackProp](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf)
|
|
|
|
|
|
### Tutorials
|
|
|
|
|
@@ -487,6 +490,7 @@
|
|
|
49. [deeplearn.js - Hardware-accelerated deep learning and linear algebra (NumPy) library for the web](https://github.com/PAIR-code/deeplearnjs)
|
|
|
50. [TensorForce - A TensorFlow library for applied reinforcement learning](https://github.com/reinforceio/tensorforce)
|
|
|
51. [Coach - Reinforcement Learning Coach by Intel® AI Lab](https://github.com/NervanaSystems/coach)
|
|
|
+52. [albumentations - A fast and framework agnostic image augmentation library](https://github.com/albu/albumentations)
|
|
|
|
|
|
### Miscellaneous
|
|
|
|
|
@@ -497,7 +501,7 @@
|
|
|
5. [Caffe DockerFile](https://github.com/tleyden/docker/tree/master/caffe)
|
|
|
6. [TorontoDeepLEarning convnet](https://github.com/TorontoDeepLearning/convnet)
|
|
|
8. [gfx.js](https://github.com/clementfarabet/gfx.js)
|
|
|
-9. [Torch7 Cheat sheet](https://github.com/torch/torch7/wiki/Cheatsheet)
|
|
|
+9. [Torch7 Cheat sheet](https://github.com/torch/torch7/wiki/Cheatsheet)
|
|
|
10. [Misc from MIT's 'Advanced Natural Language Processing' course](http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-864-advanced-natural-language-processing-fall-2005/)
|
|
|
11. [Misc from MIT's 'Machine Learning' course](http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/)
|
|
|
12. [Misc from MIT's 'Networks for Learning: Regression and Classification' course](http://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-520-a-networks-for-learning-regression-and-classification-spring-2001/)
|
|
@@ -522,6 +526,7 @@
|
|
|
31. [Siraj Raval's Deep Learning tutorials](https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A)
|
|
|
32. [Dockerface](https://github.com/natanielruiz/dockerface) - Easy to install and use deep learning Faster R-CNN face detection for images and video in a docker container.
|
|
|
33. [Awesome Deep Learning Music](https://github.com/ybayle/awesome-deep-learning-music) - Curated list of articles related to deep learning scientific research applied to music
|
|
|
+34. [Netron](https://github.com/lutzroeder/netron) - Visualizer for deep learning and machine learning models
|
|
|
|
|
|
-----
|
|
|
### Contributing
|