|
@@ -60,6 +60,26 @@ Recognition](http://nlp.stanford.edu/~socherr/pa4_ner.pdf) [zip](http://nlp.stan
|
|
|
13. [LSTM](http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf)
|
|
|
14. [GRU - Gated Recurrent Unit](http://arxiv.org/pdf/1406.1078v3.pdf)
|
|
|
15. [GFRNN](http://arxiv.org/pdf/1502.02367v3.pdf) [.](http://jmlr.org/proceedings/papers/v37/chung15.pdf) [.](http://jmlr.org/proceedings/papers/v37/chung15-supp.pdf)
|
|
|
+16. [LSTM: A Search Space Odyssey](http://arxiv.org/pdf/1503.04069v1.pdf)
|
|
|
+17. [A Critical Review of Recurrent Neural Networks for Sequence Learning](http://arxiv.org/pdf/1506.00019v1.pdf)
|
|
|
+18. [Visualizing and Understanding Recurrent Networks](http://arxiv.org/pdf/1506.02078v1.pdf)
|
|
|
+19. [Wojciech Zaremba, Ilya Sutskever, An Empirical Exploration of Recurrent Network Architectures](http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
|
|
|
+20. [Recurrent Neural Network based Language Model](http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf)
|
|
|
+21. [Extensions of Recurrent Neural Network Language Model](http://www.fit.vutbr.cz/research/groups/speech/publi/2011/mikolov_icassp2011_5528.pdf)
|
|
|
+22. [Recurrent Neural Network based Language Modeling in Meeting Recognition](http://www.fit.vutbr.cz/~imikolov/rnnlm/ApplicationOfRNNinMeetingRecognition_IS2011.pdf)
|
|
|
+23. [Deep Neural Networks for Acoustic Modeling in Speech Recognition](http://cs224d.stanford.edu/papers/maas_paper.pdf)
|
|
|
+24. [Speech Recognition with Deep Recurrent Neural Networks](http://www.cs.toronto.edu/~fritz/absps/RNN13.pdf)
|
|
|
+25. Univ. Montreal [[Paper](http://arxiv.org/pdf/1406.1078v3.pdf)]
|
|
|
+26. [Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation](http://arxiv.org/pdf/1406.1078v3.pdf)
|
|
|
+27. [Google - Sequence to Sequence Learning with Nneural Networks](http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf)
|
|
|
+28. [Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention]
|
|
|
+29. [Policy Learning with Continuous Memory States for Partially Observed Robotic Control](http://arxiv.org/pdf/1507.01273v1)
|
|
|
+30. [Microsoft - Jointly Modeling Embedding and Translation to Bridge Video and Language](http://arxiv.org/pdf/1505.01861v1.pdf)
|
|
|
+31. [Neural Turing Machines](http://arxiv.org/pdf/1410.5401v2.pdf)
|
|
|
+32. [Memory Networks](http://arxiv.org/pdf/1410.3916v10)
|
|
|
+33. [Reinforcement Learning Neural Turing Machines](http://arxiv.org/pdf/1505.00521v1)
|
|
|
+
|
|
|
+
|
|
|
|
|
|
|
|
|
### Tutorials
|
|
@@ -97,6 +117,11 @@ Recognition](http://nlp.stanford.edu/~socherr/pa4_ner.pdf) [zip](http://nlp.stan
|
|
|
16. [nrl.navy.mil/itd/aic](http://www.nrl.navy.mil/itd/aic/)
|
|
|
17. [hips.seas.harvard.edu](http://hips.seas.harvard.edu/)
|
|
|
18. [AI Weekly](http://aiweekly.co)
|
|
|
+19. [stat.ucla.edu](http://www.stat.ucla.edu/~junhua.mao/m-RNN.html)
|
|
|
+20. [deeplearning.cs.toronto.edu](http://deeplearning.cs.toronto.edu/i2t)
|
|
|
+21. [jeffdonahue.com/lrcn/](http://jeffdonahue.com/lrcn/)
|
|
|
+22. [visualqa.org](http://www.visualqa.org/)
|
|
|
+23. [www.mpi-inf.mpg.de/departments/computer-vision...](https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/)
|
|
|
|
|
|
### Datasets
|
|
|
|