Christos 10 年之前
父節點
當前提交
80dc819953
共有 1 個文件被更改,包括 25 次插入0 次删除
  1. 25 0
      README.md

+ 25 - 0
README.md

@@ -60,6 +60,26 @@ Recognition](http://nlp.stanford.edu/~socherr/pa4_ner.pdf) [zip](http://nlp.stan
 13.  [LSTM](http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf)
 14.  [GRU - Gated Recurrent Unit](http://arxiv.org/pdf/1406.1078v3.pdf)
 15.  [GFRNN](http://arxiv.org/pdf/1502.02367v3.pdf) [.](http://jmlr.org/proceedings/papers/v37/chung15.pdf) [.](http://jmlr.org/proceedings/papers/v37/chung15-supp.pdf)
+16.  [LSTM: A Search Space Odyssey](http://arxiv.org/pdf/1503.04069v1.pdf)
+17.  [A Critical Review of Recurrent Neural Networks for Sequence Learning](http://arxiv.org/pdf/1506.00019v1.pdf)
+18.  [Visualizing and Understanding Recurrent Networks](http://arxiv.org/pdf/1506.02078v1.pdf)
+19.  [Wojciech Zaremba, Ilya Sutskever, An Empirical Exploration of Recurrent Network Architectures](http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
+20.  [Recurrent Neural Network based Language Model](http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf)
+21.  [Extensions of Recurrent Neural Network Language Model](http://www.fit.vutbr.cz/research/groups/speech/publi/2011/mikolov_icassp2011_5528.pdf)
+22.  [Recurrent Neural Network based Language Modeling in Meeting Recognition](http://www.fit.vutbr.cz/~imikolov/rnnlm/ApplicationOfRNNinMeetingRecognition_IS2011.pdf)
+23.  [Deep Neural Networks for Acoustic Modeling in Speech Recognition](http://cs224d.stanford.edu/papers/maas_paper.pdf)
+24.  [Speech Recognition with Deep Recurrent Neural Networks](http://www.cs.toronto.edu/~fritz/absps/RNN13.pdf)
+25.  Univ. Montreal [[Paper](http://arxiv.org/pdf/1406.1078v3.pdf)]
+26.  [Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation](http://arxiv.org/pdf/1406.1078v3.pdf)
+27. [Google - Sequence to Sequence  Learning with Nneural Networks](http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf)
+28. [Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention]
+29. [Policy Learning with Continuous Memory States for Partially Observed Robotic Control](http://arxiv.org/pdf/1507.01273v1)
+30. [Microsoft - Jointly Modeling Embedding and Translation to Bridge Video and Language](http://arxiv.org/pdf/1505.01861v1.pdf)
+31. [Neural Turing Machines](http://arxiv.org/pdf/1410.5401v2.pdf)
+32. [Memory Networks](http://arxiv.org/pdf/1410.3916v10)
+33. [Reinforcement Learning Neural Turing Machines](http://arxiv.org/pdf/1505.00521v1)
+
+
 
 
 ### Tutorials
@@ -97,6 +117,11 @@ Recognition](http://nlp.stanford.edu/~socherr/pa4_ner.pdf) [zip](http://nlp.stan
 16.  [nrl.navy.mil/itd/aic](http://www.nrl.navy.mil/itd/aic/)
 17.  [hips.seas.harvard.edu](http://hips.seas.harvard.edu/)
 18.  [AI Weekly](http://aiweekly.co)
+19.  [stat.ucla.edu](http://www.stat.ucla.edu/~junhua.mao/m-RNN.html)
+20.  [deeplearning.cs.toronto.edu](http://deeplearning.cs.toronto.edu/i2t)
+21.  [jeffdonahue.com/lrcn/](http://jeffdonahue.com/lrcn/)
+22.  [visualqa.org](http://www.visualqa.org/)
+23.  [www.mpi-inf.mpg.de/departments/computer-vision...](https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/)
 
 ### Datasets