Przeglądaj źródła

Added 'Machine Learning is Fun! Adam Geitgey's Blog'

PhABC 8 lat temu
rodzic
commit
a7a948d23d
1 zmienionych plików z 3 dodań i 4 usunięć
  1. 3 4
      README.md

+ 3 - 4
README.md

@@ -59,7 +59,7 @@
 17.  [Statistical Machine Learning - CMU](https://www.youtube.com/watch?v=azaLcvuql_g&list=PLjbUi5mgii6BWEUZf7He6nowWvGne_Y8r) by Prof. Larry Wasserman
 18.  [Deep Learning Course](https://www.college-de-france.fr/site/en-yann-lecun/course-2015-2016.htm) by Yann LeCun (2016)
 19.  [Bay area DL school](http://www.bayareadlschool.org/) by Andrew Ng, Yoshua Bengio, Samy Bengio, Andrej Karpathy, Richard Socher, Hugo Larochelle and many others @ Stanford, CA (2016)
-20.[Designing, Visualizing and Understanding Deep Neural Networks-UC Berkeley](https://www.youtube.com/playlist?list=PLkFD6_40KJIxopmdJF_CLNqG3QuDFHQUm)
+20. [Designing, Visualizing and Understanding Deep Neural Networks-UC Berkeley](https://www.youtube.com/playlist?list=PLkFD6_40KJIxopmdJF_CLNqG3QuDFHQUm)
 21. [UVA Deep Learning Course] (http://uvadlc.github.io) MSc in Artificial Intelligence for the University of Amsterdam.
 
 ### Videos and Lectures
@@ -89,8 +89,7 @@
 2.  [Using Very Deep Autoencoders for Content Based Image Retrieval](http://www.cs.toronto.edu/~hinton/absps/esann-deep-final.pdf)
 3.  [Learning Deep Architectures for AI](http://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf)
 4.  [CMU’s list of papers](http://deeplearning.cs.cmu.edu/)
-5.  [Neural Networks for Named Entity
-Recognition](http://nlp.stanford.edu/~socherr/pa4_ner.pdf) [zip](http://nlp.stanford.edu/~socherr/pa4-ner.zip)
+5.  [Neural Networks for Named Entity Recognition](http://nlp.stanford.edu/~socherr/pa4_ner.pdf) [zip](http://nlp.stanford.edu/~socherr/pa4-ner.zip)
 6. [Training tricks by YB](http://www.iro.umontreal.ca/~bengioy/papers/YB-tricks.pdf)
 7. [Geoff Hinton's reading list (all papers)] (http://www.cs.toronto.edu/~hinton/deeprefs.html)
 8. [Supervised Sequence Labelling with Recurrent Neural Networks](http://www.cs.toronto.edu/~graves/preprint.pdf)
@@ -270,7 +269,7 @@ Recognition](http://nlp.stanford.edu/~socherr/pa4_ner.pdf) [zip](http://nlp.stan
 22.  [visualqa.org](http://www.visualqa.org/)
 23.  [www.mpi-inf.mpg.de/departments/computer-vision...](https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/)
 24.  [Deep Learning News](http://news.startup.ml/)
-25.  [Machine Learning is Fun! Blog](https://medium.com/@ageitgey/)
+25.  [Machine Learning is Fun! Adam Geitgey's Blog](https://medium.com/@ageitgey/)
 
 ### Datasets