Переглянути джерело

Add question answering datasets

Julian Risch 4 роки тому
батько
коміт
b793e78f5e
1 змінених файлів з 5 додано та 0 видалено
  1. 5 0
      README.md

+ 5 - 0
README.md

@@ -482,6 +482,10 @@
 138. [Fashion-MNIST](https://github.com/zalandoresearch/fashion-mnist) - MNIST like fashion product dataset consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes.
 139. [Large-scale Fashion (DeepFashion) Database](http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html) - Contains over 800,000 diverse fashion images.  Each image in this dataset is labeled with 50 categories, 1,000 descriptive attributes, bounding box and clothing landmarks
 140. [FakeNewsCorpus](https://github.com/several27/FakeNewsCorpus) - Contains about 10 million news articles classified using [opensources.co](http://opensources.co) types
+141. [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) - Stanford released ~100,000 English QA pairs and ~50,000 unanswerable questions
+142. [FQuAD](https://fquad.illuin.tech/) - ~25,000 French QA pairs released by Illuin Technology
+143. [GermanQuAD and GermanDPR](https://www.deepset.ai/germanquad) - deepset released ~14,000 German QA pairs
+144. [SberQuAD](https://github.com/annnyway/QA-for-Russian) - Sberbank released ~90,000 Russian QA pairs
 
 ### Conferences
 
@@ -567,6 +571,7 @@
 64.  [Trax — Deep Learning with Clear Code and Speed](https://github.com/google/trax)
 65.  [Flax - a neural network ecosystem for JAX that is designed for flexibility](https://github.com/google/flax)
 66.  [QuickVision](https://github.com/Quick-AI/quickvision)
+67.  [haystack: an open-source neural search framework](https://haystack.deepset.ai/docs/intromd)
 
 ### Tools