### Free Online Books 1. [Deep Learning](http://www.iro.umontreal.ca/~bengioy/dlbook/) by Yoshua Bengio, Ian Goodfellow and Aaron Courville (01/01/2015) 2. [Neural Networks and Deep Learning](http://neuralnetworksanddeeplearning.com/) by Michael Nielsen (Dec 2014) 3. [Deep Learning](http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf) by Microsoft Research (2013) 4. [Deep Learning Tutorial](http://deeplearning.net/tutorial/deeplearning.pdf) by LISA lab, University of Montreal (Jan 6 2015)[neuraltalk](https://github.com/karpathy/neuraltalk) by Andrej Karpathy : numpy-based RNN/LSTM implementation 5. [An introduction to genetic algorithms](https://svn-d1.mpi-inf.mpg.de/AG1/MultiCoreLab/papers/ebook-fuzzy-mitchell-99.pdf) 6. [Artificial Intelligence: A Modern Approach](http://aima.cs.berkeley.edu/) 7. [Deep Learning in Neural Networks: An Overview](http://arxiv.org/pdf/1404.7828v4.pdf) ### Courses 1. [Machine Learning - Stanford](https://class.coursera.org/ml-005) by Andrew Ng in Coursera (2010-2014) 2. [Machine Learning - Caltech](http://work.caltech.edu/lectures.html) by Yaser Abu-Mostafa (2012-2014) 3. [Machine Learning - Carnegie Mellon](http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml) by Tom Mitchell (Spring 2011) 2. [Neural Networks for Machine Learning](https://class.coursera.org/neuralnets-2012-001) by Geoffrey Hinton in Coursera (2012) 3. [Neural networks class](https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH) by Hugo Larochelle from Université de Sherbrooke (2013) 4. [Deep Learning Course](http://cilvr.cs.nyu.edu/doku.php?id=deeplearning:slides:start) by CILVR lab @ NYU (2014) 5. [A.I - Berkeley](https://courses.edx.org/courses/BerkeleyX/CS188x_1/1T2013/courseware/) by Dan Klein and Pieter Abbeel (2013) 6. [A.I - MIT](http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/) by Patrick Henry Winston (2010) 7. [Vision and learning - computers and brains](http://web.mit.edu/course/other/i2course/www/vision_and_learning_fall_2013.html) by Shimon Ullman, Tomaso Poggio, Ethan Meyers @ MIT (2013) 8. [Convolutional Neural Networks for Visual Recognition - Stanford](http://vision.stanford.edu/teaching/cs231n/syllabus.html) by Fei-Fei Li, Andrej Karpathy (2015) 9. [Deep Learning for Natural Language Processing - Stanford](http://cs224d.stanford.edu/) 10. [Neural Networks - usherbrooke](http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html) 11. [Machine Learning - Oxford](https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/) (2014-2015) 12. [Deep Learning - Nvidia](https://developer.nvidia.com/deep-learning-courses) (2015) ### Videos and Lectures 1. [How To Create A Mind](https://www.youtube.com/watch?v=RIkxVci-R4k) By Ray Kurzweil 2. [Deep Learning, Self-Taught Learning and Unsupervised Feature Learning](https://www.youtube.com/watch?v=n1ViNeWhC24) By Andrew Ng 3. [Recent Developments in Deep Learning](https://www.youtube.com/watch?v=vShMxxqtDDs&index=3&list=PL78U8qQHXgrhP9aZraxTT5-X1RccTcUYT) By Geoff Hinton 4. [The Unreasonable Effectiveness of Deep Learning](https://www.youtube.com/watch?v=sc-KbuZqGkI) by Yann LeCun 5. [Deep Learning of Representations](https://www.youtube.com/watch?v=4xsVFLnHC_0) by Yoshua bengio 6. [Principles of Hierarchical Temporal Memory](https://www.youtube.com/watch?v=6ufPpZDmPKA) by Jeff Hawkins 7. [Machine Learning Discussion Group - Deep Learning w/ Stanford AI Lab](https://www.youtube.com/watch?v=2QJi0ArLq7s&list=PL78U8qQHXgrhP9aZraxTT5-X1RccTcUYT) by Adam Coates 8. [Making Sense of the World with Deep Learning](http://vimeo.com/80821560) By Adam Coates 9. [Demystifying Unsupervised Feature Learning ](https://www.youtube.com/watch?v=wZfVBwOO0-k) By Adam Coates 10. [Visual Perception with Deep Learning](https://www.youtube.com/watch?v=3boKlkPBckA) By Yann LeCun 11. [The Next Generation of Neural Networks](https://www.youtube.com/watch?v=AyzOUbkUf3M) By Geoffrey Hinton at GoogleTechTalks 12. [The wonderful and terrifying implications of computers that can learn](http://www.ted.com/talks/jeremy_howard_the_wonderful_and_terrifying_implications_of_computers_that_can_learn) By Jeremy Howard at TEDxBrussels 13. [Unsupervised Deep Learning - Stanford](http://web.stanford.edu/class/cs294a/handouts.html) by Andrew Ng in Stanford (2011) 14. [Natural Language Processing] (http://web.stanford.edu/class/cs224n/handouts/) By Chris Manning in Stanford ### Papers 1. [ImageNet Classification with Deep Convolutional Neural Networks](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) 2. [Using Very Deep Autoencoders for Content Based Image Retrieval](http://www.cs.toronto.edu/~hinton/absps/esann-deep-final.pdf) 3. [Learning Deep Architectures for AI](http://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf) 4. [CMU’s list of papers](http://deeplearning.cs.cmu.edu/) 5. [Neural Networks for Named Entity Recognition](http://nlp.stanford.edu/~socherr/pa4_ner.pdf) [zip](http://nlp.stanford.edu/~socherr/pa4-ner.zip) 6. [Training tricks by YB](http://www.iro.umontreal.ca/~bengioy/papers/YB-tricks.pdf) 7. [Geoff Hinton's reading list (all papers)] (http://www.cs.toronto.edu/~hinton/deeprefs.html) 8. [Supervised Sequence Labelling with Recurrent Neural Networks](http://www.cs.toronto.edu/~graves/preprint.pdf) 9. [Statistical Language Models based on Neural Networks](http://www.fit.vutbr.cz/~imikolov/rnnlm/thesis.pdf) 10. [Training Recurrent Neural Networks](http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf) 11. [Recursive Deep Learning for Natural Language Processing and Computer Vision](http://nlp.stanford.edu/~socherr/thesis.pdf) 12. [Bi-directional RNN](http://www.di.ufpe.br/~fnj/RNA/bibliografia/BRNN.pdf) 13. [LSTM](http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf) 14. [GRU - Gated Recurrent Unit](http://arxiv.org/pdf/1406.1078v3.pdf) 15. [GFRNN](http://arxiv.org/pdf/1502.02367v3.pdf) [.](http://jmlr.org/proceedings/papers/v37/chung15.pdf) [.](http://jmlr.org/proceedings/papers/v37/chung15-supp.pdf) 16. [LSTM: A Search Space Odyssey](http://arxiv.org/pdf/1503.04069v1.pdf) 17. [A Critical Review of Recurrent Neural Networks for Sequence Learning](http://arxiv.org/pdf/1506.00019v1.pdf) 18. [Visualizing and Understanding Recurrent Networks](http://arxiv.org/pdf/1506.02078v1.pdf) 19. [Wojciech Zaremba, Ilya Sutskever, An Empirical Exploration of Recurrent Network Architectures](http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) 20. [Recurrent Neural Network based Language Model](http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf) 21. [Extensions of Recurrent Neural Network Language Model](http://www.fit.vutbr.cz/research/groups/speech/publi/2011/mikolov_icassp2011_5528.pdf) 22. [Recurrent Neural Network based Language Modeling in Meeting Recognition](http://www.fit.vutbr.cz/~imikolov/rnnlm/ApplicationOfRNNinMeetingRecognition_IS2011.pdf) 23. [Deep Neural Networks for Acoustic Modeling in Speech Recognition](http://cs224d.stanford.edu/papers/maas_paper.pdf) 24. [Speech Recognition with Deep Recurrent Neural Networks](http://www.cs.toronto.edu/~fritz/absps/RNN13.pdf) 25. [Reinforcement Learning Neural Turing Machines](http://arxiv.org/pdf/1505.00521v1) 26. [Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation](http://arxiv.org/pdf/1406.1078v3.pdf) 27. [Google - Sequence to Sequence Learning with Nneural Networks](http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf) 28. [Memory Networks](http://arxiv.org/pdf/1410.3916v10) 29. [Policy Learning with Continuous Memory States for Partially Observed Robotic Control](http://arxiv.org/pdf/1507.01273v1) 30. [Microsoft - Jointly Modeling Embedding and Translation to Bridge Video and Language](http://arxiv.org/pdf/1505.01861v1.pdf) 31. [Neural Turing Machines](http://arxiv.org/pdf/1410.5401v2.pdf) ### Tutorials 1. [UFLDL Tutorial 1](http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial) 2. [UFLDL Tutorial 2](http://ufldl.stanford.edu/tutorial/supervised/LinearRegression/) 3. [Deep Learning for NLP (without Magic)](http://www.socher.org/index.php/DeepLearningTutorial/DeepLearningTutorial) 4. [A Deep Learning Tutorial: From Perceptrons to Deep Networks](http://www.toptal.com/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks) 5. [Deep Learning from the Bottom up](http://www.metacademy.org/roadmaps/rgrosse/deep_learning) 6. [Theano Tutorial](http://deeplearning.net/tutorial/deeplearning.pdf) 7. [Neural Networks for Matlab](http://uk.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf) 8. [Using convolutional neural nets to detect facial keypoints tutorial](http://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-facial-keypoints-tutorial/) 9. [Torch7 Tutorials](http://code.madbits.com/wiki/doku.php) 10. [The Best Machine Learning Tutorials On The Web] (https://github.com/josephmisiti/machine-learning-module) ### WebSites 1. [deeplearning.net](http://deeplearning.net/) 2. [deeplearning.stanford.edu](http://deeplearning.stanford.edu/) 3. [nlp.stanford.edu](http://nlp.stanford.edu/) 4. [ai-junkie.com](http://www.ai-junkie.com/ann/evolved/nnt1.html) 5. [cs.brown.edu/research/ai](http://cs.brown.edu/research/ai/) 6. [eecs.umich.edu/ai](http://www.eecs.umich.edu/ai/) 7. [cs.utexas.edu/users/ai-lab](http://www.cs.utexas.edu/users/ai-lab/) 8. [cs.washington.edu/research/ai](http://www.cs.washington.edu/research/ai/) 9. [aiai.ed.ac.uk](http://www.aiai.ed.ac.uk/) 10. [www-aig.jpl.nasa.gov](http://www-aig.jpl.nasa.gov/) 11. [csail.mit.edu](http://www.csail.mit.edu/) 12. [cgi.cse.unsw.edu.au/~aishare](http://cgi.cse.unsw.edu.au/~aishare/) 13. [cs.rochester.edu/research/ai](http://www.cs.rochester.edu/research/ai/) 14. [ai.sri.com](http://www.ai.sri.com/) 15. [isi.edu/AI/isd.htm](http://www.isi.edu/AI/isd.htm) 16. [nrl.navy.mil/itd/aic](http://www.nrl.navy.mil/itd/aic/) 17. [hips.seas.harvard.edu](http://hips.seas.harvard.edu/) 18. [AI Weekly](http://aiweekly.co) 19. [stat.ucla.edu](http://www.stat.ucla.edu/~junhua.mao/m-RNN.html) 20. [deeplearning.cs.toronto.edu](http://deeplearning.cs.toronto.edu/i2t) 21. [jeffdonahue.com/lrcn/](http://jeffdonahue.com/lrcn/) 22. [visualqa.org](http://www.visualqa.org/) 23. [www.mpi-inf.mpg.de/departments/computer-vision...](https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/) 24. [Deep Learning News](http://news.startup.ml/) ### Datasets 1. [MNIST](http://yann.lecun.com/exdb/mnist/) Handwritten digits 2. [Google House Numbers](http://ufldl.stanford.edu/housenumbers/) from street view 3. [CIFAR-10 and CIFAR-100](http://www.cs.toronto.edu/~kriz/cifar.html)4. 4. [IMAGENET](http://www.image-net.org/) 5. [Tiny Images](http://groups.csail.mit.edu/vision/TinyImages/) 80 Million tiny images6. 6. [Flickr Data](http://yahoolabs.tumblr.com/post/89783581601/one-hundred-million-creative-commons-flickr-images) 100 Million Yahoo dataset 7. [Berkeley Segmentation Dataset 500](http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/) 8. [UC Irvine Machine Learning Repository](http://archive.ics.uci.edu/ml/) 9. [Flickr 8k](http://nlp.cs.illinois.edu/HockenmaierGroup/Framing_Image_Description/KCCA.html) 10. [Flickr 30k](http://shannon.cs.illinois.edu/DenotationGraph/) 11. [Microsoft COCO](http://mscoco.org/home/) 12. [VQA](http://www.visualqa.org/) 13. [Image QA](http://www.cs.toronto.edu/~mren/imageqa/data/cocoqa/) ### Frameworks 1. [Caffe](http://caffe.berkeleyvision.org/) 2. [Torch7](http://torch.ch/) 3. [Theano](http://deeplearning.net/software/theano/) 4. [cuda-convnet](https://code.google.com/p/cuda-convnet2/) 5. [convetjs](https://github.com/karpathy/convnetjs) 5. [Ccv](http://libccv.org/doc/doc-convnet/) 6. [NuPIC](http://numenta.org/nupic.html) 7. [DeepLearning4J](http://deeplearning4j.org/) 8. [Brain](https://github.com/harthur/brain) 9. [DeepLearnToolbox](https://github.com/rasmusbergpalm/DeepLearnToolbox) 10. [Deepnet](https://github.com/nitishsrivastava/deepnet) 11. [Deeppy](https://github.com/andersbll/deeppy) 12. [JavaNN](https://github.com/ivan-vasilev/neuralnetworks) 13. [hebel](https://github.com/hannes-brt/hebel) 14. [Mocha.jl](https://github.com/pluskid/Mocha.jl) 15. [OpenDL](https://github.com/guoding83128/OpenDL) 16. [cuDNN](https://developer.nvidia.com/cuDNN) 17. [MGL](http://melisgl.github.io/mgl-pax-world/mgl-manual.html) 18. [KUnet.jl](https://github.com/denizyuret/KUnet.jl) 19. [Nvidia DIGITS - a web app based on Caffe](https://github.com/NVIDIA/DIGITS) 20. [Neon - Python based Deep Learning Framework](https://github.com/NervanaSystems/neon) 21. [Keras - Theano based Deep Learning Library](http://keras.io) 22. [Chainer - A flexible framework of neural networks for deep learning](http://chainer.org/) 23. [RNNLM Toolkit](http://rnnlm.org/) 24. [RNNLIB - A recurrent neural network library](http://sourceforge.net/p/rnnl/wiki/Home/) 25. [char-rnn](https://github.com/karpathy/char-rnn) ### Miscellaneous 1. [Google Plus - Deep Learning Community](https://plus.google.com/communities/112866381580457264725) 2. [Caffe Webinar](http://on-demand-gtc.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=shelhamer&searchItems=&sessionTopic=&sessionEvent=4&sessionYear=2014&sessionFormat=&submit=&select=+) 3. [100 Best Github Resources in Github for DL](http://meta-guide.com/software-meta-guide/100-best-github-deep-learning/) 4. [Word2Vec](https://code.google.com/p/word2vec/) 5. [Caffe DockerFile](https://github.com/tleyden/docker/tree/master/caffe) 6. [TorontoDeepLEarning convnet](https://github.com/TorontoDeepLearning/convnet) 7. [Vision data sets](http://www.cs.cmu.edu/~cil/v-images.html) 8. [gfx.js](https://github.com/clementfarabet/gfx.js) 9. [Torch7 Cheat sheet](https://github.com/torch/torch7/wiki/Cheatsheet) 10. [Misc from MIT's 'Advanced Natural Language Processing' course] (http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-864-advanced-natural-language-processing-fall-2005/) 11. [Misc from MIT's 'Machine Learning' course](http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/) 12. [Misc from MIT's 'Networks for Learning: Regression and Classification' course](http://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-520-a-networks-for-learning-regression-and-classification-spring-2001/) 13. [Misc from MIT's 'Neural Coding and Perception of Sound' course](http://ocw.mit.edu/courses/health-sciences-and-technology/hst-723j-neural-coding-and-perception-of-sound-spring-2005/index.htm) 14. [Implementing a Distributed Deep Learning Network over Spark](http://www.datasciencecentral.com/profiles/blogs/implementing-a-distributed-deep-learning-network-over-spark) 15. [A chess AI that learns to play chess using deep learning.](https://github.com/erikbern/deep-pink) 16. [Reproducing the results of "Playing Atari with Deep Reinforcement Learning" by DeepMind] (https://github.com/kristjankorjus/Replicating-DeepMind) 17. [Wiki2Vec. Getting Word2vec vectors for entities and word from Wikipedia Dumps](https://github.com/idio/wiki2vec) 18. [The original code from the DeepMind article + tweaks](https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner) 19. [Google deepdream - Neural Network art](https://github.com/google/deepdream) 20. [An efficient, batched LSTM.](https://gist.github.com/karpathy/587454dc0146a6ae21fc) ----- ### Contributing Have anything in mind that you think is awesome and would fit in this list? Feel free to send a [pull request](https://github.com/ashara12/awesome-deeplearning/pulls). ----- ## License [![CC0](http://i.creativecommons.org/p/zero/1.0/88x31.png)](http://creativecommons.org/publicdomain/zero/1.0/) To the extent possible under law, [Christos Christofidis](https://linkedin.com/in/Christofidis) has waived all copyright and related or neighboring rights to this work.