| 
					
				 | 
			
			
				@@ -87,7 +87,10 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-deep-visi 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				   * Deep Residual Network (Current State-of-the-Art) [[Paper]](http://arxiv.org/abs/1512.03385) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				    * Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				   * Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning [[Paper]] (http://arxiv.org/pdf/1503.00949.pdf) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-   
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+### Video Classification 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  * Nicolas Ballas, Li Yao, Pal Chris, Aaron Courville, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016. [[Paper](http://arxiv.org/pdf/1511.06432v4.pdf)] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  * Michael Mathieu, camille couprie, Yann Lecun, "Deep Multi Scale Video Prediction Beyond Mean Square Error", ICLR 2016. [[Paper](http://arxiv.org/pdf/1511.05440v6.pdf)] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 ### Object Tracking 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  * Seunghoon Hong, Tackgeun You, Suha Kwak, Bohyung Han, Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network, arXiv:1502.06796. [[Paper]](http://arxiv.org/pdf/1502.06796) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  * Hanxi Li, Yi Li and Fatih Porikli, DeepTrack: Learning Discriminative Feature Representations by Convolutional Neural Networks for Visual Tracking, BMVC, 2014. [[Paper]](http://www.bmva.org/bmvc/2014/files/paper028.pdf) 
			 |