Browse Source

fix spacings/alignments

myungsub 9 years ago
parent
commit
488be82cf4
1 changed files with 98 additions and 101 deletions
  1. 98 101
      README.md

+ 98 - 101
README.md

@@ -67,26 +67,26 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-deep-visi
 (from Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, arXiv:1506.01497.)
 (from Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, arXiv:1506.01497.)
 
 
 * OverFeat, NYU [[Paper]](http://arxiv.org/pdf/1312.6229.pdf)
 * OverFeat, NYU [[Paper]](http://arxiv.org/pdf/1312.6229.pdf)
-* OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks, ICLR, 2014.
+  * OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks, ICLR, 2014.
 * R-CNN, UC Berkeley [[Paper-CVPR14]](http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf) [[Paper-arXiv14]](http://arxiv.org/pdf/1311.2524)
 * R-CNN, UC Berkeley [[Paper-CVPR14]](http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf) [[Paper-arXiv14]](http://arxiv.org/pdf/1311.2524)
-* Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR, 2014.
+  * Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR, 2014.
 * SPP, Microsoft Research [[Paper]](http://arxiv.org/pdf/1406.4729)
 * SPP, Microsoft Research [[Paper]](http://arxiv.org/pdf/1406.4729)
-* Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, ECCV, 2014.
+  * Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, ECCV, 2014.
 * Fast R-CNN, Microsoft Research [[Paper]] (http://arxiv.org/pdf/1504.08083)
 * Fast R-CNN, Microsoft Research [[Paper]] (http://arxiv.org/pdf/1504.08083)
-* Ross Girshick, Fast R-CNN, arXiv:1504.08083.
+  * Ross Girshick, Fast R-CNN, arXiv:1504.08083.
 * Faster R-CNN, Microsoft Research [[Paper]] (http://arxiv.org/pdf/1506.01497)
 * Faster R-CNN, Microsoft Research [[Paper]] (http://arxiv.org/pdf/1506.01497)
-* Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, arXiv:1506.01497.
+  * Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, arXiv:1506.01497.
 * R-CNN minus R, Oxford [[Paper]] (http://arxiv.org/pdf/1506.06981)
 * R-CNN minus R, Oxford [[Paper]] (http://arxiv.org/pdf/1506.06981)
-* Karel Lenc, Andrea Vedaldi, R-CNN minus R, arXiv:1506.06981.
+  * Karel Lenc, Andrea Vedaldi, R-CNN minus R, arXiv:1506.06981.
 * End-to-end people detection in crowded scenes [[Paper]] (http://arxiv.org/abs/1506.04878)
 * End-to-end people detection in crowded scenes [[Paper]] (http://arxiv.org/abs/1506.04878)
-* Russell Stewart, Mykhaylo Andriluka, End-to-end people detection in crowded scenes, arXiv:1506.04878.
+  * Russell Stewart, Mykhaylo Andriluka, End-to-end people detection in crowded scenes, arXiv:1506.04878.
 * You Only Look Once: Unified, Real-Time Object Detection [[Paper]] (http://arxiv.org/abs/1506.02640)
 * You Only Look Once: Unified, Real-Time Object Detection [[Paper]] (http://arxiv.org/abs/1506.02640)
-* Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You Only Look Once: Unified, Real-Time Object Detection, arXiv:1506.02640
+  * Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You Only Look Once: Unified, Real-Time Object Detection, arXiv:1506.02640
 * Inside-Outside Net [[Paper]](http://arxiv.org/abs/1512.04143)
 * Inside-Outside Net [[Paper]](http://arxiv.org/abs/1512.04143)
-* Sean Bell, C. Lawrence Zitnick, Kavita Bala, Ross Girshick, Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks
+  * Sean Bell, C. Lawrence Zitnick, Kavita Bala, Ross Girshick, Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks
 * Deep Residual Network (Current State-of-the-Art) [[Paper]](http://arxiv.org/abs/1512.03385)
 * Deep Residual Network (Current State-of-the-Art) [[Paper]](http://arxiv.org/abs/1512.03385)
-* Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition
-* Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning [[Paper]] (http://arxiv.org/pdf/1503.00949.pdf)
+  * Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition
+* Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning [[Paper](http://arxiv.org/pdf/1503.00949.pdf)]
 
 
 ### Video Classification
 ### Video Classification
 * Nicolas Ballas, Li Yao, Pal Chris, Aaron Courville, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016. [[Paper](http://arxiv.org/pdf/1511.06432v4.pdf)]
 * Nicolas Ballas, Li Yao, Pal Chris, Aaron Courville, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016. [[Paper](http://arxiv.org/pdf/1511.06432v4.pdf)]
@@ -96,9 +96,9 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-deep-visi
 * Seunghoon Hong, Tackgeun You, Suha Kwak, Bohyung Han, Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network, arXiv:1502.06796. [[Paper]](http://arxiv.org/pdf/1502.06796)
 * Seunghoon Hong, Tackgeun You, Suha Kwak, Bohyung Han, Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network, arXiv:1502.06796. [[Paper]](http://arxiv.org/pdf/1502.06796)
 * Hanxi Li, Yi Li and Fatih Porikli, DeepTrack: Learning Discriminative Feature Representations by Convolutional Neural Networks for Visual Tracking, BMVC, 2014. [[Paper]](http://www.bmva.org/bmvc/2014/files/paper028.pdf)
 * Hanxi Li, Yi Li and Fatih Porikli, DeepTrack: Learning Discriminative Feature Representations by Convolutional Neural Networks for Visual Tracking, BMVC, 2014. [[Paper]](http://www.bmva.org/bmvc/2014/files/paper028.pdf)
 * N Wang, DY Yeung, Learning a Deep Compact Image Representation for Visual Tracking, NIPS, 2013. [[Paper]](http://winsty.net/papers/dlt.pdf)
 * N Wang, DY Yeung, Learning a Deep Compact Image Representation for Visual Tracking, NIPS, 2013. [[Paper]](http://winsty.net/papers/dlt.pdf)
-* Chao Ma, Jia-Bin Huang, Xiaokang Yang and Ming-Hsuan Yang, Hierarchical Convolutional Features for Visual Tracking, ICCV 2015 [[GitHub]](https://github.com/jbhuang0604/CF2)
-* Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu, Visual Tracking with fully Convolutional Networks, ICCV 2015 [[GitHub]](https://github.com/scott89/FCNT) [[Paper]](http://202.118.75.4/lu/Paper/ICCV2015/iccv15_lijun.pdf)
-  * Hyeonseob Namand Bohyung Han, Learning Multi-Domain Convolutional Neural Networks for Visual Tracking, [[Paper](http://arxiv.org/pdf/1510.07945.pdf)] [[Code](https://github.com/HyeonseobNam/MDNet)] [[Project Page](http://cvlab.postech.ac.kr/research/mdnet/)]
+* Chao Ma, Jia-Bin Huang, Xiaokang Yang and Ming-Hsuan Yang, Hierarchical Convolutional Features for Visual Tracking, ICCV 2015 [[Paper](http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Ma_Hierarchical_Convolutional_Features_ICCV_2015_paper.pdf)] [[Code](https://github.com/jbhuang0604/CF2)]
+* Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu, Visual Tracking with fully Convolutional Networks, ICCV 2015  [[Paper](http://202.118.75.4/lu/Paper/ICCV2015/iccv15_lijun.pdf)] [[Code](https://github.com/scott89/FCNT)]
+* Hyeonseob Namand Bohyung Han, Learning Multi-Domain Convolutional Neural Networks for Visual Tracking, [[Paper](http://arxiv.org/pdf/1510.07945.pdf)] [[Code](https://github.com/HyeonseobNam/MDNet)] [[Project Page](http://cvlab.postech.ac.kr/research/mdnet/)]
 
 
 ### Low-Level Vision
 ### Low-Level Vision
 
 
@@ -107,41 +107,41 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-deep-visi
   * Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Learning a Deep Convolutional Network for Image Super-Resolution, ECCV, 2014.
   * Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Learning a Deep Convolutional Network for Image Super-Resolution, ECCV, 2014.
   * Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Image Super-Resolution Using Deep Convolutional Networks, arXiv:1501.00092.
   * Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Image Super-Resolution Using Deep Convolutional Networks, arXiv:1501.00092.
 * Very Deep Super-Resolution
 * Very Deep Super-Resolution
-* Jiwon Kim, Jung Kwon Lee, Kyoung Mu Lee, Accurate Image Super-Resolution Using Very Deep Convolutional Networks, arXiv:1511.04587, 2015. [[Paper]](http://arxiv.org/abs/1511.04587)
+  * Jiwon Kim, Jung Kwon Lee, Kyoung Mu Lee, Accurate Image Super-Resolution Using Very Deep Convolutional Networks, arXiv:1511.04587, 2015. [[Paper]](http://arxiv.org/abs/1511.04587)
 * Deeply-Recursive Convolutional Network
 * Deeply-Recursive Convolutional Network
-* Jiwon Kim, Jung Kwon Lee, Kyoung Mu Lee, Deeply-Recursive Convolutional Network for Image Super-Resolution, arXiv:1511.04491, 2015. [[Paper]](http://arxiv.org/abs/1511.04491)
+  * Jiwon Kim, Jung Kwon Lee, Kyoung Mu Lee, Deeply-Recursive Convolutional Network for Image Super-Resolution, arXiv:1511.04491, 2015. [[Paper]](http://arxiv.org/abs/1511.04491)
 * Casade-Sparse-Coding-Network
 * Casade-Sparse-Coding-Network
-* Zhaowen Wang, Ding Liu, Wei Han, Jianchao Yang and Thomas S. Huang, Deep Networks for Image Super-Resolution with Sparse Prior. ICCV, 2015. [[Paper]](http://www.ifp.illinois.edu/~dingliu2/iccv15/iccv15.pdf) [[Code]](http://www.ifp.illinois.edu/~dingliu2/iccv15/)
+  * Zhaowen Wang, Ding Liu, Wei Han, Jianchao Yang and Thomas S. Huang, Deep Networks for Image Super-Resolution with Sparse Prior. ICCV, 2015. [[Paper]](http://www.ifp.illinois.edu/~dingliu2/iccv15/iccv15.pdf) [[Code]](http://www.ifp.illinois.edu/~dingliu2/iccv15/)
 * Perceptual Losses for Super-Resolution
 * Perceptual Losses for Super-Resolution
-* Justin Johnson, Alexandre Alahi, Li Fei-Fei, Perceptual Losses for Real-Time Style Transfer and Super-Resolution, arXiv:1603.08155, 2016. [[Paper]](http://arxiv.org/abs/1603.08155) [[Supplementary]](http://cs.stanford.edu/people/jcjohns/papers/fast-style/fast-style-supp.pdf)
+  * Justin Johnson, Alexandre Alahi, Li Fei-Fei, Perceptual Losses for Real-Time Style Transfer and Super-Resolution, arXiv:1603.08155, 2016. [[Paper]](http://arxiv.org/abs/1603.08155) [[Supplementary]](http://cs.stanford.edu/people/jcjohns/papers/fast-style/fast-style-supp.pdf)
 * Others
 * Others
   * Osendorfer, Christian, Hubert Soyer, and Patrick van der Smagt, Image Super-Resolution with Fast Approximate Convolutional Sparse Coding, ICONIP, 2014. [[Paper ICONIP-2014]](http://brml.org/uploads/tx_sibibtex/281.pdf)
   * Osendorfer, Christian, Hubert Soyer, and Patrick van der Smagt, Image Super-Resolution with Fast Approximate Convolutional Sparse Coding, ICONIP, 2014. [[Paper ICONIP-2014]](http://brml.org/uploads/tx_sibibtex/281.pdf)
 
 
 #### Other Applications
 #### Other Applications
 * Optical Flow (FlowNet) [[Paper]](http://arxiv.org/pdf/1504.06852)
 * Optical Flow (FlowNet) [[Paper]](http://arxiv.org/pdf/1504.06852)
-* Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner Hazırbaş, Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, Thomas Brox, FlowNet: Learning Optical Flow with Convolutional Networks, arXiv:1504.06852.
+  * Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner Hazırbaş, Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, Thomas Brox, FlowNet: Learning Optical Flow with Convolutional Networks, arXiv:1504.06852.
 * Compression Artifacts Reduction [[Paper-arXiv15]](http://arxiv.org/pdf/1504.06993)
 * Compression Artifacts Reduction [[Paper-arXiv15]](http://arxiv.org/pdf/1504.06993)
   * Chao Dong, Yubin Deng, Chen Change Loy, Xiaoou Tang, Compression Artifacts Reduction by a Deep Convolutional Network, arXiv:1504.06993.
   * Chao Dong, Yubin Deng, Chen Change Loy, Xiaoou Tang, Compression Artifacts Reduction by a Deep Convolutional Network, arXiv:1504.06993.
 * Blur Removal
 * Blur Removal
-* Christian J. Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf, Learning to Deblur, arXiv:1406.7444 [[Paper]](http://arxiv.org/pdf/1406.7444.pdf)
-* Jian Sun, Wenfei Cao, Zongben Xu, Jean Ponce, Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal, CVPR, 2015 [[Paper]](http://arxiv.org/pdf/1503.00593)
+  * Christian J. Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf, Learning to Deblur, arXiv:1406.7444 [[Paper]](http://arxiv.org/pdf/1406.7444.pdf)
+  * Jian Sun, Wenfei Cao, Zongben Xu, Jean Ponce, Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal, CVPR, 2015 [[Paper]](http://arxiv.org/pdf/1503.00593)
 * Image Deconvolution [[Web]](http://lxu.me/projects/dcnn/) [[Paper]](http://lxu.me/mypapers/dcnn_nips14.pdf)
 * Image Deconvolution [[Web]](http://lxu.me/projects/dcnn/) [[Paper]](http://lxu.me/mypapers/dcnn_nips14.pdf)
-* Li Xu, Jimmy SJ. Ren, Ce Liu, Jiaya Jia, Deep Convolutional Neural Network for Image Deconvolution, NIPS, 2014.
+  * Li Xu, Jimmy SJ. Ren, Ce Liu, Jiaya Jia, Deep Convolutional Neural Network for Image Deconvolution, NIPS, 2014.
 * Deep Edge-Aware Filter [[Paper]](http://jmlr.org/proceedings/papers/v37/xub15.pdf)
 * Deep Edge-Aware Filter [[Paper]](http://jmlr.org/proceedings/papers/v37/xub15.pdf)
-* Li Xu, Jimmy SJ. Ren, Qiong Yan, Renjie Liao, Jiaya Jia, Deep Edge-Aware Filters, ICML, 2015.
+  * Li Xu, Jimmy SJ. Ren, Qiong Yan, Renjie Liao, Jiaya Jia, Deep Edge-Aware Filters, ICML, 2015.
 * Computing the Stereo Matching Cost with a Convolutional Neural Network [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zbontar_Computing_the_Stereo_2015_CVPR_paper.pdf)
 * Computing the Stereo Matching Cost with a Convolutional Neural Network [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zbontar_Computing_the_Stereo_2015_CVPR_paper.pdf)
-* Jure Žbontar, Yann LeCun, Computing the Stereo Matching Cost with a Convolutional Neural Network, CVPR, 2015.
+  * Jure Žbontar, Yann LeCun, Computing the Stereo Matching Cost with a Convolutional Neural Network, CVPR, 2015.
 
 
 ### Edge Detection
 ### Edge Detection
 ![edge_detection](https://cloud.githubusercontent.com/assets/5226447/8452371/93ca6f7e-2025-11e5-90f2-d428fd5ff7ac.PNG)
 ![edge_detection](https://cloud.githubusercontent.com/assets/5226447/8452371/93ca6f7e-2025-11e5-90f2-d428fd5ff7ac.PNG)
 (from Gedas Bertasius, Jianbo Shi, Lorenzo Torresani, DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection, CVPR, 2015.)
 (from Gedas Bertasius, Jianbo Shi, Lorenzo Torresani, DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection, CVPR, 2015.)
 
 
 * Holistically-Nested Edge Detection [[Paper]](http://arxiv.org/pdf/1504.06375) [[Code]](https://github.com/s9xie/hed)
 * Holistically-Nested Edge Detection [[Paper]](http://arxiv.org/pdf/1504.06375) [[Code]](https://github.com/s9xie/hed)
-* Saining Xie, Zhuowen Tu, Holistically-Nested Edge Detection, arXiv:1504.06375.
+  * Saining Xie, Zhuowen Tu, Holistically-Nested Edge Detection, arXiv:1504.06375.
 * DeepEdge [[Paper]](http://arxiv.org/pdf/1412.1123)
 * DeepEdge [[Paper]](http://arxiv.org/pdf/1412.1123)
-* Gedas Bertasius, Jianbo Shi, Lorenzo Torresani, DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection, CVPR, 2015.
+  * Gedas Bertasius, Jianbo Shi, Lorenzo Torresani, DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection, CVPR, 2015.
 * DeepContour [[Paper]](http://mc.eistar.net/UpLoadFiles/Papers/DeepContour_cvpr15.pdf)
 * DeepContour [[Paper]](http://mc.eistar.net/UpLoadFiles/Papers/DeepContour_cvpr15.pdf)
-* Wei Shen, Xinggang Wang, Yan Wang, Xiang Bai, Zhijiang Zhang, DeepContour: A Deep Convolutional Feature Learned by Positive-Sharing Loss for Contour Detection, CVPR, 2015.
+  * Wei Shen, Xinggang Wang, Yan Wang, Xiang Bai, Zhijiang Zhang, DeepContour: A Deep Convolutional Feature Learned by Positive-Sharing Loss for Contour Detection, CVPR, 2015.
 
 
 ### Semantic Segmentation
 ### Semantic Segmentation
 ![semantic_segmantation](https://cloud.githubusercontent.com/assets/5226447/8452076/0ba8340c-2023-11e5-88bc-bebf4509b6bb.PNG)
 ![semantic_segmantation](https://cloud.githubusercontent.com/assets/5226447/8452076/0ba8340c-2023-11e5-88bc-bebf4509b6bb.PNG)
@@ -150,74 +150,72 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-deep-visi
   ![VOC2012_top_rankings](https://cloud.githubusercontent.com/assets/7778428/11551711/23ab9b46-99bf-11e5-85f4-35b27c5d6eaf.png)
   ![VOC2012_top_rankings](https://cloud.githubusercontent.com/assets/7778428/11551711/23ab9b46-99bf-11e5-85f4-35b27c5d6eaf.png)
   (from PASCAL VOC2012 [leaderboards](http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6))
   (from PASCAL VOC2012 [leaderboards](http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6))
 * Adelaide
 * Adelaide
-* Guosheng Lin, Chunhua Shen, Ian Reid, Anton van dan Hengel, Efficient piecewise training of deep structured models for semantic segmentation, arXiv:1504.01013. [[Paper]](http://arxiv.org/pdf/1504.01013) (1st ranked in VOC2012)
-* Guosheng Lin, Chunhua Shen, Ian Reid, Anton van den Hengel, Deeply Learning the Messages in Message Passing Inference, arXiv:1508.02108. [[Paper]](http://arxiv.org/pdf/1506.02108) (4th ranked in VOC2012)
+  * Guosheng Lin, Chunhua Shen, Ian Reid, Anton van dan Hengel, Efficient piecewise training of deep structured models for semantic segmentation, arXiv:1504.01013. [[Paper]](http://arxiv.org/pdf/1504.01013) (1st ranked in VOC2012)
+  * Guosheng Lin, Chunhua Shen, Ian Reid, Anton van den Hengel, Deeply Learning the Messages in Message Passing Inference, arXiv:1508.02108. [[Paper]](http://arxiv.org/pdf/1506.02108) (4th ranked in VOC2012)
 * Deep Parsing Network (DPN)
 * Deep Parsing Network (DPN)
-* Ziwei Liu, Xiaoxiao Li, Ping Luo, Chen Change Loy, Xiaoou Tang, Semantic Image Segmentation via Deep Parsing Network, arXiv:1509.02634 / ICCV 2015 [[Paper]](http://arxiv.org/pdf/1509.02634.pdf) (2nd ranked in VOC 2012)
+  * Ziwei Liu, Xiaoxiao Li, Ping Luo, Chen Change Loy, Xiaoou Tang, Semantic Image Segmentation via Deep Parsing Network, arXiv:1509.02634 / ICCV 2015 [[Paper]](http://arxiv.org/pdf/1509.02634.pdf) (2nd ranked in VOC 2012)
 * CentraleSuperBoundaries, INRIA [[Paper]](http://arxiv.org/pdf/1511.07386)
 * CentraleSuperBoundaries, INRIA [[Paper]](http://arxiv.org/pdf/1511.07386)
-* Iasonas Kokkinos, Surpassing Humans in Boundary Detection using Deep Learning, arXiv:1411.07386 (4th ranked in VOC 2012)
+  * Iasonas Kokkinos, Surpassing Humans in Boundary Detection using Deep Learning, arXiv:1411.07386 (4th ranked in VOC 2012)
 * BoxSup [[Paper]](http://arxiv.org/pdf/1503.01640)
 * BoxSup [[Paper]](http://arxiv.org/pdf/1503.01640)
-* Jifeng Dai, Kaiming He, Jian Sun, BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation, arXiv:1503.01640. (6th ranked in VOC2012)
+  * Jifeng Dai, Kaiming He, Jian Sun, BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation, arXiv:1503.01640. (6th ranked in VOC2012)
 * POSTECH
 * POSTECH
-* Hyeonwoo Noh, Seunghoon Hong, Bohyung Han, Learning Deconvolution Network for Semantic Segmentation, arXiv:1505.04366. [[Paper]](http://arxiv.org/pdf/1505.04366) (7th ranked in VOC2012)
-* Seunghoon Hong, Hyeonwoo Noh, Bohyung Han, Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation, arXiv:1506.04924. [[Paper]](http://arxiv.org/pdf/1506.04924)
+  * Hyeonwoo Noh, Seunghoon Hong, Bohyung Han, Learning Deconvolution Network for Semantic Segmentation, arXiv:1505.04366. [[Paper]](http://arxiv.org/pdf/1505.04366) (7th ranked in VOC2012)
+  * Seunghoon Hong, Hyeonwoo Noh, Bohyung Han, Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation, arXiv:1506.04924. [[Paper]](http://arxiv.org/pdf/1506.04924)
+  * Seunghoon Hong,Junhyuk Oh,	Bohyung Han, and	Honglak Lee, Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network, arXiv:1512.07928 [[Paper](http://arxiv.org/pdf/1512.07928.pdf)] [[Project Page](http://cvlab.postech.ac.kr/research/transfernet/)]
 * Conditional Random Fields as Recurrent Neural Networks [[Paper]](http://arxiv.org/pdf/1502.03240)
 * Conditional Random Fields as Recurrent Neural Networks [[Paper]](http://arxiv.org/pdf/1502.03240)
-* Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang Huang, Philip H. S. Torr, Conditional Random Fields as Recurrent Neural Networks, arXiv:1502.03240. (8th ranked in VOC2012)
+  * Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang Huang, Philip H. S. Torr, Conditional Random Fields as Recurrent Neural Networks, arXiv:1502.03240. (8th ranked in VOC2012)
 * DeepLab
 * DeepLab
-* Liang-Chieh Chen, George Papandreou, Kevin Murphy, Alan L. Yuille, Weakly-and semi-supervised learning of a DCNN for semantic image segmentation, arXiv:1502.02734. [[Paper]](http://arxiv.org/pdf/1502.02734) (9th ranked in VOC2012)
+  * Liang-Chieh Chen, George Papandreou, Kevin Murphy, Alan L. Yuille, Weakly-and semi-supervised learning of a DCNN for semantic image segmentation, arXiv:1502.02734. [[Paper]](http://arxiv.org/pdf/1502.02734) (9th ranked in VOC2012)
 * Zoom-out [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Mostajabi_Feedforward_Semantic_Segmentation_2015_CVPR_paper.pdf)
 * Zoom-out [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Mostajabi_Feedforward_Semantic_Segmentation_2015_CVPR_paper.pdf)
-* Mohammadreza Mostajabi, Payman Yadollahpour, Gregory Shakhnarovich, Feedforward Semantic Segmentation With Zoom-Out Features, CVPR, 2015
+  * Mohammadreza Mostajabi, Payman Yadollahpour, Gregory Shakhnarovich, Feedforward Semantic Segmentation With Zoom-Out Features, CVPR, 2015
 * Joint Calibration [[Paper]](http://arxiv.org/pdf/1507.01581)
 * Joint Calibration [[Paper]](http://arxiv.org/pdf/1507.01581)
-* Holger Caesar, Jasper Uijlings, Vittorio Ferrari, Joint Calibration for Semantic Segmentation, arXiv:1507.01581.
+  * Holger Caesar, Jasper Uijlings, Vittorio Ferrari, Joint Calibration for Semantic Segmentation, arXiv:1507.01581.
 * Fully Convolutional Networks for Semantic Segmentation [[Paper-CVPR15]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf) [[Paper-arXiv15]](http://arxiv.org/pdf/1411.4038)
 * Fully Convolutional Networks for Semantic Segmentation [[Paper-CVPR15]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf) [[Paper-arXiv15]](http://arxiv.org/pdf/1411.4038)
-* Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully Convolutional Networks for Semantic Segmentation, CVPR, 2015.
+  * Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully Convolutional Networks for Semantic Segmentation, CVPR, 2015.
 * Hypercolumn [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hariharan_Hypercolumns_for_Object_2015_CVPR_paper.pdf)
 * Hypercolumn [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hariharan_Hypercolumns_for_Object_2015_CVPR_paper.pdf)
-* Bharath Hariharan, Pablo Arbelaez, Ross Girshick, Jitendra Malik, Hypercolumns for Object Segmentation and Fine-Grained Localization, CVPR, 2015.
+  * Bharath Hariharan, Pablo Arbelaez, Ross Girshick, Jitendra Malik, Hypercolumns for Object Segmentation and Fine-Grained Localization, CVPR, 2015.
 * Deep Hierarchical Parsing
 * Deep Hierarchical Parsing
-* Abhishek Sharma, Oncel Tuzel, David W. Jacobs, Deep Hierarchical Parsing for Semantic Segmentation, CVPR, 2015. [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Sharma_Deep_Hierarchical_Parsing_2015_CVPR_paper.pdf)
+  * Abhishek Sharma, Oncel Tuzel, David W. Jacobs, Deep Hierarchical Parsing for Semantic Segmentation, CVPR, 2015. [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Sharma_Deep_Hierarchical_Parsing_2015_CVPR_paper.pdf)
 * Learning Hierarchical Features for Scene Labeling [[Paper-ICML12]](http://yann.lecun.com/exdb/publis/pdf/farabet-icml-12.pdf) [[Paper-PAMI13]](http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf)
 * Learning Hierarchical Features for Scene Labeling [[Paper-ICML12]](http://yann.lecun.com/exdb/publis/pdf/farabet-icml-12.pdf) [[Paper-PAMI13]](http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf)
-* Clement Farabet, Camille Couprie, Laurent Najman, Yann LeCun, Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers, ICML, 2012.
-* Clement Farabet, Camille Couprie, Laurent Najman, Yann LeCun, Learning Hierarchical Features for Scene Labeling, PAMI, 2013.
+  * Clement Farabet, Camille Couprie, Laurent Najman, Yann LeCun, Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers, ICML, 2012.
+  * Clement Farabet, Camille Couprie, Laurent Najman, Yann LeCun, Learning Hierarchical Features for Scene Labeling, PAMI, 2013.
 * University of Cambridge [[Web]](http://mi.eng.cam.ac.uk/projects/segnet/)
 * University of Cambridge [[Web]](http://mi.eng.cam.ac.uk/projects/segnet/)
-* Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation." arXiv preprint arXiv:1511.00561, 2015. [[Paper]](http://arxiv.org/abs/1511.00561)
+  * Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation." arXiv preprint arXiv:1511.00561, 2015. [[Paper]](http://arxiv.org/abs/1511.00561)
 * Alex Kendall, Vijay Badrinarayanan and Roberto Cipolla "Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding." arXiv preprint arXiv:1511.02680, 2015. [[Paper]](http://arxiv.org/abs/1511.00561)
 * Alex Kendall, Vijay Badrinarayanan and Roberto Cipolla "Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding." arXiv preprint arXiv:1511.02680, 2015. [[Paper]](http://arxiv.org/abs/1511.00561)
-* POSTECH
-  * Seunghoon Hong,Junhyuk Oh,	Bohyung Han, and	Honglak Lee, Learning Transferrable Knowledge for Semantic Segmentation 
-    with Deep Convolutional Neural Network, arXiv:1512.07928 [[Paper](http://arxiv.org/pdf/1512.07928.pdf)] [[Project Page](http://cvlab.postech.ac.kr/research/transfernet/)]
 * Princeton
 * Princeton
-* Fisher Yu, Vladlen Koltun, "Multi-Scale Context Aggregation by Dilated Convolutions", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.07122v2.pdf)]
+  * Fisher Yu, Vladlen Koltun, "Multi-Scale Context Aggregation by Dilated Convolutions", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.07122v2.pdf)]
 * Univ. of Washington, Allen AI
 * Univ. of Washington, Allen AI
-* Hamid Izadinia, Fereshteh Sadeghi, Santosh Kumar Divvala, Yejin Choi, Ali Farhadi, "Segment-Phrase Table for Semantic Segmentation, Visual Entailment and Paraphrasing", ICCV, 2015, [[Paper](http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Izadinia_Segment-Phrase_Table_for_ICCV_2015_paper.pdf)]
+  * Hamid Izadinia, Fereshteh Sadeghi, Santosh Kumar Divvala, Yejin Choi, Ali Farhadi, "Segment-Phrase Table for Semantic Segmentation, Visual Entailment and Paraphrasing", ICCV, 2015, [[Paper](http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Izadinia_Segment-Phrase_Table_for_ICCV_2015_paper.pdf)]
 * INRIA
 * INRIA
-* Iasonas Kokkinos, "Pusing the Boundaries of Boundary Detection Using deep Learning", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.07386v2.pdf)]
+  * Iasonas Kokkinos, "Pusing the Boundaries of Boundary Detection Using deep Learning", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.07386v2.pdf)]
 * UCSB
 * UCSB
-* Niloufar Pourian, S. Karthikeyan, and B.S. Manjunath, "Weakly supervised graph based semantic segmentation by learning communities of image-parts", ICCV, 2015, [[Paper](http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pourian_Weakly_Supervised_Graph_ICCV_2015_paper.pdf)]
+  * Niloufar Pourian, S. Karthikeyan, and B.S. Manjunath, "Weakly supervised graph based semantic segmentation by learning communities of image-parts", ICCV, 2015, [[Paper](http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pourian_Weakly_Supervised_Graph_ICCV_2015_paper.pdf)]
 
 
 ### Visual Attention and Saliency
 ### Visual Attention and Saliency
 ![saliency](https://cloud.githubusercontent.com/assets/5226447/8492362/7ec65b88-2183-11e5-978f-017e45ddba32.png)
 ![saliency](https://cloud.githubusercontent.com/assets/5226447/8492362/7ec65b88-2183-11e5-978f-017e45ddba32.png)
 (from Nian Liu, Junwei Han, Dingwen Zhang, Shifeng Wen, Tianming Liu, Predicting Eye Fixations using Convolutional Neural Networks, CVPR, 2015.)
 (from Nian Liu, Junwei Han, Dingwen Zhang, Shifeng Wen, Tianming Liu, Predicting Eye Fixations using Convolutional Neural Networks, CVPR, 2015.)
 
 
 * Mr-CNN [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Liu_Predicting_Eye_Fixations_2015_CVPR_paper.pdf)
 * Mr-CNN [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Liu_Predicting_Eye_Fixations_2015_CVPR_paper.pdf)
-* Nian Liu, Junwei Han, Dingwen Zhang, Shifeng Wen, Tianming Liu, Predicting Eye Fixations using Convolutional Neural Networks, CVPR, 2015.
+  * Nian Liu, Junwei Han, Dingwen Zhang, Shifeng Wen, Tianming Liu, Predicting Eye Fixations using Convolutional Neural Networks, CVPR, 2015.
 * Learning a Sequential Search for Landmarks [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Singh_Learning_a_Sequential_2015_CVPR_paper.pdf)
 * Learning a Sequential Search for Landmarks [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Singh_Learning_a_Sequential_2015_CVPR_paper.pdf)
-* Saurabh Singh, Derek Hoiem, David Forsyth, Learning a Sequential Search for Landmarks, CVPR, 2015.
+  * Saurabh Singh, Derek Hoiem, David Forsyth, Learning a Sequential Search for Landmarks, CVPR, 2015.
 * Multiple Object Recognition with Visual Attention [[Paper]](http://arxiv.org/pdf/1412.7755.pdf)
 * Multiple Object Recognition with Visual Attention [[Paper]](http://arxiv.org/pdf/1412.7755.pdf)
-* Jimmy Lei Ba, Volodymyr Mnih, Koray Kavukcuoglu, Multiple Object Recognition with Visual Attention, ICLR, 2015.
+  * Jimmy Lei Ba, Volodymyr Mnih, Koray Kavukcuoglu, Multiple Object Recognition with Visual Attention, ICLR, 2015.
 * Recurrent Models of Visual Attention [[Paper]](http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf)
 * Recurrent Models of Visual Attention [[Paper]](http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf)
-* Volodymyr Mnih, Nicolas Heess, Alex Graves, Koray Kavukcuoglu, Recurrent Models of Visual Attention, NIPS, 2014.
+  * Volodymyr Mnih, Nicolas Heess, Alex Graves, Koray Kavukcuoglu, Recurrent Models of Visual Attention, NIPS, 2014.
 
 
 ### Object Recognition
 ### Object Recognition
 * Weakly-supervised learning with convolutional neural networks [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Oquab_Is_Object_Localization_2015_CVPR_paper.pdf)
 * Weakly-supervised learning with convolutional neural networks [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Oquab_Is_Object_Localization_2015_CVPR_paper.pdf)
-* Maxime Oquab, Leon Bottou, Ivan Laptev, Josef Sivic, Is object localization for free? – Weakly-supervised learning with convolutional neural networks, CVPR, 2015.
+  * Maxime Oquab, Leon Bottou, Ivan Laptev, Josef Sivic, Is object localization for free? – Weakly-supervised learning with convolutional neural networks, CVPR, 2015.
 * FV-CNN [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Cimpoi_Deep_Filter_Banks_2015_CVPR_paper.pdf)
 * FV-CNN [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Cimpoi_Deep_Filter_Banks_2015_CVPR_paper.pdf)
-* Mircea Cimpoi, Subhransu Maji, Andrea Vedaldi, Deep Filter Banks for Texture Recognition and Segmentation, CVPR, 2015.
+  * Mircea Cimpoi, Subhransu Maji, Andrea Vedaldi, Deep Filter Banks for Texture Recognition and Segmentation, CVPR, 2015.
 
 
 ### Understanding CNN
 ### Understanding CNN
 ![understanding](https://cloud.githubusercontent.com/assets/5226447/8452083/1aaa0066-2023-11e5-800b-2248ead51584.PNG)
 ![understanding](https://cloud.githubusercontent.com/assets/5226447/8452083/1aaa0066-2023-11e5-800b-2248ead51584.PNG)
 (from Aravindh Mahendran, Andrea Vedaldi, Understanding Deep Image Representations by Inverting Them, CVPR, 2015.)
 (from Aravindh Mahendran, Andrea Vedaldi, Understanding Deep Image Representations by Inverting Them, CVPR, 2015.)
 
 
 * Karel Lenc, Andrea Vedaldi, Understanding image representations by measuring their equivariance and equivalence, CVPR, 2015. [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Lenc_Understanding_Image_Representations_2015_CVPR_paper.pdf)
 * Karel Lenc, Andrea Vedaldi, Understanding image representations by measuring their equivariance and equivalence, CVPR, 2015. [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Lenc_Understanding_Image_Representations_2015_CVPR_paper.pdf)
-* Anh Nguyen, Jason Yosinski, Jeff Clune, Deep Neural Networks are Easily Fooled:High Confidence Predictions for Unrecognizable Images, CVPR, 2015. [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Nguyen_Deep_Neural_Networks_2015_CVPR_paper.pdf) 
+* Anh Nguyen, Jason Yosinski, Jeff Clune, Deep Neural Networks are Easily Fooled:High Confidence Predictions for Unrecognizable Images, CVPR, 2015. [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Nguyen_Deep_Neural_Networks_2015_CVPR_paper.pdf)
 * Aravindh Mahendran, Andrea Vedaldi, Understanding Deep Image Representations by Inverting Them, CVPR, 2015. [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Mahendran_Understanding_Deep_Image_2015_CVPR_paper.pdf)
 * Aravindh Mahendran, Andrea Vedaldi, Understanding Deep Image Representations by Inverting Them, CVPR, 2015. [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Mahendran_Understanding_Deep_Image_2015_CVPR_paper.pdf)
 * Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba, Object Detectors Emerge in Deep Scene CNNs, ICLR, 2015. [[arXiv Paper]](http://arxiv.org/abs/1412.6856)
 * Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba, Object Detectors Emerge in Deep Scene CNNs, ICLR, 2015. [[arXiv Paper]](http://arxiv.org/abs/1412.6856)
 * Alexey Dosovitskiy, Thomas Brox, Inverting Visual Representations with Convolutional Networks, arXiv, 2015. [[Paper]](http://arxiv.org/abs/1506.02753)
 * Alexey Dosovitskiy, Thomas Brox, Inverting Visual Representations with Convolutional Networks, arXiv, 2015. [[Paper]](http://arxiv.org/abs/1506.02753)
@@ -309,61 +307,60 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-deep-visi
 * Visual Analogy [[Paper](https://web.eecs.umich.edu/~honglak/nips2015-analogy.pdf)]
 * Visual Analogy [[Paper](https://web.eecs.umich.edu/~honglak/nips2015-analogy.pdf)]
   * Scott Reed, Yi Zhang, Yuting Zhang, Honglak Lee, Deep Visual Analogy Making, NIPS, 2015
   * Scott Reed, Yi Zhang, Yuting Zhang, Honglak Lee, Deep Visual Analogy Making, NIPS, 2015
 * Surface Normal Estimation [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Designing_Deep_Networks_2015_CVPR_paper.pdf)
 * Surface Normal Estimation [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Designing_Deep_Networks_2015_CVPR_paper.pdf)
-* Xiaolong Wang, David F. Fouhey, Abhinav Gupta, Designing Deep Networks for Surface Normal Estimation, CVPR, 2015.
+  * Xiaolong Wang, David F. Fouhey, Abhinav Gupta, Designing Deep Networks for Surface Normal Estimation, CVPR, 2015.
 * Action Detection [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Gkioxari_Finding_Action_Tubes_2015_CVPR_paper.pdf)
 * Action Detection [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Gkioxari_Finding_Action_Tubes_2015_CVPR_paper.pdf)
-* Georgia Gkioxari, Jitendra Malik, Finding Action Tubes, CVPR, 2015.
+  * Georgia Gkioxari, Jitendra Malik, Finding Action Tubes, CVPR, 2015.
 * Crowd Counting [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhang_Cross-Scene_Crowd_Counting_2015_CVPR_paper.pdf)
 * Crowd Counting [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhang_Cross-Scene_Crowd_Counting_2015_CVPR_paper.pdf)
-* Cong Zhang, Hongsheng Li, Xiaogang Wang, Xiaokang Yang, Cross-scene Crowd Counting via Deep Convolutional Neural Networks, CVPR, 2015.
+  * Cong Zhang, Hongsheng Li, Xiaogang Wang, Xiaokang Yang, Cross-scene Crowd Counting via Deep Convolutional Neural Networks, CVPR, 2015.
 * 3D Shape Retrieval [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Sketch-Based_3D_Shape_2015_CVPR_paper.pdf)
 * 3D Shape Retrieval [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Sketch-Based_3D_Shape_2015_CVPR_paper.pdf)
-* Fang Wang, Le Kang, Yi Li, Sketch-based 3D Shape Retrieval using Convolutional Neural Networks, CVPR, 2015.
-* Generate image [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Dosovitskiy_Learning_to_Generate_2015_CVPR_paper.pdf)
-* Alexey Dosovitskiy, Jost Tobias Springenberg, Thomas Brox, Learning to Generate Chairs with Convolutional Neural Networks, CVPR, 2015.
+  * Fang Wang, Le Kang, Yi Li, Sketch-based 3D Shape Retrieval using Convolutional Neural Networks, CVPR, 2015.
+* Image Generation [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Dosovitskiy_Learning_to_Generate_2015_CVPR_paper.pdf)
+  * Alexey Dosovitskiy, Jost Tobias Springenberg, Thomas Brox, Learning to Generate Chairs with Convolutional Neural Networks, CVPR, 2015.
 * Weakly-supervised Classification
 * Weakly-supervised Classification
-* Samaneh Azadi, Jiashi Feng, Stefanie Jegelka, Trevor Darrell, "Auxiliary Image Regularization for Deep CNNs with Noisy Labels", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.07069v2.pdf)]
-* Weakly-supervised Object Detection
-* Generate Image with Adversarial Network
-* Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative Adversarial Networks, NIPS, 2014. [[Paper]](http://arxiv.org/abs/1406.2661)
-* Emily Denton, Soumith Chintala, Arthur Szlam, Rob Fergus, Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks, NIPS, 2015. [[Paper]](http://arxiv.org/abs/1506.05751)
-* Lucas Theis, Aäron van den Oord, Matthias Bethge, "A note on the evaluation of generative models", ICLR 2016. [[Paper](http://arxiv.org/abs/1511.01844)]
-* Zhenwen Dai, Andreas Damianou, Javier Gonzalez, Neil Lawrence, "Variationally Auto-Encoded Deep Gaussian Processes", ICLR 2016. [[Paper](http://arxiv.org/pdf/1511.06455v2.pdf)]
-* Elman Mansimov, Emilio Parisotto, Jimmy Ba, Ruslan Salakhutdinov, "Generating Images from Captions with Attention", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.02793v2.pdf)]
-* Jost Tobias Springenberg, "Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.06390v1.pdf)]
-* Harrison Edwards, Amos Storkey, "Censoring Representations with an Adversary", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.05897v3.pdf)]
-* Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, Shin Ishii, "Distributional Smoothing with Virtual Adversarial Training", ICLR 2016, [[Paper](http://arxiv.org/pdf/1507.00677v8.pdf)]
+  * Samaneh Azadi, Jiashi Feng, Stefanie Jegelka, Trevor Darrell, "Auxiliary Image Regularization for Deep CNNs with Noisy Labels", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.07069v2.pdf)]
+* Image Generation with Adversarial Network
+  * Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative Adversarial Networks, NIPS, 2014. [[Paper]](http://arxiv.org/abs/1406.2661)
+  * Emily Denton, Soumith Chintala, Arthur Szlam, Rob Fergus, Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks, NIPS, 2015. [[Paper]](http://arxiv.org/abs/1506.05751)
+  * Lucas Theis, Aäron van den Oord, Matthias Bethge, "A note on the evaluation of generative models", ICLR 2016. [[Paper](http://arxiv.org/abs/1511.01844)]
+  * Zhenwen Dai, Andreas Damianou, Javier Gonzalez, Neil Lawrence, "Variationally Auto-Encoded Deep Gaussian Processes", ICLR 2016. [[Paper](http://arxiv.org/pdf/1511.06455v2.pdf)]
+  * Elman Mansimov, Emilio Parisotto, Jimmy Ba, Ruslan Salakhutdinov, "Generating Images from Captions with Attention", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.02793v2.pdf)]
+  * Jost Tobias Springenberg, "Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.06390v1.pdf)]
+  * Harrison Edwards, Amos Storkey, "Censoring Representations with an Adversary", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.05897v3.pdf)]
+  * Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, Shin Ishii, "Distributional Smoothing with Virtual Adversarial Training", ICLR 2016, [[Paper](http://arxiv.org/pdf/1507.00677v8.pdf)]
 * Artistic Style [[Paper]](http://arxiv.org/abs/1508.06576) [[Code]](https://github.com/jcjohnson/neural-style)
 * Artistic Style [[Paper]](http://arxiv.org/abs/1508.06576) [[Code]](https://github.com/jcjohnson/neural-style)
-* Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, A Neural Algorithm of Artistic Style.
+  * Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, A Neural Algorithm of Artistic Style.
 * Human Gaze Estimation
 * Human Gaze Estimation
-* Xucong Zhang, Yusuke Sugano, Mario Fritz, Andreas Bulling, Appearance-Based Gaze Estimation in the Wild, CVPR, 2015. [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhang_Appearance-Based_Gaze_Estimation_2015_CVPR_paper.pdf) [[Website]](https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/gaze-based-human-computer-interaction/appearance-based-gaze-estimation-in-the-wild/)
+  * Xucong Zhang, Yusuke Sugano, Mario Fritz, Andreas Bulling, Appearance-Based Gaze Estimation in the Wild, CVPR, 2015. [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhang_Appearance-Based_Gaze_Estimation_2015_CVPR_paper.pdf) [[Website]](https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/gaze-based-human-computer-interaction/appearance-based-gaze-estimation-in-the-wild/)
 * Face Recognition
 * Face Recognition
-* Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, Lior Wolf, DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR, 2014. [[Paper]](https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf)
-* Yi Sun, Ding Liang, Xiaogang Wang, Xiaoou Tang, DeepID3: Face Recognition with Very Deep Neural Networks, 2015. [[Paper]](http://arxiv.org/abs/1502.00873)
-* Florian Schroff, Dmitry Kalenichenko, James Philbin, FaceNet: A Unified Embedding for Face Recognition and Clustering, CVPR, 2015. [[Paper]](http://arxiv.org/abs/1503.03832)
+  * Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, Lior Wolf, DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR, 2014. [[Paper]](https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf)
+  * Yi Sun, Ding Liang, Xiaogang Wang, Xiaoou Tang, DeepID3: Face Recognition with Very Deep Neural Networks, 2015. [[Paper]](http://arxiv.org/abs/1502.00873)
+  * Florian Schroff, Dmitry Kalenichenko, James Philbin, FaceNet: A Unified Embedding for Face Recognition and Clustering, CVPR, 2015. [[Paper]](http://arxiv.org/abs/1503.03832)
 * Facial Landmark Detection
 * Facial Landmark Detection
-* Yue Wu, Tal Hassner, KangGeon Kim, Gerard Medioni, Prem Natarajan, Facial Landmark Detection with Tweaked Convolutional Neural Networks, 2015. [[Paper]](http://arxiv.org/abs/1511.04031) [[Project]](http://www.openu.ac.il/home/hassner/projects/tcnn_landmarks/)
+  * Yue Wu, Tal Hassner, KangGeon Kim, Gerard Medioni, Prem Natarajan, Facial Landmark Detection with Tweaked Convolutional Neural Networks, 2015. [[Paper]](http://arxiv.org/abs/1511.04031) [[Project]](http://www.openu.ac.il/home/hassner/projects/tcnn_landmarks/)
 
 
 ## Courses
 ## Courses
 * Deep Vision
 * Deep Vision
-* [Stanford] [CS231n: Convolutional Neural Networks for Visual Recognition](http://cs231n.stanford.edu/)
-* [CUHK] [ELEG 5040: Advanced Topics in Signal Processing(Introduction to Deep Learning)](https://piazza.com/cuhk.edu.hk/spring2015/eleg5040/home)
+  * [Stanford] [CS231n: Convolutional Neural Networks for Visual Recognition](http://cs231n.stanford.edu/)
+  * [CUHK] [ELEG 5040: Advanced Topics in Signal Processing(Introduction to Deep Learning)](https://piazza.com/cuhk.edu.hk/spring2015/eleg5040/home)
 * More Deep Learning
 * More Deep Learning
-* [Stanford] [CS224d: Deep Learning for Natural Language Processing](http://cs224d.stanford.edu/)
-* [Oxford] [Deep Learning by Prof. Nando de Freitas](https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/)
-* [NYU] [Deep Learning by Prof. Yann LeCun](http://cilvr.cs.nyu.edu/doku.php?id=courses:deeplearning2014:start)
+  * [Stanford] [CS224d: Deep Learning for Natural Language Processing](http://cs224d.stanford.edu/)
+  * [Oxford] [Deep Learning by Prof. Nando de Freitas](https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/)
+  * [NYU] [Deep Learning by Prof. Yann LeCun](http://cilvr.cs.nyu.edu/doku.php?id=courses:deeplearning2014:start)
 
 
 ## Books
 ## Books
 * Free Online Books
 * Free Online Books
-* [Deep Learning by Yoshua Bengio, Ian Goodfellow and Aaron Courville](http://www.iro.umontreal.ca/~bengioy/dlbook/)
-* [Neural Networks and Deep Learning by Michael Nielsen](http://neuralnetworksanddeeplearning.com/)
-* [Deep Learning Tutorial by LISA lab, University of Montreal](http://deeplearning.net/tutorial/deeplearning.pdf)
+  * [Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville](http://www.iro.umontreal.ca/~bengioy/dlbook/)
+  * [Neural Networks and Deep Learning by Michael Nielsen](http://neuralnetworksanddeeplearning.com/)
+  * [Deep Learning Tutorial by LISA lab, University of Montreal](http://deeplearning.net/tutorial/deeplearning.pdf)
 
 
 ## Videos
 ## Videos
 * Talks
 * Talks
-* [Deep Learning, Self-Taught Learning and Unsupervised Feature Learning By Andrew Ng](https://www.youtube.com/watch?v=n1ViNeWhC24)
-* [Recent Developments in Deep Learning By Geoff Hinton](https://www.youtube.com/watch?v=vShMxxqtDDs)
-* [The Unreasonable Effectiveness of Deep Learning by Yann LeCun](https://www.youtube.com/watch?v=sc-KbuZqGkI)
-* [Deep Learning of Representations by Yoshua bengio](https://www.youtube.com/watch?v=4xsVFLnHC_0)
+  * [Deep Learning, Self-Taught Learning and Unsupervised Feature Learning By Andrew Ng](https://www.youtube.com/watch?v=n1ViNeWhC24)
+  * [Recent Developments in Deep Learning By Geoff Hinton](https://www.youtube.com/watch?v=vShMxxqtDDs)
+  * [The Unreasonable Effectiveness of Deep Learning by Yann LeCun](https://www.youtube.com/watch?v=sc-KbuZqGkI)
+  * [Deep Learning of Representations by Yoshua bengio](https://www.youtube.com/watch?v=4xsVFLnHC_0)
 * Courses
 * Courses
-* [Deep Learning Course – Nando de Freitas@Oxford](http://www.computervisiontalks.com/tag/deep-learning-course/)
+  * [Deep Learning Course – Nando de Freitas@Oxford](http://www.computervisiontalks.com/tag/deep-learning-course/)
 
 
 ## Software
 ## Software
 ### Framework
 ### Framework
@@ -376,17 +373,17 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-deep-visi
 
 
 ### Applications
 ### Applications
 * Adversarial Training
 * Adversarial Training
-* Code and hyperparameters for the paper "Generative Adversarial Networks" [[Web]](https://github.com/goodfeli/adversarial)
+  * Code and hyperparameters for the paper "Generative Adversarial Networks" [[Web]](https://github.com/goodfeli/adversarial)
 * Understanding and Visualizing
 * Understanding and Visualizing
-* Source code for "Understanding Deep Image Representations by Inverting Them," CVPR, 2015. [[Web]](https://github.com/aravindhm/deep-goggle)
+  * Source code for "Understanding Deep Image Representations by Inverting Them," CVPR, 2015. [[Web]](https://github.com/aravindhm/deep-goggle)
 * Semantic Segmentation
 * Semantic Segmentation
-* Source code for the paper "Rich feature hierarchies for accurate object detection and semantic segmentation," CVPR, 2014. [[Web]](https://github.com/rbgirshick/rcnn)
-* Source code for the paper "Fully Convolutional Networks for Semantic Segmentation," CVPR, 2015. [[Web]](https://github.com/longjon/caffe/tree/future)
+  * Source code for the paper "Rich feature hierarchies for accurate object detection and semantic segmentation," CVPR, 2014. [[Web]](https://github.com/rbgirshick/rcnn)
+  * Source code for the paper "Fully Convolutional Networks for Semantic Segmentation," CVPR, 2015. [[Web]](https://github.com/longjon/caffe/tree/future)
 * Super-Resolution
 * Super-Resolution
-* Image Super-Resolution for Anime-Style-Art [[Web]](https://github.com/nagadomi/waifu2x)
+  * Image Super-Resolution for Anime-Style-Art [[Web]](https://github.com/nagadomi/waifu2x)
 * Edge Detection
 * Edge Detection
-* Source code for the paper "DeepContour: A Deep Convolutional Feature Learned by Positive-Sharing Loss for Contour Detection," CVPR, 2015. [[Web]](https://github.com/shenwei1231/DeepContour)
-* Source code for the paper "Holistically-Nested Edge Detection", ICCV 2015. [[Web]](https://github.com/s9xie/hed)
+  * Source code for the paper "DeepContour: A Deep Convolutional Feature Learned by Positive-Sharing Loss for Contour Detection," CVPR, 2015. [[Web]](https://github.com/shenwei1231/DeepContour)
+  * Source code for the paper "Holistically-Nested Edge Detection", ICCV 2015. [[Web]](https://github.com/s9xie/hed)
 
 
 ## Tutorials
 ## Tutorials
 * [CVPR 2014] [Tutorial on Deep Learning in Computer Vision](https://sites.google.com/site/deeplearningcvpr2014/)
 * [CVPR 2014] [Tutorial on Deep Learning in Computer Vision](https://sites.google.com/site/deeplearningcvpr2014/)