Heesoo Myeong - darkelf 10 лет назад
Родитель
Сommit
76008baa4d
1 измененных файлов с 14 добавлено и 0 удалено
  1. 14 0
      README.md

+ 14 - 0
README.md

@@ -19,6 +19,7 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-deep-visi
   - [Image Captioning](#image-captioning)
   - [Low-Level Vision](#low-level-vision)
   - [Edge Detection](#edge-detection)
+  - [Semantic Segmentation](#semantic-segmentation)
  - [Courses](#courses)
  - [Software](#software)
  - [Tutorials](#tutorials)
@@ -77,6 +78,19 @@ NIPS 2012.
  * DeepContour [[Paper]](http://mc.eistar.net/UpLoadFiles/Papers/DeepContour_cvpr15.pdf)
   * Wei Shen, Xinggang Wang, Yan Wang, Xiang Bai, Zhijiang Zhang, DeepContour: A Deep Convolutional Feature Learned by Positive-Sharing Loss for Contour Detection, CVPR 2015.
 
+### Semantic Segmentation
+  * Learning Hierarchical Features for Scene Labeling [[Paper-ICML12]](http://yann.lecun.com/exdb/publis/pdf/farabet-icml-12.pdf) [[Paper-PAMI13]](http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf)
+   * Clement Farabet, Camille Couprie, Laurent Najman, Yann LeCun, Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers, ICML, 2012.
+   * Clement Farabet, Camille Couprie, Laurent Najman, Yann LeCun, Learning Hierarchical Features for Scene Labeling, PAMI, 2013.
+  * R-CNN [[Paper-CVPR14]](http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf) [[Paper-arXiv14]](http://arxiv.org/pdf/1311.2524v5)
+   * Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR, 2014.
+  * Fully Convolutional Networks for Semantic Segmentation [[Paper-CVPR15]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf) [[Paper-arXiv15]](http://arxiv.org/pdf/1411.4038v2)
+   * Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully Convolutional Networks for Semantic Segmentation, CVPR, 2015.
+  * Conditional Random Fields as Recurrent Neural Networks [[Paper]](http://arxiv.org/pdf/1502.03240v2)
+   * Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang Huang, Philip H. S. Torr, Conditional Random Fields as Recurrent Neural Networks, arXiv:1502.03240
+  * BoxSup [[Paper]](http://arxiv.org/pdf/1503.01640v2)
+   * Jifeng Dai, Kaiming He, Jian Sun, BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation, arXiv:1503.01640
+
 ## Courses
  * [Stanford] [CS231n: Convolutional Neural Networks for Visual Recognition](http://cs231n.stanford.edu/)
  * [CUHK] [ELEG 5040: Advanced Topics in Signal Processing(Introduction to Deep Learning)](https://piazza.com/cuhk.edu.hk/spring2015/eleg5040/home)