|
@@ -117,7 +117,7 @@ NIPS 2012.
|
|
|
* Mircea Cimpoi, Subhransu Maji, Andrea Vedaldi, Deep Filter Banks for Texture Recognition and Segmentation, CVPR, 2015.
|
|
|
|
|
|
### Understanding CNN
|
|
|
- * equivariance and equivalence of representations [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Lenc_Understanding_Image_Representations_2015_CVPR_paper.pdf)
|
|
|
+ * Equivariance and Equivalence of Representations [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Lenc_Understanding_Image_Representations_2015_CVPR_paper.pdf)
|
|
|
* Karel Lenc, Andrea Vedaldi, Understanding image representations by measuring their equivariance and equivalence, CVPR, 2015.
|
|
|
* Deep Neural Networks Are Easily Fooled [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Nguyen_Deep_Neural_Networks_2015_CVPR_paper.pdf)
|
|
|
* Anh Nguyen, Jason Yosinski, Jeff Clune, Deep Neural Networks are Easily Fooled:High Confidence Predictions for Unrecognizable Images, CVPR, 2015.
|