|
@@ -65,6 +65,7 @@
|
|
<li><a href="#imagenet-classification">ImageNet Classification</a></li>
|
|
<li><a href="#imagenet-classification">ImageNet Classification</a></li>
|
|
<li><a href="#object-detection">Object Detection</a></li>
|
|
<li><a href="#object-detection">Object Detection</a></li>
|
|
<li><a href="#object-tracking">Object Tracking</a></li>
|
|
<li><a href="#object-tracking">Object Tracking</a></li>
|
|
|
|
+<li><a href="#super-resolution">Super Resolution</a></li>
|
|
<li><a href="#low-level-vision">Low-Level Vision</a></li>
|
|
<li><a href="#low-level-vision">Low-Level Vision</a></li>
|
|
<li><a href="#edge-detection">Edge Detection</a></li>
|
|
<li><a href="#edge-detection">Edge Detection</a></li>
|
|
<li><a href="#semantic-segmentation">Semantic Segmentation</a></li>
|
|
<li><a href="#semantic-segmentation">Semantic Segmentation</a></li>
|
|
@@ -200,21 +201,46 @@
|
|
</ul>
|
|
</ul>
|
|
|
|
|
|
<h3>
|
|
<h3>
|
|
-<a id="low-level-vision" class="anchor" href="#low-level-vision" aria-hidden="true"><span class="octicon octicon-link"></span></a>Low-Level Vision</h3>
|
|
|
|
|
|
+<a id="super-resolution" class="anchor" href="#super-resolution" aria-hidden="true"><span class="octicon octicon-link"></span></a>Super-Resolution</h3>
|
|
|
|
|
|
<ul>
|
|
<ul>
|
|
-<li>Optical Flow (FlowNet) <a href="http://arxiv.org/pdf/1504.06852">[Paper]</a>
|
|
|
|
|
|
+<li>Super-Resolution (SRCNN) <a href="http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html">[Web]</a> <a href="http://personal.ie.cuhk.edu.hk/%7Eccloy/files/eccv_2014_deepresolution.pdf">[Paper-ECCV14]</a> <a href="http://arxiv.org/pdf/1501.00092.pdf">[Paper-arXiv15]</a>
|
|
|
|
|
|
<ul>
|
|
<ul>
|
|
-<li>Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner Hazırbaş, Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, Thomas Brox, FlowNet: Learning Optical Flow with Convolutional Networks, arXiv:1504.06852.</li>
|
|
|
|
|
|
+<li>Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Learning a Deep Convolutional Network for Image Super-Resolution, ECCV, 2014.</li>
|
|
|
|
+<li>Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Image Super-Resolution Using Deep Convolutional Networks, arXiv:1501.00092.</li>
|
|
</ul>
|
|
</ul>
|
|
</li>
|
|
</li>
|
|
-<li>Super-Resolution (SRCNN) <a href="http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html">[Web]</a> <a href="http://personal.ie.cuhk.edu.hk/%7Eccloy/files/eccv_2014_deepresolution.pdf">[Paper-ECCV14]</a> <a href="http://arxiv.org/pdf/1501.00092.pdf">[Paper-arXiv15]</a><a href="http://www.brml.org/uploads/tx_sibibtex/281.pdf">[Paper ICONIP-2014]</a>
|
|
|
|
|
|
+<li>Very Deep Super-Resolution
|
|
|
|
|
|
<ul>
|
|
<ul>
|
|
-<li>Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Learning a Deep Convolutional Network for Image Super-Resolution, ECCV, 2014.</li>
|
|
|
|
-<li>Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Image Super-Resolution Using Deep Convolutional Networks, arXiv:1501.00092.</li>
|
|
|
|
-<li>Osendorfer, Christian, Hubert Soyer, and Patrick van der Smagt, Image Super-Resolution with Fast Approximate Convolutional Sparse Coding, ICONIP, 2014. </li>
|
|
|
|
|
|
+<li>Jiwon Kim, Jung Kwon Lee, Kyoung Mu Lee, Accurate Image Super-Resolution Using Very Deep Convolutional Networks, arXiv:1511.04587, 2015. <a href="http://arxiv.org/abs/1511.04587">[Paper]</a>
|
|
|
|
+</li>
|
|
|
|
+</ul>
|
|
|
|
+</li>
|
|
|
|
+<li>Deeply-Recursive Convolutional Network
|
|
|
|
+
|
|
|
|
+<ul>
|
|
|
|
+<li>Jiwon Kim, Jung Kwon Lee, Kyoung Mu Lee, Deeply-Recursive Convolutional Network for Image Super-Resolution, arXiv:1511.04491, 2015. <a href="http://arxiv.org/abs/1511.04491">[Paper]</a> </li>
|
|
|
|
+</ul>
|
|
|
|
+</li>
|
|
|
|
+<li>Others
|
|
|
|
+
|
|
|
|
+<ul>
|
|
|
|
+<li>Osendorfer, Christian, Hubert Soyer, and Patrick van der Smagt, Image Super-Resolution with Fast Approximate Convolutional Sparse Coding, ICONIP, 2014. <a href="http://www.brml.org/uploads/tx_sibibtex/281.pdf">[Paper ICONIP-2014]</a>
|
|
|
|
+</li>
|
|
|
|
+</ul>
|
|
|
|
+</li>
|
|
|
|
+</ul>
|
|
|
|
+
|
|
|
|
+<h3>
|
|
|
|
+<a id="low-level-vision" class="anchor" href="#low-level-vision" aria-hidden="true"><span class="octicon octicon-link"></span></a>Low-Level Vision</h3>
|
|
|
|
+
|
|
|
|
+<ul>
|
|
|
|
+<li>Optical Flow (FlowNet) <a href="http://arxiv.org/pdf/1504.06852">[Paper]</a>
|
|
|
|
+
|
|
|
|
+<ul>
|
|
|
|
+<li>Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner Hazırbaş, Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, Thomas Brox, FlowNet: Learning Optical Flow with Convolutional Networks, arXiv:1504.06852.</li>
|
|
</ul>
|
|
</ul>
|
|
</li>
|
|
</li>
|
|
<li>Compression Artifacts Reduction <a href="http://arxiv.org/pdf/1504.06993">[Paper-arXiv15]</a>
|
|
<li>Compression Artifacts Reduction <a href="http://arxiv.org/pdf/1504.06993">[Paper-arXiv15]</a>
|