Bläddra i källkod

Added Image Captioning

Original resources from https://pdollar.wordpress.com/2015/01/21/image-captioning/
Jiwon Kim 10 år sedan
förälder
incheckning
bf0199dc52
1 ändrade filer med 11 tillägg och 1 borttagningar
  1. 11 1
      README.md

+ 11 - 1
README.md

@@ -6,7 +6,7 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-deep-visi
 
 ## Papers
 
-### Low-Level Vision
+### Image Restoration
 #### Super-Resolution
  * SRCNN [[Web]](http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html) [[Paper-ECCV14]](http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepresolution.pdf) [[Paper-arXiv15]](http://arxiv.org/pdf/1501.00092v1.pdf)
     * Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Learning a Deep Convolutional Network for Image Super-Resolution, in ECCV 2014
@@ -15,3 +15,13 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-deep-visi
 #### Compression Artifacts Reduction
   * Compression Artifacts Reduction by a Deep Convolutional Network [[Paper-arXiv15]](http://arxiv.org/pdf/1504.06993v1)
     * Chao Dong, Yubin Deng, Chen Change Loy, Xiaoou Tang, Compression Artifacts Reduction by a Deep Convolutional Network, arXiv:1504.06993
+
+### Image Captioning 
+Baidu/UCLA: Explain Images with Multimodal Recurrent Neural Networks(http://arxiv.org/abs/1410.1090)
+Toronto: Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models(http://arxiv.org/abs/1411.2539)
+Berkeley: Long-term Recurrent Convolutional Networks for Visual Recognition and Description(http://arxiv.org/abs/1411.4389)
+Google: Show and Tell: A Neural Image Caption Generator(http://arxiv.org/abs/1411.4555)
+Stanford: Deep Visual-Semantic Alignments for Generating Image Description(http://cs.stanford.edu/people/karpathy/deepimagesent/)
+UML/UT:  Translating Videos to Natural Language Using Deep Recurrent Neural Networks(http://arxiv.org/abs/1412.4729)
+Microsoft/CMU:  Learning a Recurrent Visual Representation for Image Caption Generation(http://arxiv.org/abs/1411.5654)
+Microsoft:  From Captions to Visual Concepts and Back(http://arxiv.org/abs/1411.4952)