| 
					
				 | 
			
			
				@@ -86,6 +86,11 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-deep-visi 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				    * Sean Bell, C. Lawrence Zitnick, Kavita Bala, Ross Girshick, Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				   * Deep Residual Network (Current State-of-the-Art) [[Paper]](http://arxiv.org/abs/1512.03385) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				    * Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  * Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning [[Paper]] (http://arxiv.org/pdf/1503.00949.pdf) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+### Video Classification 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  * Nicolas Ballas, Li Yao, Pal Chris, Aaron Courville, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016. [[Paper](http://arxiv.org/pdf/1511.06432v4.pdf)] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  * Michael Mathieu, camille couprie, Yann Lecun, "Deep Multi Scale Video Prediction Beyond Mean Square Error", ICLR 2016. [[Paper](http://arxiv.org/pdf/1511.05440v6.pdf)] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 ### Object Tracking 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  * Seunghoon Hong, Tackgeun You, Suha Kwak, Bohyung Han, Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network, arXiv:1502.06796. [[Paper]](http://arxiv.org/pdf/1502.06796) 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -175,6 +180,10 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-deep-visi 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				   * POSTECH 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				    * Seunghoon Hong,	Junhyuk Oh,	Bohyung Han, and	Honglak Lee, Learning Transferrable Knowledge for Semantic Segmentation  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 with Deep Convolutional Neural Network, arXiv:1512.07928 [[Paper](http://arxiv.org/pdf/1512.07928.pdf)] [[Project Page](http://cvlab.postech.ac.kr/research/transfernet/)] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  * Princeton 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   * Fisher Yu, Vladlen Koltun, "Multi-Scale Context Aggregation by Dilated Convolutions", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.07122v2.pdf)] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  * INRIA 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   * Iasonas Kokkinos, "Pusing the Boundaries of Boundary Detection Using deep Learning", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.07386v2.pdf)] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 ### Visual Attention and Saliency 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -302,9 +311,18 @@ with Dynamic Parameter Prediction, arXiv:1511.05765 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				    * Fang Wang, Le Kang, Yi Li, Sketch-based 3D Shape Retrieval using Convolutional Neural Networks, CVPR, 2015. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				   * Generate image [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Dosovitskiy_Learning_to_Generate_2015_CVPR_paper.pdf) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				    * Alexey Dosovitskiy, Jost Tobias Springenberg, Thomas Brox, Learning to Generate Chairs with Convolutional Neural Networks, CVPR, 2015. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  * Weakly-supervised Classification 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   * Samaneh Azadi, Jiashi Feng, Stefanie Jegelka, Trevor Darrell, "Auxiliary Image Regularization for Deep CNNs with Noisy Labels", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.07069v2.pdf)] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  * Weakly-supervised Object Detection 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				   * Generate Image with Adversarial Network 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				    * Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative Adversarial Networks, NIPS, 2014. [[Paper]](http://arxiv.org/abs/1406.2661) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				    * Emily Denton, Soumith Chintala, Arthur Szlam, Rob Fergus, Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks, NIPS, 2015. [[Paper]](http://arxiv.org/abs/1506.05751) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   * Lucas Theis, Aäron van den Oord, Matthias Bethge, "A note on the evaluation of generative models", ICLR 2016. [[Paper](http://arxiv.org/abs/1511.01844)] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   * Zhenwen Dai, Andreas Damianou, Javier Gonzalez, Neil Lawrence, "Variationally Auto-Encoded Deep Gaussian Processes", ICLR 2016. [[Paper](http://arxiv.org/pdf/1511.06455v2.pdf)] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   * Elman Mansimov, Emilio Parisotto, Jimmy Ba, Ruslan Salakhutdinov, "Generating Images from Captions with Attention", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.02793v2.pdf)] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   * Jost Tobias Springenberg, "Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.06390v1.pdf)] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   * Harrison Edwards, Amos Storkey, "Censoring Representations with an Adversary", ICLR 2016, [[Paper](http://arxiv.org/pdf/1511.05897v3.pdf)] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   * Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, Shin Ishii, "Distributional Smoothing with Virtual Adversarial Training", ICLR 2016, [[Paper](http://arxiv.org/pdf/1507.00677v8.pdf)] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				   * Artistic Style [[Paper]](http://arxiv.org/pdf/1506.04878v3) [[Code]](https://github.com/jcjohnson/neural-style) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				    * Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, A Neural Algorithm of Artistic Style. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				   * Human Gaze Estimation 
			 |