# Awesome Deep Vision A curated list of deep learning resources for computer vision, inspired by [awesome-php](https://github.com/ziadoz/awesome-php) and [awesome-computer-vision](https://github.com/jbhuang0604/awesome-computer-vision). ## Contributing Please feel free to [pull requests](https://github.com/kjw0612/awesome-deep-vision/pulls) or email jiwon@alum.mit.edu to add links. ## Papers ### Image Restoration #### Super-Resolution * SRCNN [[Web]](http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html) [[Paper-ECCV14]](http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepresolution.pdf) [[Paper-arXiv15]](http://arxiv.org/pdf/1501.00092v1.pdf) * Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Learning a Deep Convolutional Network for Image Super-Resolution, in ECCV 2014 * Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. Image Super-Resolution Using Deep Convolutional Networks, arXiv:1501.00092 (2015) #### Compression Artifacts Reduction * Compression Artifacts Reduction by a Deep Convolutional Network [[Paper-arXiv15]](http://arxiv.org/pdf/1504.06993v1) * Chao Dong, Yubin Deng, Chen Change Loy, Xiaoou Tang, Compression Artifacts Reduction by a Deep Convolutional Network, arXiv:1504.06993 ### Image Captioning * Baidu/UCLA: Explain Images with Multimodal Recurrent Neural Networks(http://arxiv.org/abs/1410.1090) * Toronto: Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models(http://arxiv.org/abs/1411.2539) * Berkeley: Long-term Recurrent Convolutional Networks for Visual Recognition and Description(http://arxiv.org/abs/1411.4389) * Google: Show and Tell: A Neural Image Caption Generator(http://arxiv.org/abs/1411.4555) * Stanford: Deep Visual-Semantic Alignments for Generating Image Description(http://cs.stanford.edu/people/karpathy/deepimagesent/) * UML/UT: Translating Videos to Natural Language Using Deep Recurrent Neural Networks(http://arxiv.org/abs/1412.4729) * Microsoft/CMU: Learning a Recurrent Visual Representation for Image Caption Generation(http://arxiv.org/abs/1411.5654) * Microsoft: From Captions to Visual Concepts and Back(http://arxiv.org/abs/1411.4952)