Nav apraksta

Jiwon Kim 4bb77168fd Added section 'courses' 10 gadi atpakaļ
README.md 4bb77168fd Added section 'courses' 10 gadi atpakaļ

README.md

Awesome Deep Vision

A curated list of deep learning resources for computer vision, inspired by awesome-php and awesome-computer-vision.

Contributing

Please feel free to pull requests or email jiwon@alum.mit.edu to add links.

Table of Contents

Papers

ImageNet Classification

  • Microsoft (PReLu/Weight Initialization) [Paper]
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, arXiv:1502.01852.
  • Batch Normalization [Paper]
    • Sergey Ioffe, Christian Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv:1502.03167.
  • GoogLeNet [Paper]
    • Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, CVPR 2015.
  • VGG-Net [Web] [Paper]
    • Karen Simonyan and Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Visual Recognition, ICLR 2015.
  • AlexNet [Paper]
    • Krizhevsky, A., Sutskever, I. and Hinton, G. E, ImageNet Classification with Deep Convolutional Neural Networks NIPS 2012.

Image Captioning

  • Baidu/UCLA [Paper]
    • Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan L. Yuille, Explain Images with Multimodal Recurrent Neural Networks, arXiv:1410.1090 (2014).
  • Toronto [Paper]
    • Ryan Kiros, Ruslan Salakhutdinov, Richard S. Zemel, Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, arXiv:1411.2539 (2014).
  • Berkeley [Paper]
    • Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, Trevor Darrell, Long-term Recurrent Convolutional Networks for Visual Recognition and Description, arXiv:1411.4389 (2014).
  • Google [Paper]
    • Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan, Show and Tell: A Neural Image Caption Generator, arXiv:1411.4555 (2014).
  • Stanford [Web] [Paper]
    • Andrej Karpathy, Li Fei-Fei, Deep Visual-Semantic Alignments for Generating Image Description, CVPR (2015).
  • UML/UT [Paper]
    • Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko, Translating Videos to Natural Language Using Deep Recurrent Neural Networks, NAACL-HLT 2015.
  • Microsoft/CMU [Paper]
    • Xinlei Chen, C. Lawrence Zitnick, Learning a Recurrent Visual Representation for Image Caption Generation, arXiv:1411.5654.
  • Microsoft [Paper]
    • Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh Srivastava, Li Deng, Piotr Dollár, Jianfeng Gao, Xiaodong He, Margaret Mitchell, John C. Platt, C. Lawrence Zitnick, Geoffrey Zweig, From Captions to Visual Concepts and Back, CVPR 2015.

Low-Level Vision

  • Super-Resolution (SRCNN) [Web] [Paper-ECCV14] [Paper-arXiv15]
    • Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Learning a Deep Convolutional Network for Image Super-Resolution, in ECCV 2014
    • Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. Image Super-Resolution Using Deep Convolutional Networks, arXiv:1501.00092 (2015)
  • Compression Artifacts Reduction [Paper-arXiv15]
    • Chao Dong, Yubin Deng, Chen Change Loy, Xiaoou Tang, Compression Artifacts Reduction by a Deep Convolutional Network, arXiv:1504.06993
  • Non-Uniform Motion Blur Removal [Paper]
    • Jian Sun, Wenfei Cao, Zongben Xu, Jean Ponce, Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal, CVPR 2015.
  • Image Deconvolution [Web] [Paper]
    • Li Xu, Jimmy SJ. Ren, Ce Liu, Jiaya Jia, "Deep Convolutional Neural Network for Image Deconvolution" Advances in Neural Information Processing Systems (NIPS), 2014.

Courses

Software

  • Caffe: Deep learning framework by the BVLC [Web]
  • MatConvNet: CNNs for MATLAB [Web]

Tutorials