|
@@ -0,0 +1,620 @@
|
|
|
+{
|
|
|
+ "cells": [
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:03:05.877741Z",
|
|
|
+ "start_time": "2018-12-28T21:03:04.233205Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "# Data science imports\n",
|
|
|
+ "import pandas as pd\n",
|
|
|
+ "import numpy as np\n",
|
|
|
+ "\n",
|
|
|
+ "%load_ext autoreload\n",
|
|
|
+ "%autoreload 2\n",
|
|
|
+ "\n",
|
|
|
+ "import sys\n",
|
|
|
+ "sys.path.append('../..')\n",
|
|
|
+ "\n",
|
|
|
+ "# Options for pandas\n",
|
|
|
+ "pd.options.display.max_columns = 20\n",
|
|
|
+ "\n",
|
|
|
+ "# Display all cell outputs\n",
|
|
|
+ "from IPython.core.interactiveshell import InteractiveShell\n",
|
|
|
+ "InteractiveShell.ast_node_interactivity = 'all'\n",
|
|
|
+ "\n",
|
|
|
+ "import plotly.plotly as py\n",
|
|
|
+ "import plotly.graph_objs as go\n",
|
|
|
+ "import cufflinks\n",
|
|
|
+ "cufflinks.go_offline()\n"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:03:51.548602Z",
|
|
|
+ "start_time": "2018-12-28T21:03:51.518253Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "def calculate_multipliers(ci):\n",
|
|
|
+ " z = (1-ci)/2\n",
|
|
|
+ " return z/(1-z), (1-z)/z"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:04:14.255563Z",
|
|
|
+ "start_time": "2018-12-28T21:04:14.223267Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "def calculate_lifetime(t_current, ci):\n",
|
|
|
+ " low, high = calculate_multipliers(ci)\n",
|
|
|
+ " return t_current*low, t_current*high"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:15:08.428012Z",
|
|
|
+ "start_time": "2018-12-28T21:15:08.397695Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "from scipy.stats import norm"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T23:03:35.984174Z",
|
|
|
+ "start_time": "2018-12-28T23:03:35.940951Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "n = 1000\n",
|
|
|
+ "min_ = -3\n",
|
|
|
+ "max_ = 3\n",
|
|
|
+ "x = np.linspace(min_, max_, num=n)\n",
|
|
|
+ "sd = np.sqrt(1.191) * np.log10(39) / 1.96\n",
|
|
|
+ "y = norm.pdf(x, loc=0, scale=sd)"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T23:04:01.573628Z",
|
|
|
+ "start_time": "2018-12-28T23:04:01.526883Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "y[:235].sum()/y.sum()"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T23:04:08.543032Z",
|
|
|
+ "start_time": "2018-12-28T23:04:08.499508Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "y[765:].sum()/y.sum()"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T23:03:52.054892Z",
|
|
|
+ "start_time": "2018-12-28T23:03:52.011720Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "np.where(x>np.log10(39))[0].min()"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T23:03:52.888799Z",
|
|
|
+ "start_time": "2018-12-28T23:03:52.842509Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "np.where(x<np.log10(1/39))[0].max()"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T23:05:37.618842Z",
|
|
|
+ "start_time": "2018-12-28T23:05:37.472552Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "df=pd.DataFrame({'x': np.power(10, x), 'y': y})\n",
|
|
|
+ "df.iplot(x='x', y='y', mode='markers',) \n",
|
|
|
+ " # layout=dict(xaxis=dict(type='log')))\n",
|
|
|
+ "\n"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": []
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T22:55:12.761764Z",
|
|
|
+ "start_time": "2018-12-28T22:55:12.619914Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "df=pd.DataFrame({'x': x, 'y': y})\n",
|
|
|
+ "df.iplot(x='x', y='y', mode='markers',) # markers=dict(size=2))"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:32:03.344315Z",
|
|
|
+ "start_time": "2018-12-28T21:32:03.287707Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "x = np.logspace(-4, 4, num=1000)\n",
|
|
|
+ "y = norm.pdf(np.log10(x), loc=0, scale=0.62)\n",
|
|
|
+ "y[np.where(x>(1/39))[0].min()]\n",
|
|
|
+ "y[np.where(x>(39))[0].min()]"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:35:33.029430Z",
|
|
|
+ "start_time": "2018-12-28T21:35:32.982628Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "len(y)"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:35:28.751208Z",
|
|
|
+ "start_time": "2018-12-28T21:35:28.703829Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "len(y[x>39])"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:38:00.440263Z",
|
|
|
+ "start_time": "2018-12-28T21:38:00.392276Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "38 * 10 / 1.96"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:34:47.914309Z",
|
|
|
+ "start_time": "2018-12-28T21:34:47.855029Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "y[np.all]"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:23:02.385014Z",
|
|
|
+ "start_time": "2018-12-28T21:23:02.337434Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "from plotly.offline import iplot"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:31:47.527820Z",
|
|
|
+ "start_time": "2018-12-28T21:31:47.407177Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "data = go.Scatter(x=x, y=y, mode='markers')\n",
|
|
|
+ "figure = go.Figure(data=[data], layout=go.Layout(xaxis=dict(type='log')))\n",
|
|
|
+ "iplot(figure)"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:05:15.665411Z",
|
|
|
+ "start_time": "2018-12-28T21:05:15.630761Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "from datetime import datetime, timedelta\n",
|
|
|
+ "now = datetime.now()"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:07:25.075735Z",
|
|
|
+ "start_time": "2018-12-28T21:07:25.043317Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "low, high = calculate_lifetime(6, 0.95)\n",
|
|
|
+ "print(f'Data science will last until {(now + timedelta(days=low*365)).date()} at the min to {(now + timedelta(days=high*365)).date()} at the max.')"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:07:50.441528Z",
|
|
|
+ "start_time": "2018-12-28T21:07:50.405146Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "low, high = calculate_lifetime(2000, 0.95)\n",
|
|
|
+ "print(f'Medicine will last until {(now + timedelta(days=low*365)).date()} at the min to {(now + timedelta(days=high*365)).date()} at the max.')"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:08:00.082829Z",
|
|
|
+ "start_time": "2018-12-28T21:08:00.051234Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "high"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:11:25.060640Z",
|
|
|
+ "start_time": "2018-12-28T21:11:25.028286Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "pd.Timedelta(days=1e5).total_seconds()/(3600 )"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:12:22.929240Z",
|
|
|
+ "start_time": "2018-12-28T21:12:22.899705Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "f'{timedelta(days=9e8).total_seconds() / (3600 * 24 * 365):,.0f} years'"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-28T21:06:34.707349Z",
|
|
|
+ "start_time": "2018-12-28T21:06:34.674254Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "timedelta(days=10.5)"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-29T00:12:55.099492Z",
|
|
|
+ "start_time": "2018-12-29T00:12:55.051164Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "x = np.linspace(0, 100, num = 1000)\n",
|
|
|
+ "y = 1 / (x + 1)\n",
|
|
|
+ "max(y)"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-29T00:12:55.770587Z",
|
|
|
+ "start_time": "2018-12-29T00:12:55.724467Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "min(y)"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-29T00:12:56.262965Z",
|
|
|
+ "start_time": "2018-12-29T00:12:56.211077Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "import seaborn as sns"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-29T03:22:16.189739Z",
|
|
|
+ "start_time": "2018-12-29T03:22:16.146082Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "from scipy import stats\n",
|
|
|
+ "x = np.logspace(-3, 3, num=100)\n",
|
|
|
+ "y = norm.pdf(np.log10(x), loc=0, scale=0.6)"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": []
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-29T03:37:13.948794Z",
|
|
|
+ "start_time": "2018-12-29T03:37:13.888006Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "t_c = 5\n",
|
|
|
+ "df = pd.DataFrame({'x': x * t_c, 'y': y})\n",
|
|
|
+ "df.iplot(x='x', y='y', layout=dict(xaxis=dict(type='log', tickfont=dict(size=16),\n",
|
|
|
+ " title=r'$t_{future} \\text{ (years)}$'),\n",
|
|
|
+ " yaxis=dict(title='probability'), title = 'PDF of Years',\n",
|
|
|
+ " shapes=[dict(type='line',\n",
|
|
|
+ " x0 = 39 * t_c, x1= 39*t_c, \n",
|
|
|
+ " y0 = 0, y1=1,\n",
|
|
|
+ " line=dict(color='black', dash='dash')),\n",
|
|
|
+ " dict(type='line',\n",
|
|
|
+ " x0 = (1/39)*t_c, x1= (1/39)*t_c, \n",
|
|
|
+ " y0 = 0, y1=1, name='39',\n",
|
|
|
+ " line=dict(color='black', dash='dash'))]))"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-29T03:34:44.809230Z",
|
|
|
+ "start_time": "2018-12-29T03:34:44.750366Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "df = pd.DataFrame({'x': x, 'y': y})\n",
|
|
|
+ "df.iplot(x='x', y='y', layout=dict(xaxis=dict(type='log', tickfont=dict(size=16),\n",
|
|
|
+ " title=r'$\\frac{t_{future}}{t_{currrent}}$'),\n",
|
|
|
+ " yaxis=dict(title='probability'), title = 'PDF',\n",
|
|
|
+ " shapes=[dict(type='line',\n",
|
|
|
+ " x0 = 39, x1= 39, \n",
|
|
|
+ " y0 = 0, y1=1,\n",
|
|
|
+ " line=dict(color='black', dash='dash')),\n",
|
|
|
+ " dict(type='line',\n",
|
|
|
+ " x0 = 1/39, x1= 1/39, \n",
|
|
|
+ " y0 = 0, y1=1, name='39',\n",
|
|
|
+ " line=dict(color='black', dash='dash'))]))"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-29T00:13:09.543405Z",
|
|
|
+ "start_time": "2018-12-29T00:13:09.378060Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "import matplotlib.pyplot as plt\n",
|
|
|
+ "plt.plot(1/y)"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "ExecuteTime": {
|
|
|
+ "end_time": "2018-12-29T00:12:58.248514Z",
|
|
|
+ "start_time": "2018-12-29T00:12:58.079774Z"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "sns.kdeplot(np.log10(y))"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": []
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "metadata": {
|
|
|
+ "hide_input": false,
|
|
|
+ "kernelspec": {
|
|
|
+ "display_name": "Python 3",
|
|
|
+ "language": "python",
|
|
|
+ "name": "python3"
|
|
|
+ },
|
|
|
+ "language_info": {
|
|
|
+ "codemirror_mode": {
|
|
|
+ "name": "ipython",
|
|
|
+ "version": 3
|
|
|
+ },
|
|
|
+ "file_extension": ".py",
|
|
|
+ "mimetype": "text/x-python",
|
|
|
+ "name": "python",
|
|
|
+ "nbconvert_exporter": "python",
|
|
|
+ "pygments_lexer": "ipython3",
|
|
|
+ "version": "3.6.5"
|
|
|
+ },
|
|
|
+ "toc": {
|
|
|
+ "base_numbering": 1,
|
|
|
+ "nav_menu": {},
|
|
|
+ "number_sections": true,
|
|
|
+ "sideBar": true,
|
|
|
+ "skip_h1_title": false,
|
|
|
+ "title_cell": "Table of Contents",
|
|
|
+ "title_sidebar": "Contents",
|
|
|
+ "toc_cell": false,
|
|
|
+ "toc_position": {},
|
|
|
+ "toc_section_display": true,
|
|
|
+ "toc_window_display": false
|
|
|
+ },
|
|
|
+ "varInspector": {
|
|
|
+ "cols": {
|
|
|
+ "lenName": 16,
|
|
|
+ "lenType": 16,
|
|
|
+ "lenVar": 40
|
|
|
+ },
|
|
|
+ "kernels_config": {
|
|
|
+ "python": {
|
|
|
+ "delete_cmd_postfix": "",
|
|
|
+ "delete_cmd_prefix": "del ",
|
|
|
+ "library": "var_list.py",
|
|
|
+ "varRefreshCmd": "print(var_dic_list())"
|
|
|
+ },
|
|
|
+ "r": {
|
|
|
+ "delete_cmd_postfix": ") ",
|
|
|
+ "delete_cmd_prefix": "rm(",
|
|
|
+ "library": "var_list.r",
|
|
|
+ "varRefreshCmd": "cat(var_dic_list()) "
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "types_to_exclude": [
|
|
|
+ "module",
|
|
|
+ "function",
|
|
|
+ "builtin_function_or_method",
|
|
|
+ "instance",
|
|
|
+ "_Feature"
|
|
|
+ ],
|
|
|
+ "window_display": false
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "nbformat": 4,
|
|
|
+ "nbformat_minor": 2
|
|
|
+}
|