{ "cells": [ { "cell_type": "markdown", "metadata": { "toc": true }, "source": [ "
\n", " | claps | \n", "days_since_publication | \n", "fans | \n", "num_responses | \n", "publication | \n", "published_date | \n", "read_ratio | \n", "read_time | \n", "reads | \n", "started_date | \n", "... | \n", "type | \n", "views | \n", "word_count | \n", "claps_per_word | \n", "editing_days | \n", "<tag>Education | \n", "<tag>Data Science | \n", "<tag>Towards Data Science | \n", "<tag>Machine Learning | \n", "<tag>Python | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
116 | \n", "2 | \n", "569.141963 | \n", "2 | \n", "0 | \n", "None | \n", "2017-06-10 14:25:00 | \n", "41.61 | \n", "7 | \n", "67 | \n", "2017-06-10 14:24:00 | \n", "... | \n", "published | \n", "161 | \n", "1859 | \n", "0.001076 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
114 | \n", "18 | \n", "561.824008 | \n", "3 | \n", "0 | \n", "None | \n", "2017-06-17 22:02:00 | \n", "33.12 | \n", "14 | \n", "52 | \n", "2017-06-17 22:02:00 | \n", "... | \n", "published | \n", "157 | \n", "3891 | \n", "0.004626 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
117 | \n", "50 | \n", "549.204130 | \n", "19 | \n", "0 | \n", "None | \n", "2017-06-30 12:55:00 | \n", "20.29 | \n", "42 | \n", "213 | \n", "2017-06-30 12:00:00 | \n", "... | \n", "published | \n", "1050 | \n", "12025 | \n", "0.004158 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "1 | \n", "
111 | \n", "0 | \n", "548.361527 | \n", "0 | \n", "0 | \n", "None | \n", "2017-07-01 09:08:00 | \n", "36.54 | \n", "9 | \n", "19 | \n", "2017-06-30 18:21:00 | \n", "... | \n", "published | \n", "52 | \n", "2533 | \n", "0.000000 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
109 | \n", "0 | \n", "544.373876 | \n", "0 | \n", "0 | \n", "None | \n", "2017-07-05 08:51:00 | \n", "8.93 | \n", "14 | \n", "5 | \n", "2017-07-03 20:18:00 | \n", "... | \n", "published | \n", "56 | \n", "3892 | \n", "0.000000 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
5 rows × 24 columns
\n", "\n", " | claps | \n", "days_since_publication | \n", "fans | \n", "num_responses | \n", "read_ratio | \n", "read_time | \n", "reads | \n", "title_word_count | \n", "views | \n", "word_count | \n", "claps_per_word | \n", "editing_days | \n", "<tag>Education | \n", "<tag>Data Science | \n", "<tag>Towards Data Science | \n", "<tag>Machine Learning | \n", "<tag>Python | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
claps | \n", "1.00 | \n", "-0.13 | \n", "0.99 | \n", "0.89 | \n", "-0.05 | \n", "-0.11 | \n", "0.75 | \n", "0.09 | \n", "0.73 | \n", "-0.12 | \n", "0.76 | \n", "-0.01 | \n", "0.27 | \n", "0.36 | \n", "0.53 | \n", "0.18 | \n", "0.26 | \n", "
days_since_publication | \n", "-0.13 | \n", "1.00 | \n", "-0.14 | \n", "-0.08 | \n", "0.03 | \n", "0.36 | \n", "0.05 | \n", "-0.31 | \n", "0.04 | \n", "0.33 | \n", "-0.08 | \n", "-0.11 | \n", "-0.76 | \n", "-0.43 | \n", "-0.39 | \n", "-0.11 | \n", "0.04 | \n", "
fans | \n", "0.99 | \n", "-0.14 | \n", "1.00 | \n", "0.87 | \n", "-0.07 | \n", "-0.11 | \n", "0.76 | \n", "0.10 | \n", "0.75 | \n", "-0.12 | \n", "0.73 | \n", "-0.00 | \n", "0.27 | \n", "0.37 | \n", "0.54 | \n", "0.20 | \n", "0.26 | \n", "
num_responses | \n", "0.89 | \n", "-0.08 | \n", "0.87 | \n", "1.00 | \n", "0.05 | \n", "-0.14 | \n", "0.76 | \n", "0.03 | \n", "0.69 | \n", "-0.15 | \n", "0.80 | \n", "-0.05 | \n", "0.19 | \n", "0.33 | \n", "0.50 | \n", "0.09 | \n", "0.27 | \n", "
read_ratio | \n", "-0.05 | \n", "0.03 | \n", "-0.07 | \n", "0.05 | \n", "1.00 | \n", "-0.60 | \n", "-0.02 | \n", "0.01 | \n", "-0.20 | \n", "-0.53 | \n", "0.27 | \n", "0.10 | \n", "0.09 | \n", "-0.02 | \n", "-0.12 | \n", "-0.34 | \n", "-0.27 | \n", "
read_time | \n", "-0.11 | \n", "0.36 | \n", "-0.11 | \n", "-0.14 | \n", "-0.60 | \n", "1.00 | \n", "-0.08 | \n", "-0.13 | \n", "0.03 | \n", "0.96 | \n", "-0.24 | \n", "-0.06 | \n", "-0.42 | \n", "-0.22 | \n", "-0.15 | \n", "0.19 | \n", "0.26 | \n", "
reads | \n", "0.75 | \n", "0.05 | \n", "0.76 | \n", "0.76 | \n", "-0.02 | \n", "-0.08 | \n", "1.00 | \n", "0.01 | \n", "0.93 | \n", "-0.11 | \n", "0.53 | \n", "-0.08 | \n", "-0.01 | \n", "0.36 | \n", "0.32 | \n", "0.22 | \n", "0.37 | \n", "
title_word_count | \n", "0.09 | \n", "-0.31 | \n", "0.10 | \n", "0.03 | \n", "0.01 | \n", "-0.13 | \n", "0.01 | \n", "1.00 | \n", "0.01 | \n", "-0.14 | \n", "0.09 | \n", "-0.02 | \n", "0.33 | \n", "0.13 | \n", "0.32 | \n", "0.27 | \n", "0.24 | \n", "
views | \n", "0.73 | \n", "0.04 | \n", "0.75 | \n", "0.69 | \n", "-0.20 | \n", "0.03 | \n", "0.93 | \n", "0.01 | \n", "1.00 | \n", "-0.01 | \n", "0.36 | \n", "-0.06 | \n", "-0.03 | \n", "0.33 | \n", "0.31 | \n", "0.31 | \n", "0.41 | \n", "
word_count | \n", "-0.12 | \n", "0.33 | \n", "-0.12 | \n", "-0.15 | \n", "-0.53 | \n", "0.96 | \n", "-0.11 | \n", "-0.14 | \n", "-0.01 | \n", "1.00 | \n", "-0.23 | \n", "0.00 | \n", "-0.38 | \n", "-0.21 | \n", "-0.14 | \n", "0.16 | \n", "0.17 | \n", "
claps_per_word | \n", "0.76 | \n", "-0.08 | \n", "0.73 | \n", "0.80 | \n", "0.27 | \n", "-0.24 | \n", "0.53 | \n", "0.09 | \n", "0.36 | \n", "-0.23 | \n", "1.00 | \n", "-0.06 | \n", "0.24 | \n", "0.27 | \n", "0.35 | \n", "-0.03 | \n", "0.18 | \n", "
editing_days | \n", "-0.01 | \n", "-0.11 | \n", "-0.00 | \n", "-0.05 | \n", "0.10 | \n", "-0.06 | \n", "-0.08 | \n", "-0.02 | \n", "-0.06 | \n", "0.00 | \n", "-0.06 | \n", "1.00 | \n", "0.20 | \n", "-0.00 | \n", "0.12 | \n", "0.05 | \n", "-0.05 | \n", "
<tag>Education | \n", "0.27 | \n", "-0.76 | \n", "0.27 | \n", "0.19 | \n", "0.09 | \n", "-0.42 | \n", "-0.01 | \n", "0.33 | \n", "-0.03 | \n", "-0.38 | \n", "0.24 | \n", "0.20 | \n", "1.00 | \n", "0.38 | \n", "0.45 | \n", "0.12 | \n", "-0.06 | \n", "
<tag>Data Science | \n", "0.36 | \n", "-0.43 | \n", "0.37 | \n", "0.33 | \n", "-0.02 | \n", "-0.22 | \n", "0.36 | \n", "0.13 | \n", "0.33 | \n", "-0.21 | \n", "0.27 | \n", "-0.00 | \n", "0.38 | \n", "1.00 | \n", "0.34 | \n", "0.27 | \n", "0.05 | \n", "
<tag>Towards Data Science | \n", "0.53 | \n", "-0.39 | \n", "0.54 | \n", "0.50 | \n", "-0.12 | \n", "-0.15 | \n", "0.32 | \n", "0.32 | \n", "0.31 | \n", "-0.14 | \n", "0.35 | \n", "0.12 | \n", "0.45 | \n", "0.34 | \n", "1.00 | \n", "0.21 | \n", "0.19 | \n", "
<tag>Machine Learning | \n", "0.18 | \n", "-0.11 | \n", "0.20 | \n", "0.09 | \n", "-0.34 | \n", "0.19 | \n", "0.22 | \n", "0.27 | \n", "0.31 | \n", "0.16 | \n", "-0.03 | \n", "0.05 | \n", "0.12 | \n", "0.27 | \n", "0.21 | \n", "1.00 | \n", "0.30 | \n", "
<tag>Python | \n", "0.26 | \n", "0.04 | \n", "0.26 | \n", "0.27 | \n", "-0.27 | \n", "0.26 | \n", "0.37 | \n", "0.24 | \n", "0.41 | \n", "0.17 | \n", "0.18 | \n", "-0.05 | \n", "-0.06 | \n", "0.05 | \n", "0.19 | \n", "0.30 | \n", "1.00 | \n", "
Dep. Variable: | views | R-squared: | 0.502 | \n", "
---|---|---|---|
Model: | OLS | Adj. R-squared: | 0.495 | \n", "
Method: | Least Squares | F-statistic: | 78.50 | \n", "
Date: | Mon, 31 Dec 2018 | Prob (F-statistic): | 2.02e-13 | \n", "
Time: | 17:49:30 | Log-Likelihood: | -935.54 | \n", "
No. Observations: | 79 | AIC: | 1873. | \n", "
Df Residuals: | 78 | BIC: | 1875. | \n", "
Df Model: | 1 | \n", " | |
Covariance Type: | nonrobust | \n", " |
coef | std err | t | P>|t| | [0.025 | 0.975] | \n", "|
---|---|---|---|---|---|---|
word_count | 13.3585 | 1.508 | 8.860 | 0.000 | 10.357 | 16.360 | \n", "
Omnibus: | 17.663 | Durbin-Watson: | 1.804 | \n", "
---|---|---|---|
Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 20.864 | \n", "
Skew: | 1.166 | Prob(JB): | 2.95e-05 | \n", "
Kurtosis: | 3.949 | Cond. No. | 1.00 | \n", "
Dep. Variable: | views | R-squared: | 0.522 | \n", "
---|---|---|---|
Model: | OLS | Adj. R-squared: | 0.516 | \n", "
Method: | Least Squares | F-statistic: | 84.10 | \n", "
Date: | Mon, 31 Dec 2018 | Prob (F-statistic): | 5.62e-14 | \n", "
Time: | 17:49:31 | Log-Likelihood: | -922.54 | \n", "
No. Observations: | 78 | AIC: | 1847. | \n", "
Df Residuals: | 77 | BIC: | 1849. | \n", "
Df Model: | 1 | \n", " | |
Covariance Type: | nonrobust | \n", " |
coef | std err | t | P>|t| | [0.025 | 0.975] | \n", "|
---|---|---|---|---|---|---|
word_count | 14.0089 | 1.528 | 9.171 | 0.000 | 10.967 | 17.051 | \n", "
Omnibus: | 18.017 | Durbin-Watson: | 1.588 | \n", "
---|---|---|---|
Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 21.482 | \n", "
Skew: | 1.204 | Prob(JB): | 2.16e-05 | \n", "
Kurtosis: | 3.902 | Cond. No. | 1.00 | \n", "
Dep. Variable: | views | R-squared: | 0.522 | \n", "
---|---|---|---|
Model: | OLS | Adj. R-squared: | 0.516 | \n", "
Method: | Least Squares | F-statistic: | 84.10 | \n", "
Date: | Mon, 31 Dec 2018 | Prob (F-statistic): | 5.62e-14 | \n", "
Time: | 17:49:36 | Log-Likelihood: | -922.54 | \n", "
No. Observations: | 78 | AIC: | 1847. | \n", "
Df Residuals: | 77 | BIC: | 1849. | \n", "
Df Model: | 1 | \n", " | |
Covariance Type: | nonrobust | \n", " |
coef | std err | t | P>|t| | [0.025 | 0.975] | \n", "|
---|---|---|---|---|---|---|
word_count | 14.0089 | 1.528 | 9.171 | 0.000 | 10.967 | 17.051 | \n", "
Omnibus: | 18.017 | Durbin-Watson: | 1.937 | \n", "
---|---|---|---|
Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 21.482 | \n", "
Skew: | 1.204 | Prob(JB): | 2.16e-05 | \n", "
Kurtosis: | 3.902 | Cond. No. | 1.00 | \n", "
\n", " | param | \n", "value | \n", "
---|---|---|
0 | \n", "pvalue | \n", "7.996855e-17 | \n", "
1 | \n", "rvalue | \n", "-7.752588e-01 | \n", "
2 | \n", "slope | \n", "-2.322662e+00 | \n", "
3 | \n", "intercept | \n", "5.329510e+01 | \n", "
Dep. Variable: | fans | R-squared: | 0.403 | \n", "
---|---|---|---|
Model: | OLS | Adj. R-squared: | 0.396 | \n", "
Method: | Least Squares | F-statistic: | 52.05 | \n", "
Date: | Mon, 31 Dec 2018 | Prob (F-statistic): | 3.25e-10 | \n", "
Time: | 17:49:37 | Log-Likelihood: | -603.60 | \n", "
No. Observations: | 78 | AIC: | 1209. | \n", "
Df Residuals: | 77 | BIC: | 1212. | \n", "
Df Model: | 1 | \n", " | |
Covariance Type: | nonrobust | \n", " |
coef | std err | t | P>|t| | [0.025 | 0.975] | \n", "|
---|---|---|---|---|---|---|
title_word_count | 51.7363 | 7.171 | 7.215 | 0.000 | 37.457 | 66.015 | \n", "
Omnibus: | 22.055 | Durbin-Watson: | 2.394 | \n", "
---|---|---|---|
Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 29.671 | \n", "
Skew: | 1.267 | Prob(JB): | 3.61e-07 | \n", "
Kurtosis: | 4.645 | Cond. No. | 1.00 | \n", "
\n", " | fit | \n", "rmse | \n", "params | \n", "
---|---|---|---|
0 | \n", "fit degree = 1 | \n", "76472.581041 | \n", "[1.170106685608046, 6119.608859797098] | \n", "
1 | \n", "fit degree = 2 | \n", "75872.518369 | \n", "[-0.0009811189543149205, 5.808790215202399, 15... | \n", "
2 | \n", "fit degree = 3 | \n", "75821.238490 | \n", "[-2.4384184596157315e-07, 0.000735343641687801... | \n", "
3 | \n", "fit degree = 4 | \n", "72017.556993 | \n", "[1.684312966169666e-09, -1.5717944375583822e-0... | \n", "
4 | \n", "fit degree = 5 | \n", "67571.317247 | \n", "[1.6691066484561153e-12, -1.7949974951244516e-... | \n", "
5 | \n", "fit degree = 6 | \n", "67090.118088 | \n", "[-5.282716312236527e-16, 9.034780377254753e-12... | \n", "
\n", " | fit | \n", "rmse | \n", "params | \n", "
---|---|---|---|
0 | \n", "fit degree = 1 | \n", "76472.581041 | \n", "[1.170106685608046, 6119.608859797098] | \n", "
1 | \n", "fit degree = 2 | \n", "75872.518369 | \n", "[-0.0009811189543149205, 5.808790215202399, 15... | \n", "
2 | \n", "fit degree = 3 | \n", "75821.238490 | \n", "[-2.4384184596157315e-07, 0.000735343641687801... | \n", "
3 | \n", "fit degree = 4 | \n", "72017.556993 | \n", "[1.684312966169666e-09, -1.5717944375583822e-0... | \n", "
4 | \n", "fit degree = 5 | \n", "67571.317247 | \n", "[1.6691066484561153e-12, -1.7949974951244516e-... | \n", "
5 | \n", "fit degree = 6 | \n", "67090.118088 | \n", "[-5.282716312236527e-16, 9.034780377254753e-12... | \n", "
\n", " | name | \n", "value | \n", "
---|---|---|
0 | \n", "r2 | \n", "0.366392 | \n", "
1 | \n", "rmse | \n", "6934.723627 | \n", "
2 | \n", "intercept | \n", "13383.854227 | \n", "
3 | \n", "read_time | \n", "-104.478607 | \n", "
4 | \n", "editing_days | \n", "-273.309195 | \n", "
5 | \n", "title_word_count | \n", "-513.130674 | \n", "
6 | \n", "<tag>Education | \n", "-6884.350279 | \n", "
7 | \n", "<tag>Data Science | \n", "1751.443700 | \n", "
8 | \n", "<tag>Towards Data Science | \n", "3874.601135 | \n", "
9 | \n", "<tag>Machine Learning | \n", "1027.652389 | \n", "
10 | \n", "<tag>Python | \n", "7062.905683 | \n", "