import numpy as np from sklearn.ensemble import VotingClassifier from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline, make_union from sklearn.preprocessing import FunctionTransformer, MaxAbsScaler, MinMaxScaler # NOTE: Make sure that the class is labeled 'class' in the data file tpot_data = np.recfromcsv('PATH/TO/DATA/FILE', delimiter='COLUMN_SEPARATOR', dtype=np.float64) features = np.delete(tpot_data.view(np.float64).reshape(tpot_data.size, -1), tpot_data.dtype.names.index('class'), axis=1) training_features, testing_features, training_classes, testing_classes = \ train_test_split(features, tpot_data['class'], random_state=42) exported_pipeline = make_pipeline( MaxAbsScaler(), MinMaxScaler(), LogisticRegression(C=49.0, dual=True, penalty="l2") ) exported_pipeline.fit(training_features, training_classes) results = exported_pipeline.predict(testing_features)