# RF temperature modeling # # Read in data library(tidyverse) library(lubridate) temps <- read_csv('1159640.csv') temps <- mutate(temps, month = lubridate::month(DATE), day = lubridate::day(DATE), week = lubridate::wday(DATE, label = TRUE)) temps$temp_1 <- c(45, temps$TMAX[1:{nrow(temps) - 1}]) temps$temp_2 <- c(45, 44, temps$TMAX[1:{nrow(temps) - 2}]) averages <- read_csv('1159653.csv') averages <- dplyr::filter(averages, STATION_NAME == 'SEATTLE TACOMA INTERNATIONAL AIRPORT WA US') averages$month <- as.numeric(substr(averages$DATE, 5, 6)) averages$day <- as.numeric(substr(averages$DATE, 7, 8)) temps <- merge(temps, averages[, c('month', 'day', 'DLY-TMAX-NORMAL')], by = c('month', 'day'), all.x = TRUE) temps <- temps[, c('month', 'week', 'day', 'DATE', 'TMAX', 'temp_1', 'temp_2', 'DLY-TMAX-NORMAL')] temps <- dplyr::rename(temps, date = DATE, actual = TMAX) temps <- dplyr::rename(temps, average = 'DLY-TMAX-NORMAL') temps$year <- 2016 temps <- temps[, -which(names(temps) == 'date')] write_csv(temps, 'mod_temps.csv')