1234567891011121314151617181920212223 |
- import numpy as np
- from sklearn.ensemble import VotingClassifier
- from sklearn.linear_model import LogisticRegression
- from sklearn.model_selection import train_test_split
- from sklearn.pipeline import make_pipeline, make_union
- from sklearn.preprocessing import FunctionTransformer, MaxAbsScaler, MinMaxScaler
- # NOTE: Make sure that the class is labeled 'class' in the data file
- tpot_data = np.recfromcsv('PATH/TO/DATA/FILE', delimiter='COLUMN_SEPARATOR', dtype=np.float64)
- features = np.delete(tpot_data.view(np.float64).reshape(tpot_data.size, -1), tpot_data.dtype.names.index('class'), axis=1)
- training_features, testing_features, training_classes, testing_classes = \
- train_test_split(features, tpot_data['class'], random_state=42)
- exported_pipeline = make_pipeline(
- MaxAbsScaler(),
- MinMaxScaler(),
- LogisticRegression(C=49.0, dual=True, penalty="l2")
- )
- exported_pipeline.fit(training_features, training_classes)
- results = exported_pipeline.predict(testing_features)
|