pandas_comparisonOperators.py 1.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
  1. import pickle
  2. import pandas as pd
  3. import quandl
  4. import matplotlib.pyplot as plt
  5. from matplotlib import style
  6. style.use('seaborn')
  7. bridge_height = {'meters':[10.26, 10.31, 10.27, 10.22, 10.23, 6212.42, 10.28, 10.25, 10.31]}
  8. df = pd.DataFrame(bridge_height)
  9. df['std'] = df['meters'].rolling(window=2).std()
  10. df_std = df.describe()['meters']['std']
  11. df_mean = df.describe()['meters']['mean']
  12. # df = df[df['std'] < df_std] # sentdex methods
  13. df = df[df['meters'] < (df_mean + df_std)] # my methods
  14. print(df)
  15. df['meters'].plot()
  16. plt.show()
  17. ax1 = plt.subplot(2,1,1)
  18. ax2 = plt.subplot(2,1,2, sharex=ax1)
  19. # initial_state_data()
  20. pickle_in = open('fifty_states_pct.pickle' , 'rb')
  21. HPI_data = pickle.load(pickle_in)
  22. # HPI_Benchmark()
  23. pickle_in = open('us_pct.pickle','rb')
  24. benchmark = pickle.load(pickle_in)
  25. # rolling statistics
  26. HPI_data['TX12MA'] = HPI_data['TX'].rolling(window=12, center=False).mean()
  27. HPI_data['TX12STD']= HPI_data['TX'].rolling(window=12, center=False).std()
  28. # standard deviation is a measure of the volatility of the price
  29. HPI_data.dropna(inplace=True)
  30. TK_AK_12corr = HPI_data['TX'].rolling(window=12).corr(HPI_data['AK'])
  31. HPI_data['TX'].plot(ax=ax1, label = 'TX HPI')
  32. HPI_data['AK'].plot(ax=ax1, label = 'AK HPI')
  33. ax1.legend(loc=4)
  34. TK_AK_12corr.plot(ax=ax2, label= 'TK AK 12 month correlation')
  35. ax2.legend(loc=4)
  36. # HPI_data[['TX12MA','TX']].plot(ax=ax1)
  37. # HPI_data['TX12STD'].plot(ax=ax2)
  38. # plt.show()