12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- import pickle
- import pandas as pd
- import quandl
- import matplotlib.pyplot as plt
- from matplotlib import style
- style.use('seaborn')
- bridge_height = {'meters':[10.26, 10.31, 10.27, 10.22, 10.23, 6212.42, 10.28, 10.25, 10.31]}
- df = pd.DataFrame(bridge_height)
- df['std'] = df['meters'].rolling(window=2).std()
- df_std = df.describe()['meters']['std']
- df_mean = df.describe()['meters']['mean']
- # df = df[df['std'] < df_std] # sentdex methods
- df = df[df['meters'] < (df_mean + df_std)] # my methods
- print(df)
- df['meters'].plot()
- plt.show()
- ax1 = plt.subplot(2,1,1)
- ax2 = plt.subplot(2,1,2, sharex=ax1)
- # initial_state_data()
- pickle_in = open('fifty_states_pct.pickle' , 'rb')
- HPI_data = pickle.load(pickle_in)
- # HPI_Benchmark()
- pickle_in = open('us_pct.pickle','rb')
- benchmark = pickle.load(pickle_in)
- # rolling statistics
- HPI_data['TX12MA'] = HPI_data['TX'].rolling(window=12, center=False).mean()
- HPI_data['TX12STD']= HPI_data['TX'].rolling(window=12, center=False).std()
- # standard deviation is a measure of the volatility of the price
- HPI_data.dropna(inplace=True)
- TK_AK_12corr = HPI_data['TX'].rolling(window=12).corr(HPI_data['AK'])
- HPI_data['TX'].plot(ax=ax1, label = 'TX HPI')
- HPI_data['AK'].plot(ax=ax1, label = 'AK HPI')
- ax1.legend(loc=4)
- TK_AK_12corr.plot(ax=ax2, label= 'TK AK 12 month correlation')
- ax2.legend(loc=4)
- # HPI_data[['TX12MA','TX']].plot(ax=ax1)
- # HPI_data['TX12STD'].plot(ax=ax2)
- # plt.show()
|