12345678910111213141516171819202122232425262728293031323334353637383940 |
- import pickle
- import pandas as pd
- import quandl
- import matplotlib.pyplot as plt
- from matplotlib import style
- style.use('seaborn')
- quandl.ApiConfig.api_key = 'rFsSehe51RLzREtYhLfo'
- def mortgage_30yr():
- df = quandl.get('FMAC/MORTG')
- df = df[df.index > "1974-12-01"]
- df = (df['Value'] - df['Value'][0]) / df['Value'][0] * 100
- df = df.resample('M').mean()
- return df
- ax1 = plt.subplot(2,1,1)
- ax2 = plt.subplot(2,1,2, sharex=ax1)
- # initial_state_data()
- pickle_in = open('fifty_states_pct.pickle' , 'rb')
- HPI_data = pickle.load(pickle_in)
- # HPI_Benchmark()
- pickle_in = open('us_pct.pickle','rb')
- benchmark = pickle.load(pickle_in)
- m30 = mortgage_30yr()
- HPI_Bench = benchmark
- state_HPI_M30 = HPI_data.join(m30)
- state_HPI_M30.rename({'Value' : 'M30'}, inplace=True)
- print(state_HPI_M30.corr().describe()['Value'])
|