12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- import pickle
- import pandas as pd
- import quandl
- import matplotlib.pyplot as plt
- from matplotlib import style
- style.use('seaborn')
- api_key = 'rFsSehe51RLzREtYhLfo'
- def state_list():
- fifty_states = pd.read_html('https://simple.wikipedia.org/wiki/List_of_U.S._states')
- return fifty_states[0][0][1:]
- def initial_state_data():
- states = state_list()
- main_df = pd.DataFrame()
- for abbv in states:
- query = 'FMAC/HPI_' + str(abbv)
- df = quandl.get(query, authtoken=api_key)
- df.columns = [str(abbv)]
- df[abbv] = (df[abbv] - df[abbv][0]) / df[abbv][0] * 100.0
- if main_df.empty:
- main_df = df
- else:
- main_df = main_df.join(df)
- pickle_out = open('fifty_states_pct.pickle', 'wb')
- pickle.dump(main_df, pickle_out)
- pickle_out.close()
- def HPI_Benchmark():
- df = quandl.get('FMAC/HPI_USA' , authtoken=api_key)
- df['United States'] = (df['Value'] - df['Value'][0]) / df['Value'][0] * 100.0
-
- pickle_out = open('us_pct.pickle', 'wb')
- pickle.dump(df, pickle_out)
- pickle_out.close()
- ax1 = plt.subplot(2,1,1)
- ax2 = plt.subplot(2,1,2, sharex=ax1)
- # initial_state_data()
- pickle_in = open('fifty_states_pct.pickle' , 'rb')
- HPI_data = pickle.load(pickle_in)
- # HPI_Benchmark()
- pickle_in = open('us_pct.pickle','rb')
- benchmark = pickle.load(pickle_in)
- # HPI_data = HPI_data.pct_change()
- # HPI_data.plot(ax=ax1)
- # benchmark['United States'].plot(ax=ax1, color='k', linewidth=10)
- # plt.legend().remove()
- TX1yr = HPI_data['TX'].resample('A').mean()
- HPI_data['TX1yr'] = TX1yr
- # print(HPI_data[['TX1yr','TX']])
- print(HPI_data.isnull().values.sum())
- HPI_data.fillna(method='bfill', inplace=True)
- # HPI_data.dropna(inplace=True)
- print(HPI_data.isnull().values.sum())
- # print(HPI_data[['TX1yr','TX']])
- # HPI_data[['TX1yr', 'TX']].plot(ax=ax1)
- # plt.show()
- # print(HPI_data['TX'].hasnans)
- # rolling statistics
- HPI_data['TX12MA'] = HPI_data['TX'].rolling(window=12, center=False).mean()
- HPI_data['TX12STD']= HPI_data['TX'].rolling(window=12, center=False).std()
- # standard deviation is a measure of the volatility of the price
- HPI_data.dropna(inplace=True)
- TK_AK_12corr = HPI_data['TX'].rolling(window=12).corr(HPI_data['AK'])
- HPI_data['TX'].plot(ax=ax1, label = 'TX HPI')
- HPI_data['AK'].plot(ax=ax1, label = 'AK HPI')
- ax1.legend(loc=4)
- TK_AK_12corr.plot(ax=ax2, label= 'TK AK 12 month correlation')
- ax2.legend(loc=4)
- # HPI_data[['TX12MA','TX']].plot(ax=ax1)
- # HPI_data['TX12STD'].plot(ax=ax2)
- # print(HPI_data.head())
- plt.show()
|