123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- import keras
- from keras.datasets import mnist
- from keras.models import Sequential
- from keras.layers import Dense, Dropout, Flatten
- from keras.layers import Conv2D, MaxPooling2D
- from keras import backend as K
- import matplotlib.pyplot as plt
- def plot_history(history):
- """Plot Results of Keras training"""
- plt.style.use('fivethirtyeight')
- epochs = list(range(1, len(history['loss']) + 1))
- plt.figure(figsize = (18, 6))
-
- # Losses
- plt.subplot(1, 2, 1)
- plt.plot(epochs, history['loss'], '-o', ms = 10, label = "Training Loss")
- plt.plot(epochs, history['val_loss'], '-*', ms = 10, label = "Validation Loss")
- plt.legend();
- plt.xlabel('Epoch'); plt.ylabel('Loss')
- plt.title('Losses');
-
- # Accuracy
- plt.subplot(1, 2, 2)
- plt.plot(epochs, history['acc'], '-o', ms = 10, label = 'Training Acc')
- plt.plot(epochs, history['val_acc'], '-*', ms = 10, label = "Validation Acc")
- plt.legend()
- plt.xlabel('Epoch'); plt.ylabel('Acc')
- plt.title('Accuracy');
-
- plt.suptitle('Training Curves', y= 1.05)
- def get_options(slack):
- command_dict = {'functions': {},
- 'attributes': {}}
- # Modules
- for d in dir(slack):
- if not d.startswith('_'):
- command_dict['functions'][d] = []
- command_dict['attributes'][d] = []
- # Iterate through methods and attributes
- for dd in dir(getattr(slack, d)):
- if not dd.startswith('_'):
- # List of methods and attributes
- l = dir(getattr(getattr(slack, d), dd))
- # Method (function)
- if '__call__' in l:
- command_dict['functions'][d].append(dd)
- # Attributes
- else:
- command_dict['attributes'][d].append(dd)
-
- return command_dict
- def get_data_and_model():
- batch_size = 128
- num_classes = 10
- epochs = 12
- # input image dimensions
- img_rows, img_cols = 28, 28
- # the data, split between train and test sets
- (x_train, y_train), (x_test, y_test) = mnist.load_data()
- if K.image_data_format() == 'channels_first':
- x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
- x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
- input_shape = (1, img_rows, img_cols)
- else:
- x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
- x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
- input_shape = (img_rows, img_cols, 1)
- x_train = x_train.astype('float32')
- x_test = x_test.astype('float32')
- x_train /= 255
- x_test /= 255
- print('x_train shape:', x_train.shape)
- print(x_train.shape[0], 'train samples')
- print(x_test.shape[0], 'test samples')
- # convert class vectors to binary class matrices
- y_train = keras.utils.to_categorical(y_train, num_classes)
- y_test = keras.utils.to_categorical(y_test, num_classes)
- model = Sequential()
- model.add(Conv2D(32, kernel_size=(3, 3),
- activation='relu',
- input_shape=input_shape))
- model.add(Conv2D(64, (3, 3), activation='relu'))
- model.add(MaxPooling2D(pool_size=(2, 2)))
- model.add(Dropout(0.25))
- model.add(Flatten())
- model.add(Dense(128, activation='relu'))
- model.add(Dropout(0.5))
- model.add(Dense(num_classes, activation='softmax'))
- model.compile(loss=keras.losses.categorical_crossentropy,
- optimizer=keras.optimizers.Adadelta(),
- metrics=['accuracy'])
-
- return x_train, x_test, y_train, y_test, model
|