123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450 |
- # Data science imports
- import pandas as pd
- import numpy as np
- import statsmodels.api as sm
- from sklearn.linear_model import LinearRegression
- from sklearn.metrics import mean_squared_error
- from scipy import stats
- # Interactive plotting
- import plotly.graph_objs as go
- import cufflinks
- cufflinks.go_offline()
- def make_update_menu(base_title, article_annotations=None, response_annotations=None):
- """
- Make an updatemenu for interative plot
- :param base_title: string for title of plot
- :return updatemenus: a updatemenus object for adding to a layout
- """
- updatemenus = list(
- [
- dict(
- buttons=list(
- [
- dict(
- label="both",
- method="update",
- args=[
- dict(visible=[True, True]),
- dict(
- title=base_title,
- annotations=[
- article_annotations,
- response_annotations,
- ],
- ),
- ],
- ),
- dict(
- label="articles",
- method="update",
- args=[
- dict(visible=[True, False]),
- dict(
- title="Article " + base_title,
- annotations=[article_annotations],
- ),
- ],
- ),
- dict(
- label="responses",
- method="update",
- args=[
- dict(visible=[False, True]),
- dict(
- title="Response " + base_title,
- annotations=[response_annotations],
- ),
- ],
- ),
- ]
- )
- )
- ]
- )
- return updatemenus
- def make_hist(df, x, category=None):
- """
- Make an interactive histogram, optionally segmented by `category`
- :param df: dataframe of data
- :param x: string of column to use for plotting
- :param category: string representing column to segment by
- :return figure: a plotly histogram to show with iplot or plot
- """
- if category is not None:
- data = []
- for name, group in df.groupby(category):
- data.append(go.Histogram(dict(x=group[x], name=name)))
- else:
- data = [go.Histogram(dict(x=df[x]))]
- layout = go.Layout(
- yaxis=dict(title="Count"),
- xaxis=dict(title=x.replace('_', ' ').title()),
- title=f"{x.replace('_', ' ').title()} Distribution by {category.replace('_', ' ').title()}"
- if category
- else f"{x.replace('_', ' ').title()} Distribution",
- )
- figure = go.Figure(data=data, layout=layout)
- return figure
- def make_cum_plot(df, y, category=None, ranges=False):
- """
- Make an interactive cumulative plot, optionally segmented by `category`
- :param df: dataframe of data, must have a `published_date` column
- :param y: string of column to use for plotting or list of two strings for double y axis
- :param category: string representing column to segment by
- :param ranges: boolean for whether to add range slider and range selector
- :return figure: a plotly plot to show with iplot or plot
- """
- if category is not None:
- data = []
- for i, (name, group) in enumerate(df.groupby(category)):
- group.sort_values("published_date", inplace=True)
- data.append(
- go.Scatter(
- x=group["published_date"],
- y=group[y].cumsum(),
- mode="lines+markers",
- text=group["title"],
- name=name,
- marker=dict(size=10, opacity=0.8,
- symbol=i + 2),
- )
- )
- else:
- df.sort_values("published_date", inplace=True)
- if len(y) == 2:
- data = [
- go.Scatter(
- x=df["published_date"],
- y=df[y[0]].cumsum(),
- name=y[0].title(),
- mode="lines+markers",
- text=df["title"],
- marker=dict(size=10, color='blue', opacity=0.6, line=dict(color='black'),
- )),
- go.Scatter(
- x=df["published_date"],
- y=df[y[1]].cumsum(),
- yaxis='y2',
- name=y[1].title(),
- mode="lines+markers",
- text=df["title"],
- marker=dict(size=10, color='red', opacity=0.6, line=dict(color='black'),
- )),
- ]
- else:
- data = [
- go.Scatter(
- x=df["published_date"],
- y=df[y].cumsum(),
- mode="lines+markers",
- text=df["title"],
- marker=dict(size=12, color='blue', opacity=0.6, line=dict(color='black'),
- ),
- )
- ]
- if len(y) == 2:
- layout = go.Layout(
- xaxis=dict(title="Published Date", type="date"),
- yaxis=dict(title=y[0].title(), color='blue'),
- yaxis2=dict(title=y[1].title(), color='red',
- overlaying='y', side='right'),
- font=dict(size=14),
- title=f"Cumulative {y[0].title()} and {y[1].title()}",
- )
- else:
- layout = go.Layout(
- xaxis=dict(title="Published Date", type="date"),
- yaxis=dict(title=y.replace('_', ' ').title()),
- font=dict(size=14),
- title=f"Cumulative {y.replace('_', ' ').title()} by {category.replace('_', ' ').title()}"
- if category is not None
- else f"Cumulative {y.replace('_', ' ').title()}",
- )
- # Add a rangeselector and rangeslider for a data xaxis
- if ranges:
- rangeselector = dict(
- buttons=list(
- [
- dict(count=1, label="1m", step="month", stepmode="backward"),
- dict(count=6, label="6m", step="month", stepmode="backward"),
- dict(count=1, label="1y", step="year", stepmode="backward"),
- dict(step="all"),
- ]
- )
- )
- rangeslider = dict(visible=True)
- layout["xaxis"]["rangeselector"] = rangeselector
- layout["xaxis"]["rangeslider"] = rangeslider
- layout['width'] = 1000
- layout['height'] = 600
- figure = go.Figure(data=data, layout=layout)
- return figure
- def make_scatter_plot(df, x, y, fits=None, xlog=False, ylog=False, category=None, scale=None, sizeref=2, annotations=None, ranges=False, title_override=None):
- """
- Make an interactive scatterplot, optionally segmented by `category`
- :param df: dataframe of data
- :param x: string of column to use for xaxis
- :param y: string of column to use for yaxis
- :param fits: list of strings of fits
- :param xlog: boolean for making a log xaxis
- :param ylog boolean for making a log yaxis
- :param category: string representing categorical column to segment by, this must be a categorical
- :param scale: string representing numerical column to size and color markers by, this must be numerical data
- :param sizeref: float or integer for setting the size of markers according to the scale, only used if scale is set
- :param annotations: text to display on the plot (dictionary)
- :param ranges: boolean for whether to add a range slider and selector
- :param title_override: String to override the title
- :return figure: a plotly plot to show with iplot or plot
- """
- if category is not None:
- title = f"{y.replace('_', ' ').title()} vs {x.replace('_', ' ').title()} by {category.replace('_', ' ').title()}"
- data = []
- for i, (name, group) in enumerate(df.groupby(category)):
- data.append(go.Scatter(x=group[x],
- y=group[y],
- mode='markers',
- text=group['title'],
- name=name,
- marker=dict(size=8, symbol=i + 2)))
- else:
- if scale is not None:
- title = f"{y.replace('_', ' ').title()} vs {x.replace('_', ' ').title()} Scaled by {scale.title()}"
- data = [go.Scatter(x=df[x],
- y=df[y],
- mode='markers',
- text=df['title'], marker=dict(size=df[scale],
- line=dict(color='black', width=0.5), sizemode='area', sizeref=sizeref, opacity=0.8,
- colorscale='Viridis', color=df[scale], showscale=True, sizemin=2))]
- else:
- df.sort_values(x, inplace=True)
- title = f"{y.replace('_', ' ').title()} vs {x.replace('_', ' ').title()}"
- data = [go.Scatter(x=df[x],
- y=df[y],
- mode='markers',
- text=df['title'], marker=dict(
- size=12, color='blue', opacity=0.8, line=dict(color='black')),
- name='observations')]
- if fits is not None:
- for fit in fits:
- data.append(go.Scatter(x=df[x], y=df[fit], text=df['title'],
- mode='lines+markers', marker=dict
- (size=8, opacity=0.6),
- line=dict(dash='dash'), name=fit))
- title += ' with Fit'
- layout = go.Layout(annotations=annotations,
- xaxis=dict(title=x.replace('_', ' ').title() + (' (log scale)' if xlog else ''),
- type='log' if xlog else None),
- yaxis=dict(title=y.replace('_', ' ').title() + (' (log scale)' if ylog else ''),
- type='log' if ylog else None),
- font=dict(size=14),
- title=title if title_override is None else title_override,
- )
- # Add a rangeselector and rangeslider for a data xaxis
- if ranges:
- rangeselector = dict(
- buttons=list(
- [
- dict(count=1, label="1m", step="month", stepmode="backward"),
- dict(count=6, label="6m", step="month", stepmode="backward"),
- dict(count=1, label="1y", step="year", stepmode="backward"),
- dict(step="all"),
- ]
- )
- )
- rangeslider = dict(visible=True)
- layout["xaxis"]["rangeselector"] = rangeselector
- layout["xaxis"]["rangeslider"] = rangeslider
- layout['width'] = 1000
- layout['height'] = 600
- figure = go.Figure(data=data, layout=layout)
- return figure
- def make_poly_fits(df, x, y, degree=6):
- """
- Generate fits and make interactive plot with fits
- :param df: dataframe with data
- :param x: string representing x data column
- :param y: string representing y data column
- :param degree: integer degree of fits to go up to
- :return fit_stats: dataframe with information about fits
- :return figure: interactive plotly figure that can be shown with iplot or plot
- """
- # Don't want to alter original data frame
- df = df.copy()
- fit_list = []
- rmse = []
- fit_params = []
- # Make each fit
- for i in range(1, degree + 1):
- fit_name = f'fit degree = {i}'
- fit_list.append(fit_name)
- z, res, *rest = np.polyfit(df[x], df[y], i, full=True)
- fit_params.append(z)
- df.loc[:, fit_name] = np.poly1d(z)(df[x])
- rmse.append(np.sqrt(res[0]))
- fit_stats = pd.DataFrame(
- {'fit': fit_list, 'rmse': rmse, 'params': fit_params})
- figure = make_scatter_plot(df, x=x, y=y, fits=fit_list)
- return figure, fit_stats
- def make_linear_regression(df, x, y, intercept_0):
- """
- Create a linear regression, either with the intercept set to 0 or
- the intercept allowed to be fitted
- :param df: dataframe with data
- :param x: string or list of stringsfor the name of the column with x data
- :param y: string for the name of the column with y data
- :param intercept_0: boolean indicating whether to set the intercept to 0
- """
- if isinstance(x, list):
- lin_model = LinearRegression()
- lin_model.fit(df[x], df[y])
- slopes, intercept, = lin_model.coef_, lin_model.intercept_
- df['predicted'] = lin_model.predict(df[x])
- r2 = lin_model.score(df[x], df[y])
- rmse = np.sqrt(mean_squared_error(
- y_true=df[y], y_pred=df['predicted']))
- equation = f'{y.replace("_", " ")} ='
- names = ['r2', 'rmse', 'intercept']
- values = [r2, rmse, intercept]
- for i, (p, s) in enumerate(zip(x, slopes)):
- if (i + 1) % 3 == 0:
- equation += f'<br>{s:.2f} * {p.replace("_", " ")} +'
- else:
- equation += f' {s:.2f} * {p.replace("_", " ")} +'
- names.append(p)
- values.append(s)
- equation += f' {intercept:.2f}'
- annotations = [dict(x=0.4 * df.index.max(), y=0.9 * df[y].max(), showarrow=False,
- text=equation,
- font=dict(size=10))]
- df['index'] = list(df.index)
- figure = make_scatter_plot(df, x='index', y=y, fits=[
- 'predicted'], annotations=annotations)
- summary = pd.DataFrame({'name': names, 'value': values})
- else:
- if intercept_0:
- lin_reg = sm.OLS(df[y], df[x]).fit()
- df['fit_values'] = lin_reg.fittedvalues
- summary = lin_reg.summary()
- slope = float(lin_reg.params)
- equation = f"${y} = {slope:.2f} * {x.replace('_', ' ')}$"
- else:
- lin_reg = stats.linregress(df[x], df[y])
- intercept, slope = lin_reg.intercept, lin_reg.slope
- params = ['pvalue', 'rvalue', 'slope', 'intercept']
- values = []
- for p in params:
- values.append(getattr(lin_reg, p))
- summary = pd.DataFrame({'param': params, 'value': values})
- df['fit_values'] = df[x] * slope + intercept
- equation = f"${y} = {slope:.2f} * {x.replace('_', ' ')} + {intercept:.2f}$"
- annotations = [dict(x=0.75 * df[x].max(), y=0.9 * df[y].max(), showarrow=False,
- text=equation,
- font=dict(size=32))]
- figure = make_scatter_plot(
- df, x=x, y=y, fits=['fit_values'], annotations=annotations)
- return figure, summary
- def make_extrapolation(df, y, years, degree=4):
- """
- Extrapolate `y` into the future `years` with `degree` polynomial fit
- :param df: dataframe of data
- :param y: string of column to extrapolate
- :param years: number of years to extrapolate into the future
- :param degree: integer degree of polynomial fit
- :return figure: plotly figure for display using iplot or plot
- :return future_df: extrapolated numbers into the future
- """
- df = df.copy()
- x = 'days_since_start'
- df['days_since_start'] = (
- (df['published_date'] - df['published_date'].min()).
- dt.total_seconds() / (3600 * 24)).astype(int)
- cumy = f'cum_{y}'
- df[cumy] = df.sort_values(x)[y].cumsum()
- figure, summary = make_poly_fits(df, x, cumy, degree=degree)
- min_date = df['published_date'].min()
- max_date = df['published_date'].max()
- date_range = pd.date_range(start=min_date,
- end=max_date + pd.Timedelta(days=int(years * 365)))
- future_df = pd.DataFrame({'date': date_range})
- future_df[x] = (
- (future_df['date'] - future_df['date'].min()).
- dt.total_seconds() / (3600 * 24)).astype(int)
- newcumy = f'cumulative_{y}'
- future_df = future_df.merge(df[[x, cumy]], on=x, how='left').\
- rename(columns={cumy: newcumy})
- z = np.poly1d(summary.iloc[-1]['params'])
- pred_name = f'predicted_{y}'
- future_df[pred_name] = z(future_df[x])
- future_df['title'] = ''
- last_date = future_df.loc[future_df['date'].idxmax()]
- prediction_text = (
- f"On {last_date['date'].date()} the {y} will be {float(last_date[pred_name]):,.0f}.")
- annotations = [dict(x=future_df['date'].quantile(0.4),
- y=0.8 * future_df[pred_name].max(), text=prediction_text, showarrow=False,
- font=dict(size=16))]
- title_override = f'{y.replace("_", " ").title()} with Extrapolation {years} Years into the Future'
- figure = make_scatter_plot(future_df, 'date', newcumy, fits=[
- pred_name], annotations=annotations, ranges=True, title_override=title_override)
- return figure, future_df
|