temp_format.R 1.0 KB

12345678910111213141516171819202122232425262728
  1. # RF temperature modeling
  2. #
  3. # Read in data
  4. library(tidyverse)
  5. library(lubridate)
  6. temps <- read_csv('1159640.csv')
  7. temps <- mutate(temps, month = lubridate::month(DATE),
  8. day = lubridate::day(DATE), week = lubridate::wday(DATE, label = TRUE))
  9. temps$temp_1 <- c(45, temps$TMAX[1:{nrow(temps) - 1}])
  10. temps$temp_2 <- c(45, 44, temps$TMAX[1:{nrow(temps) - 2}])
  11. averages <- read_csv('1159653.csv')
  12. averages <- dplyr::filter(averages, STATION_NAME == 'SEATTLE TACOMA INTERNATIONAL AIRPORT WA US')
  13. averages$month <- as.numeric(substr(averages$DATE, 5, 6))
  14. averages$day <- as.numeric(substr(averages$DATE, 7, 8))
  15. temps <- merge(temps, averages[, c('month', 'day', 'DLY-TMAX-NORMAL')], by = c('month', 'day'),
  16. all.x = TRUE)
  17. temps <- temps[, c('month', 'week', 'day', 'DATE', 'TMAX', 'temp_1', 'temp_2', 'DLY-TMAX-NORMAL')]
  18. temps <- dplyr::rename(temps, date = DATE, actual = TMAX)
  19. temps <- dplyr::rename(temps, average = 'DLY-TMAX-NORMAL')
  20. temps$year <- 2016
  21. temps <- temps[, -which(names(temps) == 'date')]
  22. write_csv(temps, 'mod_temps.csv')