123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- import keras
- from keras.datasets import mnist
- from keras.models import Sequential
- from keras.layers import Dense, Dropout, Flatten
- from keras.layers import Conv2D, MaxPooling2D
- from keras import backend as K
- import matplotlib.pyplot as plt
- def plot_history(history):
- """Plot Results of Keras training"""
- plt.style.use("fivethirtyeight")
- epochs = list(range(1, len(history["loss"]) + 1))
- plt.figure(figsize=(18, 6))
- # Losses
- plt.subplot(1, 2, 1)
- plt.plot(epochs, history["loss"], "-o", ms=10, label="Training Loss")
- plt.plot(epochs, history["val_loss"], "-*", ms=10, label="Validation Loss")
- plt.legend()
- plt.xlabel("Epoch")
- plt.ylabel("Loss")
- plt.title("Losses")
- # Accuracy
- plt.subplot(1, 2, 2)
- plt.plot(epochs, history["acc"], "-o", ms=10, label="Training Acc")
- plt.plot(epochs, history["val_acc"], "-*", ms=10, label="Validation Acc")
- plt.legend()
- plt.xlabel("Epoch")
- plt.ylabel("Acc")
- plt.title("Accuracy")
- plt.suptitle("Training Curves", y=1.05)
- def get_options(slack):
- command_dict = {"functions": {}, "attributes": {}}
- # Modules
- for d in dir(slack):
- if not d.startswith("_"):
- command_dict["functions"][d] = []
- command_dict["attributes"][d] = []
- # Iterate through methods and attributes
- for dd in dir(getattr(slack, d)):
- if not dd.startswith("_"):
- # List of methods and attributes
- l = dir(getattr(getattr(slack, d), dd))
- # Method (function)
- if "__call__" in l:
- command_dict["functions"][d].append(dd)
- # Attributes
- else:
- command_dict["attributes"][d].append(dd)
- return command_dict
- def get_data_and_model():
- batch_size = 128
- num_classes = 10
- epochs = 12
- # input image dimensions
- img_rows, img_cols = 28, 28
- # the data, split between train and test sets
- (x_train, y_train), (x_test, y_test) = mnist.load_data()
- if K.image_data_format() == "channels_first":
- x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
- x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
- input_shape = (1, img_rows, img_cols)
- else:
- x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
- x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
- input_shape = (img_rows, img_cols, 1)
- x_train = x_train.astype("float32")
- x_test = x_test.astype("float32")
- x_train /= 255
- x_test /= 255
- print("x_train shape:", x_train.shape)
- print(x_train.shape[0], "train samples")
- print(x_test.shape[0], "test samples")
- # convert class vectors to binary class matrices
- y_train = keras.utils.to_categorical(y_train, num_classes)
- y_test = keras.utils.to_categorical(y_test, num_classes)
- model = Sequential()
- model.add(
- Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=input_shape)
- )
- model.add(Conv2D(64, (3, 3), activation="relu"))
- model.add(MaxPooling2D(pool_size=(2, 2)))
- model.add(Dropout(0.25))
- model.add(Flatten())
- model.add(Dense(128, activation="relu"))
- model.add(Dropout(0.5))
- model.add(Dense(num_classes, activation="softmax"))
- model.compile(
- loss=keras.losses.categorical_crossentropy,
- optimizer=keras.optimizers.Adadelta(),
- metrics=["accuracy"],
- )
- return x_train, x_test, y_train, y_test, model
|