|
@@ -335,7 +335,7 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 5,
|
|
|
+ "execution_count": 13,
|
|
|
"metadata": {},
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
@@ -441,7 +441,9 @@
|
|
|
" else:\n",
|
|
|
" sk_std[isim] = math.sqrt(sk_var[isim])\n",
|
|
|
" sim[isim] = norm.rvs(loc=sk_est[isim], scale=sk_std[isim], size=1)[0] # random seedset at the start \n",
|
|
|
- " df = df.append({'X': dfl.loc[isim,'X'],'Y': dfl.loc[isim,'Y'],'Value': sim[isim]}, ignore_index=True)\n",
|
|
|
+ " #df = df.append({'X': dfl.loc[isim,'X'],'Y': dfl.loc[isim,'Y'],'Value': sim[isim]}, ignore_index=True) # append is removed\n",
|
|
|
+ " df = pd.concat([df, pd.DataFrame.from_records([{'X': dfl.loc[isim,'X'],'Y': dfl.loc[isim,'Y'],'Value': sim[isim]}])]\n",
|
|
|
+ " ,ignore_index=True)\n",
|
|
|
" dfl.at[isim,'Value'] = float(sim[isim])\n",
|
|
|
" \n",
|
|
|
"# plot the variogram model\n",
|
|
@@ -538,7 +540,7 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 6,
|
|
|
+ "execution_count": 14,
|
|
|
"metadata": {
|
|
|
"scrolled": false
|
|
|
},
|
|
@@ -546,7 +548,7 @@
|
|
|
{
|
|
|
"data": {
|
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
|
- "model_id": "f2e29c3f849a4d40921a703ae5e3fc85",
|
|
|
+ "model_id": "23d6a33e436f49de9f3a5cdb56d7c793",
|
|
|
"version_major": 2,
|
|
|
"version_minor": 0
|
|
|
},
|
|
@@ -560,12 +562,12 @@
|
|
|
{
|
|
|
"data": {
|
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
|
- "model_id": "0187bdd543124595a61c2835ae29983b",
|
|
|
+ "model_id": "5f131774884e4df68a4b2834f0801aa6",
|
|
|
"version_major": 2,
|
|
|
"version_minor": 0
|
|
|
},
|
|
|
"text/plain": [
|
|
|
- "Output()"
|
|
|
+ "Output(outputs=({'output_type': 'display_data', 'data': {'text/plain': '<Figure size 640x480 with 4 Axes>', 'i…"
|
|
|
]
|
|
|
},
|
|
|
"metadata": {},
|
|
@@ -595,7 +597,7 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 7,
|
|
|
+ "execution_count": 11,
|
|
|
"metadata": {},
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
@@ -711,7 +713,10 @@
|
|
|
" sk_std[isim] = math.sqrt(sk_var[isim])\n",
|
|
|
" sim[isim] = norm.rvs(loc=sk_est[isim], scale=sk_std[isim], size=1)[0] # random seedset at the start \n",
|
|
|
" \n",
|
|
|
- " df = df.append({'X': dfl.loc[isim,'X'],'Y': dfl.loc[isim,'Y'],'Value': sim[isim]}, ignore_index=True)\n",
|
|
|
+ " #df = df.append({'X': dfl.loc[isim,'X'],'Y': dfl.loc[isim,'Y'],'Value': sim[isim]}, ignore_index=True) # append has been removed\n",
|
|
|
+ " df = pd.concat([df, pd.DataFrame.from_records([{'X': dfl.loc[isim,'X'],'Y': dfl.loc[isim,'Y'],'Value': sim[isim]}])]\n",
|
|
|
+ " ,ignore_index=True)\n",
|
|
|
+ " \n",
|
|
|
" dfl.at[isim,'Value'] = float(sim[isim])\n",
|
|
|
"\n",
|
|
|
"# make the 2D simulated model on a regular grid \n",
|
|
@@ -802,7 +807,7 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 8,
|
|
|
+ "execution_count": 12,
|
|
|
"metadata": {
|
|
|
"scrolled": false
|
|
|
},
|
|
@@ -810,7 +815,7 @@
|
|
|
{
|
|
|
"data": {
|
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
|
- "model_id": "9c8357390a12455a8285bf4feb0476cb",
|
|
|
+ "model_id": "ecf1423970ad4fe3b0eb914a3c38127b",
|
|
|
"version_major": 2,
|
|
|
"version_minor": 0
|
|
|
},
|
|
@@ -824,12 +829,12 @@
|
|
|
{
|
|
|
"data": {
|
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
|
- "model_id": "22e3a06b5a5243219b21db31732e097d",
|
|
|
+ "model_id": "70416ed18def48d1a00a1af209b2dbe6",
|
|
|
"version_major": 2,
|
|
|
"version_minor": 0
|
|
|
},
|
|
|
"text/plain": [
|
|
|
- "Output(outputs=({'output_type': 'display_data', 'data': {'text/plain': '<Figure size 432x288 with 3 Axes>', 'i…"
|
|
|
+ "Output(outputs=({'output_type': 'display_data', 'data': {'text/plain': '<Figure size 640x480 with 3 Axes>', 'i…"
|
|
|
]
|
|
|
},
|
|
|
"metadata": {},
|
|
@@ -903,7 +908,7 @@
|
|
|
"name": "python",
|
|
|
"nbconvert_exporter": "python",
|
|
|
"pygments_lexer": "ipython3",
|
|
|
- "version": "3.9.12"
|
|
|
+ "version": "3.11.4"
|
|
|
}
|
|
|
},
|
|
|
"nbformat": 4,
|