|
|
@@ -102,7 +102,7 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 1,
|
|
|
+ "execution_count": 10,
|
|
|
"metadata": {},
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
@@ -140,7 +140,7 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 2,
|
|
|
+ "execution_count": 11,
|
|
|
"metadata": {},
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
@@ -177,7 +177,7 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 3,
|
|
|
+ "execution_count": 12,
|
|
|
"metadata": {},
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
@@ -283,13 +283,13 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 4,
|
|
|
+ "execution_count": 13,
|
|
|
"metadata": {},
|
|
|
"outputs": [
|
|
|
{
|
|
|
"data": {
|
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
|
- "model_id": "497996fed9b54cf7ad359e5ecab0098b",
|
|
|
+ "model_id": "f9678e0cf8d0408fb52571c37a04b9cd",
|
|
|
"version_major": 2,
|
|
|
"version_minor": 0
|
|
|
},
|
|
|
@@ -303,12 +303,12 @@
|
|
|
{
|
|
|
"data": {
|
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
|
- "model_id": "0c3b483a31a7405ca003da355c8d1cf7",
|
|
|
+ "model_id": "832c543dac4c4eb18369c20d18cff658",
|
|
|
"version_major": 2,
|
|
|
"version_minor": 0
|
|
|
},
|
|
|
"text/plain": [
|
|
|
- "Output()"
|
|
|
+ "Output(outputs=({'output_type': 'display_data', 'data': {'text/plain': '<Figure size 640x480 with 1 Axes>', 'i…"
|
|
|
]
|
|
|
},
|
|
|
"metadata": {},
|
|
|
@@ -343,7 +343,7 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 5,
|
|
|
+ "execution_count": 14,
|
|
|
"metadata": {},
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
@@ -531,13 +531,13 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 6,
|
|
|
+ "execution_count": 15,
|
|
|
"metadata": {},
|
|
|
"outputs": [
|
|
|
{
|
|
|
"data": {
|
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
|
- "model_id": "e83a5df3674e4e4b863b66f0ce6ad940",
|
|
|
+ "model_id": "21d4686df24f466aa17cc2e6692df35e",
|
|
|
"version_major": 2,
|
|
|
"version_minor": 0
|
|
|
},
|
|
|
@@ -551,7 +551,7 @@
|
|
|
{
|
|
|
"data": {
|
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
|
- "model_id": "a9ccd02bb35b4b5cb97e43d9408c85fa",
|
|
|
+ "model_id": "5c8e204f500f4d86beb1463c7beb3d8a",
|
|
|
"version_major": 2,
|
|
|
"version_minor": 0
|
|
|
},
|
|
|
@@ -604,7 +604,7 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 7,
|
|
|
+ "execution_count": 16,
|
|
|
"metadata": {},
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
@@ -699,11 +699,11 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 8,
|
|
|
+ "execution_count": 41,
|
|
|
"metadata": {},
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
- "l = widgets.Text(value=' Gold Resources Bayesian Updating Demo, Michael Pyrcz, Professor, The University of Texas at Austin',\n",
|
|
|
+ "l = widgets.Text(value=' Gold Reserves Bayesian Updating Demo, Michael Pyrcz, Professor, The University of Texas at Austin',\n",
|
|
|
" layout=Layout(width='900px', height='30px'))\n",
|
|
|
"# P_happening_label = widgets.Text(value='Probability of Happening',layout=Layout(width='50px',height='30px',line-size='0 px'))\n",
|
|
|
"mu_prior = widgets.FloatSlider(min=0.0, max = 2.0, value=0.5, step = 0.1, description = r'$\\mu_{Au,prior}$',orientation='horizontal', \n",
|
|
|
@@ -741,6 +741,12 @@
|
|
|
" plt.plot(values,PDF_prior,c='green',label='Prior, Exploration',zorder=10); plt.fill_between(values,PDF_prior,color='green',alpha=0.05,zorder=1)\n",
|
|
|
" plt.plot(values,PDF_like,c='red',label='Likelihood, New Appraisal Data',zorder=10); plt.fill_between(values,PDF_like,color='red',alpha=0.05,zorder=1) \n",
|
|
|
" plt.plot(values,PDF_post,c='black',label='Posterior, Exploration + New Appraisal Data',zorder=10); plt.fill_between(values,PDF_post,color='black',alpha=0.05,zorder=1)\n",
|
|
|
+ "\n",
|
|
|
+ " P10 = st.norm.ppf(0.1, loc = mu_post,scale = math.sqrt(sigma2_post))\n",
|
|
|
+ " P90 = st.norm.ppf(0.9, loc = mu_post,scale = math.sqrt(sigma2_post))\n",
|
|
|
+ " plt.annotate('Posterior, P10 = ' + str(np.round(P10,2)) + ' million ounces', [1.0,8.0])\n",
|
|
|
+ " plt.annotate('Posterior, mean = ' + str(np.round(mu_post,2)) + ' million ounces', [1.0,7.6])\n",
|
|
|
+ " plt.annotate('Posterior, P90 = ' + str(np.round(P90,2)) + ' million ounces', [1.0,7.2])\n",
|
|
|
" \n",
|
|
|
" plt.xlabel('Gold Reserves (million ounces)'); plt.ylabel('Density'); plt.title('Gold Mine Reserves, Bayesian Updating Gaussian, PDFs')\n",
|
|
|
" plt.xlim([0.0,2.0]); plt.ylim(0,10); add_grid(); plt.legend(loc = 'upper left')\n",
|
|
|
@@ -749,7 +755,7 @@
|
|
|
" plt.plot(Perc_prior,pvalues,c='green',label='Prior, Exploration')\n",
|
|
|
" plt.plot(Perc_like,pvalues,c='red',label='Likelihood, New Appraisal Data')\n",
|
|
|
" plt.plot(Perc_post,pvalues,c='black',label='Posterior, Exploration + New Appraisal Data')\n",
|
|
|
- " \n",
|
|
|
+ " \n",
|
|
|
" plt.xlabel('Gold Reserves (million ounces)'); plt.ylabel('Cumulative Probability'); plt.title('Gold Mine Reserves, Bayesian Updating Gaussian, CDFs')\n",
|
|
|
" plt.xlim([0.,2.0]); plt.ylim([0,1]); add_grid(); plt.legend(loc = 'lower right')\n",
|
|
|
" \n",
|
|
|
@@ -762,18 +768,18 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 9,
|
|
|
+ "execution_count": 42,
|
|
|
"metadata": {},
|
|
|
"outputs": [
|
|
|
{
|
|
|
"data": {
|
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
|
- "model_id": "81b6b594d997431ead0cbbb11e09ccc4",
|
|
|
+ "model_id": "6b239de7e7ca449b9498559d2222dcb0",
|
|
|
"version_major": 2,
|
|
|
"version_minor": 0
|
|
|
},
|
|
|
"text/plain": [
|
|
|
- "VBox(children=(Text(value=' Gold Resources Bayesian Updating Demo, Michael Pyr…"
|
|
|
+ "VBox(children=(Text(value=' Gold Reserves Bayesian Updating Demo, Michael Pyrc…"
|
|
|
]
|
|
|
},
|
|
|
"metadata": {},
|
|
|
@@ -782,7 +788,7 @@
|
|
|
{
|
|
|
"data": {
|
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
|
- "model_id": "cc553ae2726f4a9e930f9da3f026a380",
|
|
|
+ "model_id": "afa53fb521d54839a32059b3bc8f5281",
|
|
|
"version_major": 2,
|
|
|
"version_minor": 0
|
|
|
},
|