{ "cells": [ { "cell_type": "markdown", "id": "68607c77", "metadata": {}, "source": [ "

\n", " \n", "\n", "

\n", "\n", "## Interactive Demonstration of Marginal, Joint and Conditional Probabilities and Distributions \n", "\n", "### Michael J. Pyrcz, Professor, The University of Texas at Austin \n", "\n", "*Novel Data Analytics, Geostatistics and Machine Learning Subsurface Solutions*" ] }, { "cell_type": "markdown", "id": "eaf4d272", "metadata": {}, "source": [ "### Joint and Conditional Probabilities and Distributions\n", "\n", "First, let's brielfy recall some basic concepts, but for a more complete discussion, please see the following lectures with linked Python demonstrations.\n", "\n", "I have recorded a walk-through of this interactive dashboard in my [Data Science Interactive Python Demonstrations](https://www.youtube.com/playlist?list=PLG19vXLQHvSDy26fM3hDLg3VCU7U5BGZl) series on my [YouTube](https://www.youtube.com/@GeostatsGuyLectures) channel.\n", "\n", "* Join me for walk-through of this dashboard [Chapter 01: Marginal, Joint and Conditional Probabilities and Distributions](https://www.youtube.com/watch?v=4eh8mTJf3O4&t=25s). I'm stoked to guide you, share observations and things to try out!\n", "\n", "* I have a lecture on [Probability](https://www.youtube.com/watch?v=IGPayWv1BBM&t=140s) as part of my [Data Analytics and Geostatistics](https://www.youtube.com/playlist?list=PLG19vXLQHvSB-D4XKYieEku9GQMQyAzjJ). Note, for all my recorded lecture the interactive and well-documented workflow demononstrations are available on my GitHub repository [GeostatsGuy's Python Numerical Demos](https://github.com/GeostatsGuy/PythonNumericalDemos).\n", "\n", "* Also, I have a lecture on [Histograms, PDFs and CDFs](https://www.youtube.com/watch?v=TbqaMXdSV4I&list=PLG19vXLQHvSB-D4XKYieEku9GQMQyAzjJ&index=9) as part of my [Data Analytics and Geostatistics](https://www.youtube.com/playlist?list=PLG19vXLQHvSB-D4XKYieEku9GQMQyAzjJ). Note, for all my recorded lecture the interactive and well-documented workflow demononstrations are available on my GitHub repository [GeostatsGuy's Python Numerical Demos](https://github.com/GeostatsGuy/PythonNumericalDemos).\n", "\n", "##### Probability \n", "\n", "Measure of the likelihood that an event will occur. For random experiments and well-defined settings (such as coin tosses): \n", "\n", "\\begin{equation}\n", "Prob(𝐴)=P(𝐴)=lim_{𝑛\\rightarrow \\infty} \\frac{𝑛(𝐴)}{𝑛(Ξ©)} \n", "\\end{equation}\n", "\n", "$n(A) =$ number of times event $A$ occurred $n(\\Omega) =$ number of trails\n", "\n", "##### Distribution\n", "\n", "For a variable / feature a description of the likelihood or probability of occurrence over the range of possible values.\n", "\n", "What do we get from a statistical distribution?\n", "\n", "* what is the minimum and maximum?\n", "\n", "* do we have a lot of low values?\n", "\n", "* do we have a lot of high values?\n", "\n", "* do we have outliers (values that don’t make sense and need explaining)?" ] }, { "cell_type": "code", "execution_count": 1, "id": "86a14a55", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABUMAAAJjCAYAAAAmrgAuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACztklEQVR4nOzdeXRV5dWA8ScDBJBB5oQpxKGKgHMraCMoSlEjQ6RaEBHUKsUJQWuBKmANKBZERRyqMqjgECNSxIEC4q3AV5xFEa0CEUhAQAEHppv7/XGaQCQohJCbkOe3VtblvOe95+5ESg+bvc+OiUQiESRJkiRJkiTpEBcb7QAkSZIkSZIkqTSYDJUkSZIkSZJUIZgMlSRJkiRJklQhmAyVJEmSJEmSVCGYDJUkSZIkSZJUIZgMlSRJkiRJklQhmAyVJEmSJEmSVCGYDJUkSZIkSZJUIZgMlSRJkiRJklQhmAyVVO5NmjSJmJgY3n777SLPp6Wl0bx584Lj5s2b06dPn/36jAULFjB8+HC+/fbb4gcqSZJUzn344Yf07duXlJQUqlSpQvXq1Tn55JMZPXo0GzdujHZ4P2v48OHExMQU672zZs1i+PDhRZ4rzr1lSWjfvj0xMTHExMQQGxtLjRo1OOqoo/j9739PZmYmeXl5JRJrce+Df/pZb7zxBjExMWRmZu7XdX7ODz/8wPDhw3njjTf2OJf/d4QVK1aU2Oftq93/2/z0a8mSJaUeT76y+vOSSlt8tAOQpNL24osvUrNmzf16z4IFCxgxYgR9+vTh8MMPPziBSZIklWH/+Mc/6N+/P8cccwy33HILxx13HDt27ODtt9/m4YcfZuHChbz44ovRDvOgmDVrFg8++GCRCdHi3FuWlCOOOIKnn34agO+//57ly5czffp0fv/735Oamso///lPatWqdUCxFvc+uDR+Lj/88AMjRowAggTk7i644AIWLlxIUlLSQY1hb3b/b7O7I488MgrRBMryz0sqTSZDJVU4J510UrRD2G87duwgJiaG+Hj/2JYkSaVv4cKF/OlPf+Lcc89l+vTpJCQkFJw799xzGTRoEK+++moUI4yeaN5bVq1alTZt2hRau+qqq5g4cSJXXHEFV199Nc8++2zBudKI9ccff6Rq1apRv+euX78+9evXj9rnF/XfpiyL9s9LKk22yUuqcH7aspOXl8edd97JMcccQ9WqVTn88MM5/vjjue+++4CgpeqWW24BICUlpaDFJb+9JC8vj9GjR3PssceSkJBAgwYN6N27N6tWrSr0uZFIhJEjR5KcnEyVKlU49dRTmT17Nu3bty/0L7P5LURPPvkkgwYNonHjxiQkJPDf//6Xr7/+mv79+3PcccdRvXp1GjRowNlnn00oFCr0WStWrCAmJoZ77rmHu+++m+bNm1O1alXat2/PZ599xo4dO/jLX/5Co0aNqFWrFt26dWPdunUl/8OWJEmHhJEjRxITE8Ojjz5aKBGar3LlynTu3LngOCYmpsgqyp/eh+W35s6dO5c//vGP1K1bl5o1a9K7d2++//57cnNzufjiizn88MNJSkri5ptvZseOHQXvz79v+mnbb/690KRJk372+3r22Wfp2LEjSUlJVK1alRYtWvCXv/yF77//vmBPnz59ePDBBwu+r/yv/Hbi3b+nr7/+msqVK3Pbbbft8VmffvopMTEx3H///QVrubm5XHPNNTRp0oTKlSuTkpLCiBEj2Llz58/G/Uv69u3L+eefz/PPP8/KlSsL1kv6Prh58+akpaWRlZXFSSedRJUqVQoqD/fWkr9161YGDhxIYmIiVatWpV27drz33nuF9vz0/jhfnz59Ch5/tWLFioLk3YgRIwpiy//MvbV9P/HEE5xwwglUqVKFOnXq0K1bN5YuXbrH51SvXp3//ve/nH/++VSvXp2mTZsyaNAgtm3bttef+77aW2xF/X5u3749rVq1YvHixaSmplKtWjWOOOII7rrrrj0ehfDtt98yaNAgjjjiiIK/l5x//vl8+umn5frnJZU0S4wkHTLC4XCRN46RSORn3zd69GiGDx/OX//6V84880x27NjBp59+WvBcpKuuuoqNGzfywAMPkJWVVdA6ctxxxwHwpz/9iUcffZTrrruOtLQ0VqxYwW233cYbb7zBu+++S7169QAYOnQoo0aN4uqrryY9PZ2vvvqKq666ih07dvCrX/1qj7gGDx5M27Ztefjhh4mNjaVBgwZ8/fXXAAwbNozExES+++47XnzxRdq3b8+cOXP2uGl88MEHOf7443nwwQcLbo4uvPBCTjvtNCpVqsQTTzzBypUrufnmm7nqqquYMWPGfv3MJUnSoS8cDjN37lxOOeUUmjZtelA+46qrriI9PZ1nnnmG9957jyFDhrBz506WLVtGeno6V199Nf/617+4++67adSoEQMHDiyRz/388885//zzGTBgAIcddhiffvopd999N//5z3+YO3cuALfddhvff/89mZmZLFy4sOC9RbUT169fn7S0NCZPnsyIESOIjd1VfzRx4kQqV67MpZdeCgSJ0N/85jfExsZy++23c+SRR7Jw4ULuvPNOVqxYwcSJEw/oe+vcuTOzZs0iFAqRnJxc5J4DvQ8GePfdd1m6dCl//etfSUlJ4bDDDvvZuIYMGcLJJ5/MY489xqZNmxg+fDjt27fnvffe44gjjtjn7y8pKYlXX32VTp06ceWVV3LVVVcB/Gx146hRoxgyZAg9evRg1KhRbNiwgeHDh9O2bVsWL17M0UcfXbB3x44ddO7cmSuvvJJBgwbx5ptv8re//Y1atWpx++2371OMP/27SWxsbKHfE/sqNzeXSy+9lEGDBjFs2DBefPFFBg8eTKNGjejduzcAW7Zs4be//S0rVqzg1ltv5bTTTuO7777jzTffJCcnh9NPP73M/7ykUhORpHJu4sSJEeBnv5KTkwv2JycnRy6//PKC47S0tMiJJ574s59xzz33RIDI8uXLC60vXbo0AkT69+9faP3//u//IkBkyJAhkUgkEtm4cWMkISEhcskllxTat3DhwggQadeuXcHavHnzIkDkzDPP/MXvfefOnZEdO3ZEOnToEOnWrVvB+vLlyyNA5IQTToiEw+GC9XHjxkWASOfOnQtdZ8CAAREgsmnTpl/8TEmSVLHk5uZGgMgf/vCHfX4PEBk2bNge6z+9D8u/j7v++usL7evatWsEiIwdO7bQ+oknnhg5+eSTC47z75vmzZtXaF/+vdDEiRML1oYNGxb5ub8C5+XlRXbs2BGZP39+BIh88MEHBeeuvfbavb73p9/TjBkzIkDk9ddfL1jbuXNnpFGjRpGLLrqoYO2aa66JVK9ePbJy5cpC1/v73/8eASIff/zxXmONRCKRdu3aRVq2bLnX86+88koEiNx99917jfVA7oPzrxcXFxdZtmxZked2/6z8/1Ynn3xyJC8vr2B9xYoVkUqVKkWuuuqqQt/b7vfH+S6//PJC9/Vff/31Xn+v5f/eyo/7m2++iVStWjVy/vnnF9qXnZ0dSUhIiPTs2bPQ5wCR5557rtDe888/P3LMMcfs8Vk/1a5duyL/TnLppZcWGVu+on4/51/r//7v/wrtPe644yK/+93vCo7vuOOOCBCZPXv2XuMqqz8vqbTZJi/pkDFlyhQWL168x9dvf/vbn33fb37zGz744AP69+/Pa6+9xubNm/f5M+fNmwewRwvQb37zG1q0aMGcOXMAWLRoEdu2bePiiy8utK9NmzaFJt3v7qKLLipy/eGHH+bkk0+mSpUqxMfHU6lSJebMmbNHuwrA+eefX+hfn1u0aAEED0jfXf56dnb2Xr5TSZKkgyctLa3Q8c/ds+ze9n2gvvzyS3r27EliYiJxcXFUqlSJdu3aARR5b7UvzjvvPBITEwtVdr722musWbOGK664omBt5syZnHXWWTRq1IidO3cWfJ133nkAzJ8//wC+s1/ujoIDuw/Od/zxxxfZ5bQ3PXv2JCYmpuA4OTmZ008/veC++mBZuHAhP/744x737U2bNuXss88uuG/PFxMTw4UXXlho7fjjj9/n339HHnnkHn8v+dvf/las2BMTE/nNb37zs7G88sor/OpXv+Kcc84p1mf8VGn/vKTSZJu8pENGixYtOPXUU/dYr1WrFl999dVe3zd48GAOO+wwnnrqKR5++GHi4uI488wzufvuu4u83u42bNgAFN0m1ahRo4L/88/f17Bhwz32FbW2t2uOHTuWQYMG0a9fP/72t79Rr1494uLiuO2224q8Ya9Tp06h48qVK//s+tatW4uMRZIkVVz16tWjWrVqLF++/KB9xv7cs5TU/cp3331HamoqVapU4c477+RXv/oV1apV46uvviI9PZ0ff/yxWNeNj4/nsssu44EHHuDbb7/l8MMPZ9KkSSQlJfG73/2uYN/atWv55z//SaVKlYq8zvr164v1+fny70MbNWq01z0Hch+cb3+njycmJha59sEHH+zXdfbXL923z549u9BatWrVqFKlSqG1hISEff79lz8joCTUrVt3j7WEhIRCv0e//vprmjVrViKfB6X/85JKk8lQSRVefHw8AwcOZODAgXz77bf861//YsiQIfzud7/jq6++olq1ant9b/6NSU5ODk2aNCl0bs2aNQXPC83ft3bt2j2ukZubW2R16O7/Yp7vqaeeon379jz00EOF1rds2fLz36QkSVIxxcXF0aFDB1555RVWrVq1xz1PURISEoocnJKfYCkp+cmXn37WviQS586dy5o1a3jjjTcKqkGBgudlHoi+fftyzz338Mwzz3DJJZcwY8YMBgwYQFxcXMGeevXqcfzxx5ORkVHkNX4uibkvZsyYQUxMDGeeeeZe9xzIfXC+ou5Zf05ubm6Ra7sn/KpUqcKmTZv22HcgCeLd79t/avf79tJwIL9v96Z+/fp7DHA9EGXp5yWVNNvkJWk3hx9+ON27d+faa69l48aNBdMU86em/rRC4OyzzwaCJOXuFi9ezNKlS+nQoQMAp512GgkJCTz77LOF9i1atGi/WkdiYmL2mOD64YcfFnqYvyRJUkkbPHgwkUiEP/7xj2zfvn2P8zt27OCf//xnwXHz5s358MMPC+2ZO3cu3333XYnGlf8Pyj/9rH0ZCpmfxPvpvdUjjzyyx9693QvuTYsWLTjttNOYOHEiU6dOZdu2bfTt27fQnrS0NJYsWcKRRx7JqaeeusfXgSRDJ06cyCuvvEKPHj32uVpwf++Di2vatGmFWvhXrlzJggULCg0Cbd68OZ999lmhZOGGDRtYsGBBoWvtT2xt27alatWqe9y3r1q1irlz5xbct5eGA/l9uzfnnXcen332WcHgr6KU15+XVNKsDJVU4V144YW0atWKU089lfr167Ny5UrGjRtHcnJywYTE1q1bA3Dfffdx+eWXU6lSJY455hiOOeYYrr76ah544AFiY2M577zzCqbJN23alJtuugkIWrwGDhzIqFGjqF27Nt26dWPVqlWMGDGCpKSkfZ4qmZaWxt/+9jeGDRtGu3btWLZsGXfccQcpKSl7TKuUJEkqKW3btuWhhx6if//+nHLKKfzpT3+iZcuW7Nixg/fee49HH32UVq1aFTwz8LLLLuO2227j9ttvp127dnzyySeMHz+eWrVqlWhciYmJnHPOOQX3WMnJycyZM4esrKxffO/pp59O7dq16devH8OGDaNSpUo8/fTTRbZr598L3n333Zx33nnExcVx/PHHF7TzF+WKK67gmmuuYc2aNZx++ukcc8wxhc7fcccdzJ49m9NPP50bbriBY445hq1bt7JixQpmzZrFww8//ItVuD/++COLFi0q+PWXX37J9OnTmTlzJu3atePhhx/+2fcfyH1wjRo1fvbae7Nu3Tq6devGH//4RzZt2sSwYcOoUqUKgwcPLthz2WWX8cgjj9CrVy/++Mc/smHDBkaPHk3NmjULXatGjRokJyfz0ksv0aFDB+rUqUO9evWK7Lo6/PDDue222xgyZAi9e/emR48ebNiwgREjRlClShWGDRtWrO+nOH79619zzDHHcPPNN7Nz505q167Niy++yL///e9iX3PAgAE8++yzdOnShb/85S/85je/4ccff2T+/PmkpaVx1llnldufl1TSrAyVVOGdddZZvPnmm/Tr149zzz2Xv/71r3To0IH58+cXPMOpffv2DB48mH/+85/89re/5de//jXvvPMOAA899BB33XUXs2bNIi0tjaFDh9KxY0cWLFhQqN0nIyODO++8k5dffpnOnTtz//3389BDD9GgQQMOP/zwfYp16NChDBo0iMcff5wLLriAxx57jIcffvgXh0RJkiQdqD/+8Y+8/fbbnHLKKdx999107NiRrl27Mm3aNHr27Mmjjz5asPeWW27hlltuYdKkSVx44YW88MILPPfcc/t8z7M/nnzySTp06MCtt97K73//e1avXs20adN+8X1169bl5Zdfplq1avTq1YsrrriC6tWr79HJA8HQn6uuuooJEybQtm1bfv3rX7NmzZqfvf4f/vAHqlatyqpVq/aoCoXgWYxvv/02HTt25J577qFTp05cdtllPPHEE5x44onUrl37F7+HL7/8krZt29K2bVsuvPBCRo4cSZUqVXj++eeZO3fuLyYsD/Q+uDhGjhxJcnIyffv25YorriApKYl58+Zx5JFHFuw544wzmDx5Mh9//DFdunThzjvvZPDgwYWqR/M9/vjjVKtWjc6dO/PrX/+a4cOH7/WzBw8ezGOPPcYHH3xA165due6662jZsiULFiwoSP6Whri4OP75z39y7LHH0q9fP3r37k1CQgLjx48v9jVr1KjBv//9b6688koeffRRLrjgAv74xz+ybNmyQlXG5fHnJZW0mMi+jJiTJB0Uy5cv59hjj2XYsGEMGTIk2uFIkiRJknRIMxkqSaXkgw8+YNq0aZx++unUrFmTZcuWMXr0aDZv3sySJUv2OlVekiRJkiSVDJ8ZKkml5LDDDuPtt9/m8ccf59tvv6VWrVq0b9+ejIwME6GSJEmSJJUCK0MlSZIkSZIkVQgOUJIkSZIO0JtvvsmFF15Io0aNiImJYfr06b/4nvnz53PKKadQpUoVjjjiiF+c+ixJkqQDZzJUkiRJOkDff/89J5xwwj5PAl6+fDnnn38+qampvPfeewwZMoQbbriBF1544SBHKkmSVLHZJi9JkiSVoJiYGF588UW6du261z233norM2bMYOnSpQVr/fr144MPPmDhwoWlEKUkSVLFdMgPUMrLy2PNmjXUqFGDmJiYaIcjSZIUNZFIhC1bttCoUSNiY20QiqaFCxfSsWPHQmu/+93vePzxx9mxYweVKlXa4z3btm1j27ZtBcd5eXls3LiRunXrep8rSZIqtP25zz3kk6Fr1qyhadOm0Q5DkiSpzPjqq69o0qRJtMOo0HJzc2nYsGGhtYYNG7Jz507Wr19PUlLSHu8ZNWoUI0aMKK0QJUmSyp19uc895JOhNWrUAIIfRs2aNaMcjSRJUvRs3ryZpk2bFtwfKbp+Ws2Z//SqvVV5Dh48mIEDBxYcb9q0iWbNmnmfK0kSMGPGDIYOvpXsVWsK1po1aUTGqLvp3LnzPl0jFAqRlpbGv66BXxdRV/efbDj3UZg5cyapqaklFfohJVo/w/25zz3kk6H5N5M1a9b0JlGSJIm9J9tUehITE8nNzS20tm7dOuLj46lbt26R70lISCAhIWGPde9zJUkVXVZWFr179yatRYRnr4dWibAkF0bOzaF3795kZmaSnp7+i9fZvHkzAKc1g+p7/l8upzXbtc//7y1ap06daN6sCff9ezXTL4+we8d6Xh7c/1YMKclN6NSpE3FxcSX++ftyn+vDoiRJkqRS1rZtW2bPnl1o7fXXX+fUU08t8nmhkiQdasLhMG+88QbTpk3jjTfeIBwOF/s6g266kbQWEab3gTbJQSKzTTJMvzxC2nFw88AB+3T9/MfULMkt+nz+elGPs1EgLi6OMffex8xPoOvkGBaugC1bYeGK4HjmJ/D3seMOSiJ0X5kMlSRJkg7Qd999x/vvv8/7778PwPLly3n//ffJzs4Gghb33r17F+zv168fK1euZODAgSxdupQnnniCxx9/nJtvvjka4UuSVKqysrI46ojmnHXWWfTs2ZOzzjqLo45oTlZW1n5fKxQKsSJ7FUM6wE/n5sTGwuCzIixf+RWhUOgXr5WamkrzZk0YOTeGvLzC5/LyYNS8GFKSm9oi/wvS09PJzMzkoy2NOX081PwrnD4elnzXZJ+rdA8mk6GSJEnSAXr77bc56aSTOOmkkwAYOHAgJ510ErfffjsAOTk5BYlRgJSUFGbNmsUbb7zBiSeeyN/+9jfuv/9+LrrooqjEL0lSaQiHw9xxxx10734RrauvYuH1sCUDFl4PrWuspnv37vudEM3JyQGC1vii5K/n7/s55aGqsbxIT0/nv1+uYN68eUydOpV58+bx+RfLo54IBYiJ5D+p/RC1efNmatWqxaZNm3yegyRJqtC8Lzq0+N9TklSeZGVlMXDADaxevZpOx8BLfdnjeZJdJ8ew5LsmfP7F8n1OOL7xxhucddZZLLw+aI3/qYUrgqrEefPm0b59+32OddBNN7Iie1XBWkpyU/4+dlyZSOZpT/tzX2RlqCRJkiRJkg6arKwsunfvTqPY1ezMg6HnHHhLe76D0dpelqsadeAO+WnykiRJkiRJKn35Q5L+dM0fSWsR4ZITYOHKkmlpz5ff2t69e3e6To5h8FmRgmnyo+YFre2Zmfvf2h4XF7fPlaQqX6wMlSRJkiRJUonKH5J0zjnnsG79RoZ0gMa1gnMlPa29rA/sUdliZagkSZIkSZJKTH5bfFqLCH1/B8NeC6o+q1aC5rVh5ByY3mfPZ4YGLe1NijWtPT09nS5duhAKhcjJySEpKYnU1FSHHWkPJkMlSZIkSZJ0wH7aFj+9D7z5ZXBuSW4w4GhMZ+g+BbpOgsFnU9DSPnIuvLy0eC3t+Wxt176wTV6SJEmSJEkHpKi2+NhYSD1iVzVoXh6kt4bM3vBRDoVa2j/+3pZ2lQ6ToZIkSZIkSdpv+ZWgN910E927X0Tr6qsY8bvgXP4wpLjYoBp05tKgGnThCjj3aHiyB7RtHuwZMWIEn3+xwkSoSoVt8pIkSZIkSdovWVlZDLrpRlZkryI+Fi44liLb4mFXNeigGUEVaL6U5Ka88MI4k6AqVVaGSpIkSZIkaZ/lD0hqXX0VD3aDnXkw9Jyi2+LzpbeGz24NqkHr16vDv/71Lz7/YrmJUJU6k6GSJEmSJEnaJ9u3b+e6/v244H8DkmpXC9Z/ri1+y9bg9aInY1i0MoaHH/kHHTp0cNK7osJkqCRJkiRJkn5RVlYWzZo2Jmft1wz934CkpBrBuSW5u/btbUjSku8ckqToMxkqSZIkSZKkgoFI06ZN44033iAcDhecy2+Nb1xpPbCrEtS2eJU3JkMlSZIkSZIquKysLI46ojlnnXUWPXv25KyzzuKoI5qTlZVFOBxm0E03ktYiwj1pwf78SlDb4lXemAyVJEmSJEmqwHYfiLTwetiSAQuvh9Y1VtO9e3cyMjJYkb2KIR2g3ZF7VoLaFq/yxGSoJEmSJElSBbV71ef0PtAmGaonBK/TL4+QdhyMf+A+IGiN31slaFINaPm/1vkBAwYwb9482+JVJsVHOwBJkiRJkiRFRygUYkX2KqZdHwxE2l1sLAw+K8Lp4zcCQWt8m+RdlaCDZgQVoPkaJdbnhRceNgGqMs1kqCRJkiRJUgX10ksvAbsGIv1U/nqDenUYOfcbpl8eITY2SIh2aQnzv4BbXoY1O+qzfOUqKleuXEqRS8VjMlRSmZSdnc369eujHUaJqlevHs2aNYt2GJIkSZIEBC3y06Y+Beyq+vyp/EFJ115/I8OHD6fr5BgGnxWhVWJwbty/Y3hvNWRmPmwiVOWCyVBJZU52djYtjj2GH37cGu1QSlS1qlVY+ukyE6KSJEmSyoSMjAzWrltPo5rBQKTpfQq3yuflQcacoP196NChtGrVikE33cjp41cV7ElJbkJm5jhb41VumAyVVOasX7+eH37cylM9oUWDaEdTMpaug15Tt7J+/XqToZIkSZJKXDgcJhQKkZOTQ1JSEqmpqcTFxe11f1ZWFsOGDQNgdBpcNi0YiDT4bAqqPkfNhZeXwoABlxIXF0d6ejpdunTZr8+RyhqToZLKrBYN4OQm0Y5CkiRJksq2rKwsBt10Iyuyd1VsNm/WhDH33ldkxWb+BPm2ybBwJRxZt+iBSI1rBq9dunQpWIuLi6N9+/YH61uRDrrYX94iSZIkSZKksigrK4vu3bvTuvoqFl4PWzJg4fXQusZqunfvTlZW1h7vyZ8gf08aNK8dtMh3bQn/HQzz+sHUS2HONXBiY0hJbkpqamoUvjPp4DAZKkmSJEmSVA7lV3imtYgwvU8wAKl6QvA6/fIIacfBzQMHEA6HC70vJycHgBMawZjOMHNp0CL/n2w4pUmQIB37Jsz6FP4+dpxt8DqkmAyVJEmSJEkqh/IrPId0KDz4CILjwWdFWL7yK0KhUKFzSUlJQPBc0PTWQYv8RzlBi3zNvwavry2D4cNHOBhJhxyfGSpJkiRJklQO5Vd4tkos+nz+ev6+fKmpqTRv1oSRc1cz/fII6a2hS0sIfQmrN8GDCyEnrwlDhw49mOFLUWFlqCRJkiRJUjlUr149IKjwLEr+eoMGDQqtx8XFMebe+5j5CXSdHMPCFfDDdkiIh2c/jGHRyhjG3Huf7fE6JJkMlSRJkiRJKmeysrLodWkP4mMhYw7k5RU+n5cHI+dC/F4yP+np6WRmZvLRlsaF2uOXfNeEzMxM2+N1yLJNXpIkSZIkqRzJnyB/UqMI6/Lg5f8NQBp8dtAavyQXRs0N1iMRWLduXZHXSU9Pp0uXLoRCIXJyckhKSiI1NdWKUB3STIZKkiRJkiSVE/kT5C9oEeGmVOjwCIzsBI8sCio786XUgYxOMOSVXQOTihIXF0f79u0PfuBSGWEyVJIkSZIkqZzInyA/7Xr4dVNoXhsWrITPboW3VkDOFkiqAWc0h4uejCEluQmpqanRDlsqM3xmqCRJkiRJUjnx1VdfAUE7fFwsjOkMM5fCRVOCAUhpLYLX9Ckw8xP4+9hxtr1Lu7EyVJIkSZIkqRzIysrixhuuA4LngrZJhvTWkNkbBs0o3CZfr87hZGY+7iAk6SesDJUkSZIkSSrj8ocmNa+2mfhYGLnbBPn01vDfwTDnGji5McTGwNhx95sIlYpgMlSSJEmSJKkMyx+alNYiwt8vhJ15QQt810mwcAVs2Qr/yYZxIXhvNeRFoGnTptEOWyqTbJOXJEmSJEkqw4oamlTvMPgoZ88J8qc0hQ2xTR2aJO2FyVBJkiRJkqQy7KWXXgIKD03qPgUuOBZubgdVK8GPO+CVZTDr0xgyMx2aJO2NyVBJkiRJkqQyKhwOM3niE0DRQ5NmLt21t1FifTIzH/ZZodLPMBkqSZIkSZJURmVkZPDNps00qhkMTZreB2Jjg4Rol5Yw/wsY9E/46sdaLF+5isqVK0c7ZKlMc4CSJEmSJElSGRQOh3ng/vsAGJ0WVIEWNTTp/TVw2eV9TYRK+8DKUEmSJEmSpDIoFAqxfsNGAI6su6s1fvehSY1rBq9dunSJQoRS+WMyVJIkSZIkqQzKyckBILn2rhb5Li0h9CXkbIGG1WHMfNiZUNfp8dI+sk1ekiRJkiSpDGrQoAEA/drsapH/Tzac0gSa14Z7QzDrU+jX/zqnx0v7yMpQSZIkSZKkMio+Ft5aCc/1gltmFm6Rr5EAsTFYFSrtB5OhkiRJkiRJZdDMmTPZmQcvL4UY4MkesHkrLF4Fry2DhSuDfevWrYtqnFJ5YjJUkiRJkiSpjAmHw0ye+AQAIzvBI4sgdcKu8yl1YOR5MOQVSEpKilKUUvljMlSSJEmSJKmMycjI4JtNm2lUExashM9uhbdWBIOTkmrAGc2h22RolFjfNnlpPzhASZIkSZIkqQwIh8O88cYbPP3009w75u8AjE4LhiddNAUS4iGtRfB60ZSgff7iP1zq8CRpP1gZKkmSJEmSFGVZWVkMuulGVmSvKrR+ZF3I7A2DZhQentS4ZvDapUuXUoxSKv9MhkqSJEmSJEVJOBwmIyOD4cOHkdYCpl0PS9fCFc9Bcm0YOQem94EuLSH0ZdAm37A6jJkPOxPq2iIv7Sfb5CVJkiRJkqIgKyuLI1OS+duIYVxwbJD0bJMcDEcC6NcmaJHvOgn+kw2nNIHmteHeEMz6FPpfd4Mt8tJ+sjJUkiRJkiSplGVlZdG9e3faNIuwMg+GngOx/ytZSz0iSHouWAnP9YJbZhZuka+RAA3q12Xo0KHRCV4qx6JaGTp8+HBiYmIKfSUmJhacj0QiDB8+nEaNGlG1alXat2/Pxx9/HMWIJUmSJEmSDkw4HGbQTTeS1iLCtacHa612pUOIi4UxnYOq0CnvwJM94OUrYHhHaNsctmyDhx5+1KpQqRii3ibfsmVLcnJyCr4++uijgnOjR49m7NixjB8/nsWLF5OYmMi5557Lli1bohixJEmSJElS8YVCIVZkr2JIB2hcK1hbklt4T3rrYHDSO6sgdQJc8AQMfx1yI0154YUXSE9PL/3ApUNA1Nvk4+PjC1WD5otEIowbN46hQ4cW/A988uTJNGzYkKlTp3LNNdeUdqiSJEmSJEkH7KWXXgKCatCqlYKW+PxBSbG7la11bQkTF0Pehvr8fcy9NG7cmNTUVCtCpQMQ9crQzz//nEaNGpGSksIf/vAHvvzySwCWL19Obm4uHTt2LNibkJBAu3btWLBgwV6vt23bNjZv3lzoS5IkSZIkqSwIh8NMm/oUEFSD7t4S33USLFwBW7YGr10mwctLY3hwwsNceumltG/f3kSodICimgw97bTTmDJlCq+99hr/+Mc/yM3N5fTTT2fDhg3k5gb14Q0bNiz0noYNGxacK8qoUaOoVatWwVfTpk0P6vcgSZIkSZK0r0KhEGvXradRzaAaNC9vV0v8RznBoKSafw1eP/6+CZmZmbbESyUoqsnQ8847j4suuojWrVtzzjnn8PLLLwNBO3y+mJiYQu+JRCJ7rO1u8ODBbNq0qeDrq6++OjjBS5IkSZIk7aecnBwARqcVrgY99+hgUFLb5GDfRRddxOdfrDARKpWwqD8zdHeHHXYYrVu35vPPP6dr164A5ObmkpSUVLBn3bp1e1SL7i4hIYGEhISDHaokSZIkSdJ+a9CgAQBH1g2qQQfNCKpA8zWuGbz+6U9/siVeOgii/szQ3W3bto2lS5eSlJRESkoKiYmJzJ49u+D89u3bmT9/PqeffnoUo5QkSZIkSSqeUChEfCxkzAkGJP13MMzrB1MvhTnXwImNIb5MZWukQ0tU/+d18803M3/+fJYvX87//d//0b17dzZv3szll19OTEwMAwYMYOTIkbz44ossWbKEPn36UK1aNXr27BnNsCVJkiRJkvZbOBzmwfEPsDMPXv5fi/x/suGUJsFE+XEhmPUp7MwLOmMllbyotsmvWrWKHj16sH79eurXr0+bNm1YtGgRycnBAzL+/Oc/8+OPP9K/f3+++eYbTjvtNF5//XVq1KgRzbAlSZIkSZL2WygUYv2GjQCM7ASPLCrcIp9SBzI6wZBXKPTIQEklJ6rJ0GeeeeZnz8fExDB8+HCGDx9eOgFJkiRJkiQdJPnDk5Jrw4KV8Nmt8NYKyNkCSTXgjObQbTI0rF+X1NTUqMYqHap8CoUkSZIkSVIpyB+e1K9NMEn+oimQEA9pLYLX9ClB+3y//tc5PEk6SMrUNHlJOtQtXbo02iGUqHr16tGsWbNohyFJkiSVG/Gx8NZKeK4X3DKzcJt8jQSIjcGqUOkgMhkqSaUgZ3NwU9OrV69oh1KiqlWtwtJPl5kQlSRJkn5BOBzm4YcfLhieFAM82QM2b4XFq+C1ZbBwZbDX4UnSwWMyVJJKwbdbIS8CT/WEFg2iHU3JWLoOek3dyvr1602GSpIkST8jKyuLgQNu4KtVq4Fdw5NSJ+zak1IHRp7n8CTpYDMZKkmlqEUDOLlJtKOQJEmSVFqysrLo3r07bZpFWBmBRjV/fnhSo8T6tslLB5EDlCRJkiRJkg6CcDjMoJtuJK1FhGtPD9ZGpxU9POmi/w1PuvgPlzo8STqIrAyVJEmSJEk6CEKhECuyVzHteti6I1g7si5k9oZBMwoPT2pcM3jt0qVL6QcqVSAmQyVJkiRJkg6CnJwcAFolQtVK0Lw2jJwD0/tAl5YQ+jJok29YHe4NQeXvm9oiLx1ktslLkiRJkiQdBA0aBNNTl+RCXCyM6Ry0yHedBP/JhlOaBAnSe0Pw8tIY/j52nC3y0kFmZagkSZIkSdJBEh8LGXPgpT6Q3rroFvmkhvXJzHyY9PT0qMUpVRRWhkqSJEmSJB0EM2fOZGdeMBip6yRYuALOPRqe7AFtk3ftu2fMvSZCpVJiZagkSZIkSVIJC4fDTJ74BAAjO8EjiwpXg6bUgZHnwZBXoHHjxlGKUqp4TIZKkiRJkiSVsIyMDL7ZtJlGNWHBSvjsVnhrRTAwKakGnNEcuk2GRon1HZoklSLb5CVJkiRJkkpQOBzmgfvvA2B0WjA06aIpkBAPaS2C14umBO3zF//hUocmSaXIylBJkiRJkqQSFAqFWL9hIwBH1i16aFLjmsFrly5dohChVHGZDJUkSZIkSSqGcDhMKBQiJyeHpKQkUlNTiYuL46WXXgIguTaMnAPT+0CXlhD6MmiTb1gdxsyHnQl1bZGXSplt8pIkSZIkSfspKyuLo45ozllnnUXPnj0566yzOOqI5jz//PNMm/oUAP3aBC3yXSfBf7LhlCbQvDbcG4JZn0L/626wRV4qZVaGSpIkSZIk7YesrCy6d+9OWosI066HVomwJBdGzl3NxRdfDFAwOOm5XnDLzMIt8tUToPbhNRk6dGiUvgOp4jIZKkmSJEmStI/C4TCDbrqRtBYRpveB2P/13LZJhumXR/j1/fDuqmBw0mXTgnNP9oDNW2HxKnhtGSxcCQP+dIVVoVIUmAyVJEmSJEnaRxkZGazIXsW063clQvPFxsIVpwbJ0N0HJ6VO2LXHwUlSdJkMlSRJkiRJ2gdZWVkMGzYMCFrji3LpyTBgBmTMgZf67Dk46d4QVP6+qYOTpChxgJIkSZIkSdIvyG+Pb5scHC/JLXrf0nWwMw9eXgpdJ8cUGpw07t8xvLw0hr+PHWeLvBQlJkMlSZIkSZJ+QSgUYkX2Ku5JCxKbI+dAXl7hPXl5MHIupCQ35bnnnuejLY05fTzU/GswQGnJd03IzMwkPT09Ot+EJNvkJUmSJEmSfklOTg4AJzSCMZ2h+xToOgkGn71rmnzGHJj1KWRmjiM9PZ1u3boRCoXIyckhKSmJ1NRUK0KlKDMZKkmSJEmS9AsaNGgABEnP9Na7hiOdPn7XnvhYuP32YQWVn3FxcbRv3z4K0UraG9vkJUmSJEmSfkEoFCI+Nqj+zMsLEqL/HQzz+sFTPaBNMkQiOBhJKuNMhkqSJEmSJP2McDjMg+Mf2DUYaRIsXAE/bIeEeHj2A/i/bAhHYN26ddEOV9LPsE1ekiRJkiTpZ4RCIdZv2AjAyE7wyKLC7fEpdSCjEwx5BZKSkqIUpaR9YTJUkiRJkiTpZ+QPT0quDQtWwme3wlsrIGcLJNWAM5pDt8nQsH5d2+SlMs42eUmSJEmSpL0Ih8OsWbMGgH5tYOZSuGhK0B6f1iJ4TZ8StM/363+d0+KlMs7KUEmSJEmSpCJkZWUx6KYbWZG9ivhYeGslPNcLbplZuE2+RgLExjg8SSoPTIZKkiRJkiT9RFZWFt27dyetRYS+v4NhrwXVnzHAkz1g81ZYvApeWwYLVwbvcXiSVPbZJi9JkiSVgAkTJpCSkkKVKlU45ZRTCIVCP7v/6aef5oQTTqBatWokJSXRt29fNmzYUErRSpJ+Tjgcpn+/q7ng2AjT+8CZKcH6yE7wUQ6kToALnoDhr0PuFhh5XnDe4UlS2WcyVJIkSTpAzz77LAMGDGDo0KG89957pKamct5555GdnV3k/n//+9/07t2bK6+8ko8//pjnn3+exYsXc9VVV5Vy5JKkomRkZLD26w0MPQdiYyH1CGi+2/Ckef1g6qXB67I/w8LsGFKSm9omL5UDJkMlSZKkAzR27FiuvPJKrrrqKlq0aMG4ceNo2rQpDz30UJH7Fy1aRPPmzbnhhhtISUnht7/9Lddccw1vv/12KUcuSfqp7du3c++YvwPQKjFYi4uFMZ2LHp500ZMxzPwE/j52nMOTpHLAZKgkSZJ0ALZv384777xDx44dC6137NiRBQsWFPme008/nVWrVjFr1iwikQhr164lMzOTCy64YK+fs23bNjZv3lzoS5JUsrKysmjWtDHfbt4CwJLcXefSW0Nm76BN/vTxUPOvweuS75qQmZlJenp6lKKWtD9MhkqSJEkHYP369YTDYRo2bFhovWHDhuTm5hb5ntNPP52nn36aSy65hMqVK5OYmMjhhx/OAw88sNfPGTVqFLVq1Sr4atq0aYl+H5JU0eUPTGpcaT0AybVh5BzIy9u1J7110CbfphnUrFGdf/3rX3z+xXIToVI5YjJUkiRJKgExMTGFjiORyB5r+T755BNuuOEGbr/9dt555x1effVVli9fTr9+/fZ6/cGDB7Np06aCr6+++qpE45ekiiwcDjPophtJaxHhnrRgrV+boC2+6yRYuAK2bA1e06fAomwYdPMtdOjQwdZ4qZyJj3YAkiRJUnlWr1494uLi9qgCXbdu3R7VovlGjRrFGWecwS233ALA8ccfz2GHHUZqaip33nlnkdOIExISSEhIKPlvQJJERkYGK7JXMe16+HXTXcOSnusFt8wM2uHz1UiABvXrMnTo0OgFLKnYrAyVJEmSDkDlypU55ZRTmD17dqH12bNnc/rppxf5nh9++IHY2MK34vmVRZFI5OAEKkkqUlZWFsOGDQOCgUm7D0ua8g482QNevgKGd4Q2ybBlGzz08KNWhErllJWhkiRJ0gEaOHAgl112Gaeeeipt27bl0UcfJTs7u6DtffDgwaxevZopU6YAcOGFF/LHP/6Rhx56iN/97nfk5OQwYMAAfvOb39CoUaNofiuSVKHkt8e3SYZFK4OBSW2Sdw1LGjQDUifs2t8osT4vvPCwzwiVyjGToZIkSdIBuuSSS9iwYQN33HEHOTk5tGrVilmzZpGcnAxATk4O2dnZBfv79OnDli1bGD9+PIMGDeLwww/n7LPP5u67747WtyBJFVIoFGJF9iqeuhZ6TQ0GJk3vA7GxQUK0S0uY/wXcPBNydtZn+cpVVK5cOdphSzoAJkMlSZKkEtC/f3/69+9f5LlJkybtsXb99ddz/fXXH+SoJEk/Z/Xq1QCc0Choje8+JRiYNPjsoGV+SS6MfRPeXwOZmQ+bCJUOASZDJUmSJElShfSvf/0LCJKeu7fG7z4wKT4W+vTpa2u8dIhwgJIkSZIkSapwsrKymDRpEvGxQXt8Xl6QEP3vYJjXD57qAW2TIRKBDh06RDtcSSXEZKgkSZIkSapQ8gcntU2GnXkw85OgPX7hCvhhOyTEw7MfBEOVwhFo3LhxtEOWVEJsk5ckSZIkSRXKTwcn1TsMPsop3B6fUgdObgIb45qSmpoavWAllSiToZIkSZIkqULJyckBCg9OuuBYuLkdVK0EP+6AWZ/CK8sgM3MccXFxUY5YUkkxGSpJkiRJkiqUBg0aAHsOTpq5dNee+Fi4/fZhDk6SDjE+M1SSJEmSJFUooVCI+FjI2MvgpDb/G5xke7x06DEZKkmSJEmSKoxwOMyD4x9gZx68vLTowUn/lx0MTlq3bl20w5VUwmyTlyRJkiRJFUZGRgbrN2wEYGQneGTRnoOTMjrBkFcgKSkpSlFKOlhMhkqSJEmSpAohKyuLYcOGAZBcGxashM9uhbdWQM4WSKoBZzSHbpOhYf26tslLhyDb5CVJkiRJ0iEvHA4z6KYbaZMcHPdrEwxMumhK0B6f1iJ4TZ8StM/3v+4Gp8hLhyArQyVJkiRJ0iEvFAqxInsVT10LvaYGVaHP9YJbZhZuk6+RAA3q12Xo0KHRC1bSQWMyVJIkSZIkHfJWr14NwAmNYExn6D4lWH+yB2zeCotXwaufwqJsmPTwo1aFSocok6GSJEmSJOmQ9/XXXwOwJBfSW0Nmbxg0A1In7NoTHwt9+/YlPT09SlFKOth8ZqgkSZIkSTrkLV++nPhYGDkH8vKChOh/B8O8fvBUD2ibDJEIdOjQIdqhSjqITIZKkiRJkqRDWjgc5tlnprIzD2Z+Al0nwcIV8MP2YGjSsx/AopUQjkDjxo2jHa6kg8g2eUmSJEmSdEjLyMhg7br1NKoJjWrCRzmFhyal1IGTGkNuuD6pqanRC1TSQWcyVJIkSZIkHbKysrIYNmwYAKPT4LJpcMGxcHM7qFoJftwBry6DmUthwIBLHZwkHeJMhkqSJEmSpENSOBymf7+radMsmBJ/ZN1dg5NmLt21r3HN4LVLly7RCVRSqTEZKkmSJEmSDkkZGRms/XoDL1wLvaYGw5Om94EuLSH0JeRsgYbVYeybULl2U1vkpQrAAUqSJEmSJOmQEw6HeeD++wA4oRGM6RxUg3adBP/JhlOaQPPaQSJ01qfw97HjbJGXKgArQyVJkiRJ0iEnFAqxfsNGAJbkQnrrXS3yuw9Pio+F4cNHkJ6eHqVIJZUmK0MlSZIkSdIh56WXXgIguXbQHp+XFyRE/zsY5vWDp3pAm2ZQp04dhg4dGuVoJZUWk6GSJEmSJOmQsn37dqZMnghAvza72uMXroAftkNCPDzzQTBU6drrb7Q9XqpAbJOXJEmSJEmHjKysLPr/6Ro2frOJRjVhwUp4rhfcMrNwe3z1BKh9eE2rQqUKxmSoJEmSJEk6JGRlZdG9e3dOahRhLTA6DS6bFpx7sgds3gqLV8Fry2DhShjwpyusCpUqGJOhkiRJkiSp3AuHw/TvdzUXHBvhpjOhwyNwZN1dQ5NSJ+za27hm8NqlS5foBCspakyGSpIkSZKkci8jI4O1X29g6B/g102h+f8GJ03vA11aQuhLyNkCDavDvSGo/H1TUlNTox22pFLmACVJkiRJklSuhcNhHrj/PgBaJUJcLIzpvGtw0n+y4ZQmQYL03hC8vDSGv48dZ4u8VAFZGSpJkiRJksq1UCjE+g0bAViSC22SIb31rhb53QcnNUqsT2bmw6Snp0cpWknRZDJUkiRJkiSVazk5OQAk79YaHxsbJES7tIT5X8Cgf8LK72uyfOUqKleuHN2AJUWNbfKSJEmSJKlca9CgAQD92uxqjV+4ArZsDVrk7w3B+2vghgE3mQiVKjgrQyVJkiRJUrkWCoWIj4W3VsJzveCWmYVb42skQGwMDkySZDJUkiRJkiSVT+FwmIyMDEaMGAHAy0shBniyB2zeCotXwWvLYOHKYP+6deuiF6ykMsFkqCRJkiRJKneysrIYOOAGVq9eTZtmsCgbRnaCRxZB6oRd+1LqwMjzYMgrkJSUFL2AJZUJJkMlSZIkSVK5kpWVRffu3WnTLMLKPPj7hdBrKixYCZ/dCm+tgJwtkFQDzmgO6VMgJbmpbfKSHKAkSZIkSZLKj+3bt3Nd/35c0CLCtacHayc0gjGdg+FJF02BhHhIaxG8dpsctM//few44uLiohu8pKizMlSSJEmSJJULWVlZ9P/TNaxdt56hF8PWHcH6klxIbw2ZvWHQjMLDk+JjYfjwEaSnp0cnaEllislQSZIkSZJU5uW3xp/UKMJaoFUiVK0EzWvDyDkwvU+QEO3SEkJfwupN8OBCyMlrwtChQ6MdvqQyosy0yY8aNYqYmBgGDBhQsBaJRBg+fDiNGjWiatWqtG/fno8//jh6QUqSJEmSpFIXDofp3+9qLjg2wj1pwdqSXIiL3dUe33USLFwBP2wP2uOf+QAWrYxhzL332R4vqUCZSIYuXryYRx99lOOPP77Q+ujRoxk7dizjx49n8eLFJCYmcu6557Jly5YoRSpJkiRJkkpbRkYGa7/ewNBzoN2Ru6pB8/J2tcd/lBO0x9f8a/D68fdNyMzMtD1eUiFRT4Z+9913XHrppfzjH/+gdu3aBeuRSIRx48YxdOhQ0tPTadWqFZMnT+aHH35g6tSpUYxYkiRJkiSVlnA4zAP33wcErfFFVYOeezQ82QPaJAfvGTFiBJ9/scJEqKQ9RD0Zeu2113LBBRdwzjnnFFpfvnw5ubm5dOzYsWAtISGBdu3asWDBgr1eb9u2bWzevLnQlyRJkiRJKp9CoRDrN2wEgtZ4KLoaNHUCZG+rzwsvvMDtt99ua7ykIkV1gNIzzzzDu+++y+LFi/c4l5sb/AnXsGHDQusNGzZk5cqVe73mqFGjGDFiRMkGKkmSJEmSoiInJweA5N0GJcXG7hqWNP8LGPRPWPl9TZavXEXlypWjG7CkMi1qlaFfffUVN954I0899RRVqlTZ676YmJhCx5FIZI+13Q0ePJhNmzYVfH311VclFrMkSZIkSSpdDRo0AKBfm8Kt8Vu2wn+y4d4QvL8Gbhhwk4lQSb8oapWh77zzDuvWreOUU04pWAuHw7z55puMHz+eZcuWAUGFaFJSUsGedevW7VEturuEhAQSEhIOXuCSJEmSJKlUxcfCWyvhuV5wy8ygNT5fjQSIjYHU1NToBSip3IhaMrRDhw589NFHhdb69u3Lsccey6233soRRxxBYmIis2fP5qSTTgJg+/btzJ8/n7vvvjsaIUuSJEmSpFI2c+ZMdubBy0shhmBQ0uatsHgVvLYMFv7vSXrr1q2LapySyoeoJUNr1KhBq1atCq0ddthh1K1bt2B9wIABjBw5kqOPPpqjjz6akSNHUq1aNXr27BmNkCVJkiRJUikKh8NMnvgEACM7wSOLgkFJ+VLqwMjzYMgrFOoqlaS9ieoApV/y5z//mR9//JH+/fvzzTffcNppp/H6669To0aNaIcmSZIkSZIOsoyMDL7ZtJlGNWHBSvjsVnhrBeRsgaQacEZz6DYZGiXWt01e0j4pU8nQN954o9BxTEwMw4cPZ/jw4VGJR5IkSZIkRUc4HOaB++8DYHQaXDYNLpoCg8+GtBawJDc4fnkpDBhwKXFxcVGOWFJ5UKaSoZIkSZIkSQChUIj1GzYCcGRdyOwNg2YUHp7UuGbw2qVLlyhEKKk8MhkqSZIkSZLKnJycHACSa8PIOTC9D3RpCaEvgzb5htVhzHzYmVDXFnlJ+yw22gFIkiRJkiT9VIMGDQDo1wZmLoWuk+A/2XBKE2heG+4NwaxPoV//62yRl7TPrAyVJEmSJEllUnwsvLUSnusFt8ws3CJfIwFiY7AqVNJ+MRkqSZIkSZLKnHXr1rEzLxiQFAM82QM2b4XFq+C1ZbBw5a59krSvTIZKkiRJkqQyJ79NfmQneGQRpE7YdS6lDow8D4a8smufJO0Lk6GSJEmSJKnMCYVCBW3yn90Kb60IBicl1YAzmkP6lKCNXpL2h39sSJIkSZKkMiUcDvPg+AcK2uQvmgIJ8ZDWIni9aEqwvjPPNnlJ+8fKUEmSJEmSVKZkZGSwfsNGYFeb/O7Dk1LqQEanoE0+KSkpSlFKKo9MhkqSJEmSpDIjKyuLYcOGAZBcGxbspU2+22RoWL+u0+Ql7Rfb5CVJkiRJUpkQDocZdNONtE0Ojvu1gZlFtMmn/69Nvv91NxAXFxfdoCWVK1aGSpIkSZKkMiEjI4MV2at46lroNTWoCn2uF9wys3CbfI0EaFC/LkOHDo1esJLKJZOhkiRJkiQp6nZvjz+hEYzpDN2nBOee7AGbt8LiVfDqp7AoGyY9/KhVoZL2m8lQSZIkSZIUVeFwmP79rqZNsyDRuSQX0ltDZm8YNANSJ+zaGx8LI0aMID09PXoBSyq3fGaoJEmSJEmKqoyMDNZ+vYG/XwjNa8PIOZCXFyRE/zsY5vWDp3pAm2Ro0qSJ7fGSis1kqCRJkiRJippwOMwD998H7GqPn7kUuk6ChSvgh+3B0KRp78P/ZcOYe++zPV5SsdkmL0mSJEmSoiYjI4P1GzYCe7bH7z40KT4Whg+3PV7SgbEyVJIkSZIkRcXuQ5OSf649vhnUqVPH9nhJB8xkqCRJkiRJKnXhcJhBN91I2+TguF+botvjn/kgGKp07fU32h4v6YDZJi9JkiRJkkpdRkYGK7JX8dS10GsqLFgJz/WCW2YWbo+vkQAN6te1KlRSiTAZKkmSJEmSStXu7fH5Q5O6TwnOPdkDNm+Fxavg1U+DqtBJDz9qVaikEmEyVJIkSZIklZr89vg2ybBo5Z5Dk1In7NobHwsjRjg0SVLJ8ZmhkiRJkiSp1IRCIVZkr+LvadD854YmJUOTJk1sj5dUokyGSpIkSZKkUrN69WpgV3t8UUOTpr0P/5cNY+69z/Z4SSXKNnlJkiRVSMuXLyclJSXaYUhShfP1118De7bH7z40KT4W+vTpa3u8pBJnZagkSZIqpKOOOoqzzjqLp556iq1bt0Y7HEmqMOrXr0987N7b49smQyQCHTp0iHaokg5BJkMlSZJUIX3wwQecdNJJDBo0iMTERK655hr+85//RDssSTrkJSYmsjMPZn6yZ3v8sx8EQ5XCkWCfJJU0k6GSJEmqkFq1asXYsWNZvXo1EydOJDc3l9/+9re0bNmSsWPHFrRxSpJKXnwsnNwEPsoJ2uNr/jV4XZIbrMebrZB0kPjHiyRJkiq0+Ph4unXrxnPPPcfdd9/NF198wc0330yTJk3o3bs3OTk50Q5Rkg4pubm57MyDd1dDq0QY3xUe/33w2rJhsL4zL9gnSSXNZKgkSZIqtLfffpv+/fuTlJTE2LFjufnmm/niiy+YO3cuq1evpkuXLtEOUZIOKfmV9yM7BZWg102HK58PXj9eCxmdCu+TpJLkNHlJkiRVSGPHjmXixIksW7aM888/nylTpnD++ecTGxvUC6SkpPDII49w7LHHRjlSSTq05A9QWrASPrsV3loBOVsgqQac0RwumhK0ydevXz/aoUo6BFkZKkmSpArpoYceomfPnmRnZzN9+nTS0tIKEqH5mjVrxuOPPx6lCCXp0LT7AKWLpgSDk9JaBK8XTQnWd+Y5QEnSwWFlqCRJkiqk2bNn06xZsz0SoJFIhK+++opmzZpRuXJlLr/88ihFKEmHplAoRHwsnNBo1wClfCl1ggFKH6yJXnySDm0mQyVJklQhHXnkkeTk5NCgQYNC6xs3biQlJYVwOBylyCTp0JWVlcWIESOAYFDSBcfCze2gaiX4cQe8ugxe/hQiEVi3bl2Uo5V0KDIZKkmSpAopEokUuf7dd99RpUqVUo5Gkg594XCY/v2upk0zWJQdDFB6ZBHMXLprT0qdYIDSkFcgKSkpesFKOmSZDJUkSVKFMnDgQABiYmK4/fbbqVatWsG5cDjM//3f/3HiiSdGKTpJOnRlZGSw9usNvHAt9Jq69wFK6VMgJbkpqamp0Q5Z0iHIZKgkSZIqlPfeew8IKkM/+ugjKleuXHCucuXKnHDCCdx8883RCk+SDknhcJgH7r8PCJ4VOqYzdJ8SDEwafHYwQGlJLnSbDLM+hczMccTFxUU5akmHIpOhkiRJqlDmzZsHQN++fbnvvvuoWbNmlCOSpENfKBRi/YaNQJD0TG8Nmb1h0IzCA5TiY2H48BGkp6dHKVJJhzqToZIkSaqQJk6cGO0QJKnCyMnJASC5NoycA9P7BAnRLi0h9CWs3gTj34Ivf6jD0KFDoxuspEOayVDpEJCdnc369eujHUaJWbp06S9vkiSpGNLT05k0aRI1a9b8xaqjrKysUopKkg59DRo0AKBfGxjyKnSdFLTHt0qEhHh45oNgqNKwYdfbHi/poDIZKpVz2dnZtDj2GH74cWu0Q5EkqcyrVasWMTExBb+WJJWe+Fh4ayU81wtumVm4Pb5GAsTG4NAkSQedyVCpnFu/fj0//LiVp3pCiwbRjqZkzPoUbns12lFIkg5Fu7fG2yYvSaVn5syZ7MyDl5dCDPBkD9i8FRavgteWwcKVwb5169ZFNU5Jhz6TodIhokUDOLlJtKMoGUu9/5EkSZIOGeFwmMkTnwBgZCd4ZBGkTth1PqUOjDwPhrwCSUlJUYpSUkVhMlSSJEkVxkknnVTQJv9L3n333YMcjSRVDBkZGXyzaTONasKClfDZrfDWCsjZAkk14Izm0G0yNEqsb5u8pIPOZKgkSZIqjK5du0Y7BEmqUMLhMA/cfx8Ao9Pgsmlw0ZRgeFJaC1iSGxy/vBQGDLjU4UmSDjqToZIkSaowhg0bdtCuPWHCBO655x5ycnJo2bIl48aN+9kKp23btnHHHXfw1FNPkZubS5MmTRg6dChXXHHFQYtRkkpbRkYG6zdsBODIupDZGwbNKDw8qXHN4LVLly5RiFBSRWMyVJIkSTpAzz77LAMGDGDChAmcccYZPPLII5x33nl88sknNGvWrMj3XHzxxaxdu5bHH3+co446inXr1rFz585SjlySDp6srKyCf4RKrg0j58D0PtClJYS+DNrkG1aHMfNhZ0JdW+QllQqToZIkSaow6tSpw2effUa9evWoXbv2zz4/dOPGjft83bFjx3LllVdy1VVXATBu3Dhee+01HnroIUaNGrXH/ldffZX58+fz5ZdfUqdOHQCaN2++f9+MJJVR4XCYN954gz9d80faJgeT4vu1gSGvQtdJQYv8KU2CFvmRc2HWpzBixA22yEsqFSZDJUmSVGHce++91KhRAwgSliVh+/btvPPOO/zlL38ptN6xY0cWLFhQ5HtmzJjBqaeeyujRo3nyySc57LDD6Ny5M3/729+oWrVqke/Ztm0b27ZtKzjevHlzicQvSSUpKyuLQTfdyIrsVcHxJdBrajA46blecMvMwi3yNRKgQf26DB06NEoRS6poTIZKkiSpwrj88suL/PWBWL9+PeFwmIYNGxZab9iwIbm5uUW+58svv+Tf//43VapU4cUXX2T9+vX079+fjRs38sQTTxT5nlGjRjFixIgSiVmSDoasrCy6d+9OWosIfX8Hw16DExrBmM7QfUqw58kesHkrLF4Fr34Ki7Jh0sOPWhUqqdSYDJUkSVKFFQ6HefHFF1m6dCkxMTG0aNGCLl26EB+//7fJP225j0Qie23Dz8vLIyYmhqeffppatWoBQat99+7defDBB4usDh08eDADBw4sON68eTNNmzbd7zgl6WAIh8MMuulGLmgRYXofePPLYH1JLqS33jU4KXXCrvfEx8KIESNIT0+PSsySKiaToZIkSaqQlixZQpcuXcjNzeWYY44B4LPPPqN+/frMmDGD1q1b79N16tWrR1xc3B5VoOvWrdujWjRfUlISjRs3LkiEArRo0YJIJMKqVas4+uij93hPQkICCQkJ+/rtSVKpCoVCrMhexbTrITYWUo+A5rsNTUpvvWtw0upN8OBCyMlrYnu8pFIXG+0AJEmSpGi46qqraNmyJatWreLdd9/l3Xff5auvvuL444/n6quv3ufrVK5cmVNOOYXZs2cXWp89ezann356ke8544wzWLNmDd99913B2meffUZsbCxNmjQp3jckSVG0evVqAFolBsdxsUF7/MylwdCkhSvgh+2QEA/PfhjDopUxjLn3PtvjJZU6k6GSJEmqkD744ANGjRpF7dq1C9Zq165NRkYG77///n5da+DAgTz22GM88cQTLF26lJtuuons7Gz69esHBC3uvXv3Ltjfs2dP6tatS9++ffnkk0948803ueWWW7jiiiv2OkBJksqyr7/+Ggja4vPlt8d/lBMMTar51+B1yXdNyMzMtD1eUlSYDJUkSVKFdMwxx7B27do91tetW8dRRx21X9e65JJLGDduHHfccQcnnngib775JrNmzSI5ORmAnJwcsrOzC/ZXr16d2bNn8+2333Lqqady6aWXcuGFF3L//fcf2DclSVFSv3594mODtvi8vF3r6a3hs1uhbTLExsCQIUP4/IvlJkIlRY3PDJUkSVKFsXnz5oJfjxw5khtuuIHhw4fTpk0bABYtWsQdd9zB3Xffvd/X7t+/P/379y/y3KRJk/ZYO/bYY/dorZek8ioxMZGdeTDzk6AtfvDZQcv8klwYNRcWrYQIcPbZZ9saLymqTIZKkiSpwjj88MMLTXiPRCJcfPHFBWuRSASACy+8kHA4HJUYJak8CoVCxMfCCY12tcXnS6kDJzeBD9ZELz5JymcyVJIkSRXGvHnzoh2CJB1ywuEwD45/gJ158O5quOBYuLkdVK0EP+6AV5fBy59CJBI8ikSSoslkqCRJkiqMdu3aRTsESTrkhEIh1m/YCMDITvDIomCKfL6UOpDRCYa8AklJSVGKUpICJkMlSZJUof3www9kZ2ezffv2QuvHH398lCKSpPIlJycHgOTasGBlMDDprRWQswWSasAZzaHbZGhYvy6pqalRjVWSTIZKkiSpQvr666/p27cvr7zySpHnfWaoJO2bBg0aANCvDQx5FS6aEgxQSmsRDFBKnwIvL4Vhw65zeJKkqIuNdgCSJElSNAwYMIBvvvmGRYsWUbVqVV599VUmT57M0UcfzYwZM6IdniSVK/Gx8NZKeK7XrgFKNf8avM7/AmJjsCpUUplgZagkSZIqpLlz5/LSSy/x61//mtjYWJKTkzn33HOpWbMmo0aN4oILLoh2iJJULsycOZOdeUH1ZwzwZA/YvBUWr4LXlsHClcE+hydJKgusDJUkSVKF9P333xe0dtapU4evv/4agNatW/Puu+9GMzRJKjfC4TCTJz4BBMOTPsqB1AlwwRMw/HXI3QIjzwv2OjxJUllgZagkSZIqpGOOOYZly5bRvHlzTjzxRB555BGaN2/Oww8/7F/YJWkfZWRk8M2mzTSq+fPDkxol1rdNXlKZYGWoJEmSKqQBAwYUTEAeNmwYr776Ks2aNeP+++9n5MiRUY5Oksq+cDjMA/ffB8DoNJi5NBielBAfDE9KiA+OX14KF//hUocnSSoTrAyVJElShXTppZcW/Pqkk05ixYoVfPrppzRr1ox69epFMTJJKh9CoRDrN2wE4Mi6kNkbBs0Ihibla1wzeO3SpUsUIpSkPZkMlSRJUoUXiUSoWrUqJ598crRDkaRy46WXXgIguTaMnAPT+0CXlhD6MmiTb1gdxsyHnQl1bZGXVGbYJi9JkqQK6/HHH6dVq1ZUqVKFKlWq0KpVKx577LFohyVJZV44HGba1KcA6NcmaJHvOgn+kw2nNIHmteHeEMz6FPpfd4Mt8pLKjGJVhi5fvpyUlJSSjkWSJEkqNbfddhv33nsv119/PW3btgVg4cKF3HTTTaxYsYI777wzyhFKUtkVCoVYu259weCk53rBLTMLt8hXT4Dah9dk6NCh0QtUkn6iWMnQo446ijPPPJMrr7yS7t27U6VKlZKOS5IkSTqoHnroIf7xj3/Qo0ePgrXOnTtz/PHHc/3115sMlaSfkT+AbnQaXDYtWHuyB2zeCotXwWvLYOFKGPCnK6wKlVSmFKtN/oMPPuCkk05i0KBBJCYmcs011/Cf//ynpGOTJEmSDppwOMypp566x/opp5zCzp07oxCRJJUfDRo0AHYNTvooB1InwAVPwPDXIfubYF9aWloUo5SkPRUrGdqqVSvGjh3L6tWrmThxIrm5ufz2t7+lZcuWjB07lq+//rqk45QkSZJKVK9evXjooYf2WH/00UcLTZqXJBUtPhYy5kDXlvDfwTCvH0y9FOZcAyc2Ds5LUllzQNPk4+Pj6datG+effz4TJkxg8ODB3HzzzQwePJhLLrmEu+++m6SkpJKKVZIkSTogAwcOLPh1TEwMjz32GK+//jpt2rQBYNGiRXz11Vf07t07WiFKUrmwZs0adubBy/8bnDT47GBw0pJcGDU3GJwUiUBubm60Q5WkQg4oGfr222/zxBNP8Mwzz3DYYYdx8803c+WVV7JmzRpuv/12unTpYvu8JEmSyoz33nuv0PEpp5wCwBdffAFA/fr1qV+/Ph9//HGpxyZJ5UVWVhY33nAdACM7wSOLCg9OSqkDGZ1gyCvYOSqpzClWMnTs2LFMnDiRZcuWcf755zNlyhTOP/98YmODGviUlBQeeeQRjj322BINVpIkSToQ8+bNi3YIklSuZWVl0b17d05MirBlczBJ/rNb4a0VkLMFkmrAGc3hoilBm3z9+vWjHbIkFVKsJ3g89NBD9OzZk+zsbKZPn05aWlpBIjRfs2bNePzxx0skSEmSJOlgWrVqFatXr452GJJUpoXDYQbddCNpLSL8/ULYmQczPwkSnwnxkNYieL1oSrC+Mw8aN24c7bAlqZBiVYZ+/vnnv7incuXKXH755cW5vCRJknTQ5eXlceeddzJmzBi+++47AGrUqMGgQYMYOnToHv/YL0kVXSgUYkX2KqZdD79uCs1rQ73DgknyP22TP6UpbIhtSmpqavQClqQiFCsZOnHiRKpXr87vf//7QuvPP/88P/zwg0lQSZIklXlDhw7l8ccf56677uKMM84gEonw1ltvMXz4cLZu3UpGRka0Q5SkMuWll14CoFUixMXCmM7QfQpccCzc3A6qVoIfd8Ary2DWpzFkZo4jLi4uylFLUmHFSobeddddPPzww3usN2jQgKuvvtpkqCRJksq8yZMn89hjj9G5c+eCtRNOOIHGjRvTv39/k6GStJtwOMzkiU8AwcT4NsmQ3hoye8OgGTBz6a69jRLrk5n5MOnp6VGKVpL2rljJ0JUrV5KSkrLHenJyMtnZ2QcclCRJknSwbdy4sciBn8ceeywbN26MQkSSVHZlZGTwzabNNKoJI+fA9D4QGxskRLu0hPlfwKB/wlc/1mL5ylVUrlw52iFLUpGK9SCkBg0a8OGHH+6x/sEHH1C3bt0DDkqSJEk62E444QTGjx+/x/r48eM54YQTohCRJJVN4XCYB+6/D4DRaUEVaNdJsHAFbNkK/8mGcSF4fw1cdnlfE6GSyrRiJUP/8Ic/cMMNNzBv3jzC4TDhcJi5c+dy44038oc//GGfr/PQQw9x/PHHU7NmTWrWrEnbtm155ZVXCs5HIhGGDx9Oo0aNqFq1Ku3bt+fjjz8uTsiSJElSIaNHj+aJJ57guOOO48orr+Sqq67iuOOOY9KkSdxzzz3RDk+SyoxQKMT6DUHF/JF1g9b4/KFJNf8avL67KtjbpUuXKEYqSb+sWMnQO++8k9NOO40OHTpQtWpVqlatSseOHTn77LMZOXLkPl+nSZMm3HXXXbz99tu8/fbbnH322XTp0qUg4Tl69GjGjh3L+PHjWbx4MYmJiZx77rls2bKlOGFLkiRJBdq1a8dnn31Gt27d+Pbbb9m4cSPp6eksW7bM6ceStJv8wUnJtYMW+a4t4b+DYV4/mHopzLkGTmgEDevX9c9PSWVesZ4ZWrlyZZ599ln+9re/8cEHH1C1alVat25NcnLyfl3nwgsvLHSckZHBQw89xKJFizjuuOMYN24cQ4cOLXjo8uTJk2nYsCFTp07lmmuuKU7okiRJEjt27KBjx4488sgjDkqSpJ8RDoeZNvUpAPq1gSGvBi3yg8+GU5oEw5RGzoVZn8KIETc4PV5SmVesZGi+X/3qV/zqV78qkUDC4TDPP/8833//PW3btmX58uXk5ubSsWPHgj0JCQm0a9eOBQsW7DUZum3bNrZt21ZwvHnz5hKJT5JUtKVLl/7ypnKkXr16NGvWLNphSDrIKlWqxJIlS4iJiYl2KJJUpoVCIdauW0+jmrBgJTzXC26ZGbTG56ueALUPr8nQoUOjF6gk7aNiJUPD4TCTJk1izpw5rFu3jry8vELn586du8/X+uijj2jbti1bt26levXqvPjiixx33HEsWLAAgIYNGxba37BhQ1auXLnX640aNYoRI0bsx3cjSSqOnM0QGwO9evWKdiglqlrVKiz9dJkJUakC6N27N48//jh33XVXtEORpDJr+vTpQDA46bJpwdqTPWDzVli8Cl5bBgtXwoA/XWFVqKRyoVjJ0BtvvJFJkyZxwQUX0KpVqwP6F/VjjjmG999/n2+//ZYXXniByy+/nPnz5xec/+m1I5HIz37e4MGDGThwYMHx5s2badq0abHjkyQV7dutkBeBp3pCiwbRjqZkLF0HvaZuZf369SZDpQpg+/btPPbYY8yePZtTTz2Vww47rND5sWPHRikySSobnn/+eSaMfwDYNThp0AxInbBrT+OawauDkySVF8VKhj7zzDM899xznH/++QccQOXKlTnqqKMAOPXUU1m8eDH33Xcft956KwC5ubkkJSUV7F+3bt0e1aK7S0hIICEh4YDjkiTtmxYN4OQm0Y5CkvbfkiVLOPnkkwH47LPPCp2zfV5SRZeVlcXFF18MQKOaweCk6X2gS0sIfQk5W6BhdRgzHyLV6js4SVK5UewBSvkJzJIWiUTYtm0bKSkpJCYmMnv2bE466SQg+Nf7+fPnc/fddx+Uz5YkSVLFMW/evGiHIEllUjgcZtBNN3JyY3h39a4W+Z8OThr1v8FJAwZcaou8pHKjWMnQQYMGcd999zF+/PgD+lfzIUOGcN5559G0aVO2bNnCM888wxtvvMGrr75KTEwMAwYMYOTIkRx99NEcffTRjBw5kmrVqtGzZ89if6YkSZL0/PPPM336dHbs2ME555zD1VdfHe2QJKnMCIVCrMhexS3d4N0XC7fI7z44yRZ5SeVRsZKh//73v5k3bx6vvPIKLVu2pFKlSoXOZ2Vl7dN11q5dy2WXXUZOTg61atXi+OOP59VXX+Xcc88F4M9//jM//vgj/fv355tvvuG0007j9ddfp0aNGsUJW5IkSeLRRx+lX79+HH300VSpUoUXXniB5cuXM2rUqGiHJkllwksvvQTApSfDPW/svUV+7JtQuXZTW+QllSvFSoYefvjhdOvW7YA//PHHH//Z8zExMQwfPpzhw4cf8GdJkiRJAA888ABDhw7lb3/7GwCTJk3i+uuvNxkqSQQt8tOmPgUEwyXHdIbuU/Zskc+YE7TIZ2aOs0VeUrlSrGToxIkTSzoOSZIkqVR8+eWX9O3bt+D4sssu4+qrryY3N5fExMQoRiZJ0RcKhVi7bn2hoUlFtcgnVIrlueeeJT09PWqxSlJxxBb3jTt37uRf//oXjzzyCFu2bAFgzZo1fPfddyUWnCRJklTSfvzxR6pXr15wHBcXR0JCAj/88EMUo5KksmH16tVAMDRp5tKgIjSpBrx3E4zvCic3DvZd3e9aunfvHrU4Jam4ilUZunLlSjp16kR2djbbtm3j3HPPpUaNGowePZqtW7fy8MMPl3SckiRJUol57LHHCiVEd+7cyaRJk6hXr17B2g033BCN0CQpqr7++mvgl4cmHXHEEVGITpIOXLGSoTfeeCOnnnoqH3zwAXXr1i1Y79atG1dddVWJBSdJkiSVtGbNmvGPf/yj0FpiYiJPPvlkwXFMTIzJUEkVUv369YmP3fvQpHvfhLXfBfskqTwq9jT5t956i8qVKxdaT05OLiiplyRJksqiFStWRDsESSqzEhMT2ZkHMz/Zc2jSqLnw8lKI/G+fJJVHxUqG5uXlEQ6H91hftWoVNWrUOOCgJEmSJElS6QuFQsTHwgmN4KOcwi3yKXXg5CbwwZroxSdJB6pYA5TOPfdcxo0bV3AcExPDd999x7Bhwzj//PNLKjZJkiRJklRKsrKyGDFiBDvz4N3V0CoxGJr0+O+D15YNg/WdebBu3bpohytJxVKsytB7772Xs846i+OOO46tW7fSs2dPPv/8c+rVq8e0adNKOkZJkiRJknQQhcNh+ve7mjbNYFE2jOwEjywKJsrnS6kDGZ1gyCuQlJQUvWAl6QAUKxnaqFEj3n//faZNm8a7775LXl4eV155JZdeeilVq1Yt6RglSZIkSdJBlJGRwdqvN/DCtdBrKixYCZ/dCm+tCIYnJdWAM5pD+hRISW5KampqtEOWpGIpVjIUoGrVqlxxxRVcccUVJRmPJEmSJEkqReFwmAfuvw8InhU6pjN0nwIXTQkGKKW1CAYodZsMsz6FzMxxxMXFRTlqSSqeYiVDp0yZ8rPne/fuXaxgJEmSpNL0xRdfMHHiRL744gvuu+8+GjRowKuvvkrTpk1p2bJltMOTpFIRCoVYv2EjECQ901tDZm8YNKPwAKX4WBg+fATp6elRilSSDlyxkqE33nhjoeMdO3bwww8/ULlyZapVq2YyVJIkSWXe/PnzOe+88zjjjDN48803ycjIoEGDBnz44Yc89thjZGZmRjtESSoVL730EgDJtWHkHJjeJ0iIdmkJoS9h9SYY/xZ8+UMdhg4dGt1gJekAFWua/DfffFPo67vvvmPZsmX89re/dYCSJEmSyoW//OUv3HnnncyePZvKlSsXrJ911lksXLgwipFJUukJh8NMm/oUAP3aBAOTuk6ChSvgh+2QEA/PfBAMVbr2+httj5dU7hX7maE/dfTRR3PXXXfRq1cvPv3005K6rCRJknRQfPTRR0ydOnWP9fr167Nhw4YoRCRJpS8jI4O169bTqGYwNOm5XnDLzMLt8dUToPbhNa0KlXRIKLFkKEBcXBxr1qwpyUtKkiRJB8Xhhx9OTk4OKSkphdbfe+89GjduHKWoJKn0ZGVlMWzYMABGp8Fl/2v0fLIHbN4Ki1fBa8tg4UoY8KcrrAqVdEgoVjJ0xowZhY4jkQg5OTmMHz+eM844o0QCkyRJkg6mnj17cuutt/L8888TExNDXl4eb731FjfffLPPwJd0yAuHwwy66UbaJMOilXBk3V1Dk1In7NrXuGbw2qVLl+gEKkklrFjJ0K5duxY6jomJoX79+px99tmMGTOmJOKSJEmSDqqMjAz69OlD48aNiUQiHHfccYTDYXr27Mlf//rXaIcnSQdVKBRiRfYqnroWek3dNTgpf2hSzhZoWB3GvgmVazclNTU12iFLUokoVjI0Ly+vpOOQJEmSSlWlSpV4+umnueOOO3jvvffIy8vjpJNO4uijj452aJJ00K1evRqAExrBmM7QfUowOGnw2XBKE1iSCxlzYNankJk5zhZ5SYeMEn1mqCRJklRezJ8/n3bt2nHkkUdy5JFHRjscSSpVX3/9NRAkPdNb72qR331wUnws9OnTl/T09ChFKUklr1jJ0IEDB+7z3rFjxxbnIyRJkqSD6txzzyUxMZGePXvSq1cvWrVqFe2QJKnULF++nPjYXe3x6a13tciv3gQPLoD/ZEOHDh2iHaoklahiJUPfe+893n33XXbu3MkxxxwDwGeffUZcXBwnn3xywb6YmJiSiVKSJEkqYWvWrOGZZ55h2rRpjB49mlatWtGrVy969uxJkyZNoh2eJB004XCYZ5+Zys48mPnJrvb4VomQEA/PfhAMVYoAjRs3jna4klSiipUMvfDCC6lRowaTJ0+mdu3aAHzzzTf07duX1NRUBg0aVKJBSpIkSSWtXr16XHfddVx33XUsX76cqVOnMmXKFIYMGcKZZ57J3Llzox2iJB0UoVCItevW06gmNKoJH+UUbo9PqQMnNYbccH0HJ0k65MQW501jxoxh1KhRBYlQgNq1a3PnnXc6TV6SJEnlTkpKCn/5y1+46667aN26NfPnz492SJJ00OQPTxqdBu+sDipCx3eFx38fvLZsCO+uhov/cKmDkyQdcopVGbp582bWrl1Ly5YtC62vW7eOLVu2lEhgkiRJUml46623ePrpp8nMzGTr1q107tyZkSNHRjssSToosrKyGHTTAACOrLtrcNLMpbv2NK4ZvKalpZV+gJJ0kBUrGdqtWzf69u3LmDFjaNOmDQCLFi3illtuccqcJEmSyoUhQ4Ywbdo01qxZwznnnMO4cePo2rUr1apVi3ZoknRQZGVl0b17d05rGmFDLGTMgZf67BqclLMFGlaHsW/C2u+iHa0kHRzFSoY+/PDD3HzzzfTq1YsdO3YEF4qP58orr+See+4p0QAlSZKkg+GNN97g5ptv5pJLLqFevXrRDkeSDqpwOMygm24krUWES06AXtPg5aW7hied0gSW5MKouTDrU4hEgu5PSTrUFCsZWq1aNSZMmMA999zDF198QSQS4aijjuKwww4r6fgkSZKkg2LBggXRDkGSSk0oFGJF9iqmXQ9bg5omRnaCRxbtOTwpoxMMeQWSkpKiE6wkHUTFSobmy8nJIScnhzPPPJOqVasSiUSIiYkpqdgkSZKkEjVjxgzOO+88KlWqxIwZM352b+fOnUspKkk6+HJycoBgWFLVStC8NixYCZ/dCm+tCFrkk2rAGc3hoidjSElu4iR5SYekYiVDN2zYwMUXX8y8efOIiYnh888/54gjjuCqq67i8MMPd6K8JEmSyqSuXbuSm5tLgwYN6Nq16173xcTEEA6HSy8wSTrIli1bBgSt8G2SYUxn6D4FLpoStMmntQjOpU8J2uczM8c5SV7SISm2OG+66aabqFSpEtnZ2YUeMH/JJZfw6quvllhwkiRJUknKy8ujQYMGBb/e25eJUEmHkqysLEaMGEH8/4Ym5eVBeutgkvxHOUGbfM2/Bq/vbKhPZmamw5ElHbKKlQx9/fXXufvuu2nSpEmh9aOPPpqVK1eWSGCSJEnSwTRlyhS2bdu2x/r27duZMmVKFCKSpJIRDod54403mDZtGnPmzGHQTTdycmPYmbdraNLCFXDu0fBkD2ibvOu994y510SopENasZKh33//faGK0Hzr168nISHhgIOSJEmSDra+ffuyadOmPda3bNlC3759oxCRJB24rKwsjjqiOWeddRY9e/bknHPOYUX2Kq78TXB+ZKfC1aCpEyB3C4w8LzjfuHHj6AUvSaWgWMnQM888s9C/lsfExJCXl8c999zDWWedVWLBSZIkSQfL3oZ/rlq1ilq1akUhIkk6MFlZWXTv3p3W1Vex8HrYkgEjfhecu/TkwkOT5vWDqZcGr8v+HKynJDd1aJKkQ16xBijdc889tG/fnrfffpvt27fz5z//mY8//piNGzfy1ltvlXSMkiRJUok56aSTiImJISYmhg4dOhAfv+uWOBwOs3z5cjp16hTFCCVp/4XDYQbddCNpLSJM7wOx/yt9OjMleF26bu9Dk7pNhlmfOjRJUsVQrGTocccdx4cffshDDz1EXFwc33//Penp6Vx77bUkJSWVdIySJElSicmfIv/+++/zu9/9jurVqxecq1y5Ms2bN+eiiy6KUnSSVDyhUIgV2auYdv2uRChA6hFBRWjGHHipTzA0adCMoE0+X5VKcTz33DM+K1RShbDfydAdO3bQsWNHHnnkEUaMGHEwYpIkSZIOmmHDhgHQvHlzLrnkEqpUqRLliCTpwOXk5ADQKrHwelzsrorQzhNhaAd47yZ4+l144m14dxVMeXoa3bt3j0LUklT69jsZWqlSJZYsWVLk85UkSZKk8uLyyy+PdgiSVGIaNGgABG3vbZILn0tvDRmd4PbXgmny+VKSm/LCC+OsCJVUoRRrgFLv3r15/PHHSzoWSZIkqdSEw2H+/ve/85vf/IbExETq1KlT6EuSypNQKER8bNAOn5dX+FxeXjAgKRKBv//970ydOpV58+bx+RfLTYRKqnCK9czQ7du389hjjzF79mxOPfVUDjvssELnx44dWyLBSZIkSQfLiBEjeOyxxxg4cCC33XYbQ4cOZcWKFUyfPp3bb7892uFJ0j4Lh8M8OP4BduYFlZ9dJwUDklolBpWio+YG65EINGrUiB49ekQ7ZEmKmv1Khn755Zc0b96cJUuWcPLJJwPw2WefFdpj+7wkSZLKg6effpp//OMfXHDBBYwYMYIePXpw5JFHcvzxx7No0SJuuOGGaIcoSfskFAqxfsNGAEZ2gkcWFR6QlFInaJMf8goOPZZU4e1XMvToo48mJyeHefPmAXDJJZdw//3307Bhw4MSnCRJknSw5Obm0rp1awCqV6/Opk2bAEhLS+O2226LZmiStF/yhycl1w7a4T+7Fd5aATlbIKkGnNEcuk2GhvXrkpqaGtVYJSna9uuZoZFIpNDxK6+8wvfff1+iAUmSJEmloUmTJgUJhKOOOorXX38dgMWLF5OQkBDN0CRpv+QPT+rXBmYuhYumQEI8pLUIXtOnBG3y/fpfR1xcXJSjlaToKtYzQ/P9NDkqSZIklRfdunVjzpw5nHbaadx444306NGDxx9/nOzsbG666aZohydJ+yU+Ft5aCc/1gltmFm6Tr5EAsTFYFSpJ7GcyNCYmZo9ngvqMUEmSJJVHd911V8Gvu3fvTpMmTViwYAFHHXUUnTt3jmJkkrR/1q1bVzA8KQZ4sgds3gqLV8Fry2Dhyl37JKmi269kaCQSoU+fPgVtQ1u3bqVfv357TJPPysoquQglSZKkUtCmTRvatGkT7TAkab/lt8nnD09KnbDrXEodGHleMDwpf58kVWT7lQy9/PLLCx336tWrRIORJEmSDqYZM2bs816rQyWVF6FQqKBNvqjhSelTgjZ6SdJ+JkMnTpx4sOKQJEmSDrquXbvu076YmBjC4fDBDUaSSkA4HObB8Q8UtMlfNAUGnx0MT1qSGxy/vBQiEdvkJQkOcICSJEmSVJ7k5eVFOwRJKlGhUIj1GzYCu9rkdx+elFIHMjoFbfJJSUlRilKSyg6ToZIkSZIklVM5OTkAJNeGBXtpk+82GRrWr+s0eUnCZKgkSZIqqDvuuONnz99+++2lFIkkFV/+UKR+bWDIq3u2yaf/r01+2LDriIuLi3K0khR9JkMlSZJUIb344ouFjnfs2MHy5cuJj4/nyCOPNBkqqdzIH570XC+4ZWbhNvkaCRAbg1WhkvQ/JkMlSZJUIb333nt7rG3evJk+ffrQrVu3KEQkSftv5syZBcOTYoAne8DmrbB4Fby2DBauDPY5PEmSArHRDkCSJEkqK2rWrMkdd9zBbbfdFu1QJOkXhcNhpk19CgiGJ32UA6kT4IInYPjrkLsFRp4X7HV4kiQFrAyVJEmSdvPtt9+yadOmaIchSb8oFAqxdt16GtX8+eFJjRLr2yYvSf9jMlSSJEkV0v3331/oOBKJkJOTw5NPPkmnTp2iFJUk7bvVq1cDMDoNLpu25/Cki/43POnGG3s6PEmS/sdkqCRJkiqke++9t9BxbGws9evX5/LLL2fw4MFRikqS9t3XX38NwJF1IbM3DJpReHhS45rBa/PmzUs/OEkqo0yGSpIkqUJavnx5tEOQpAOyfPly4mNh5ByY3ge6tITQl0GbfMPqcO+bsPY7qF+/frRDlaQywwFKkiRJkiSVM+FwmGefmcrOPJj5CXSdBP/JhlOaQPPaMC4UtMjvzIPGjRtHO1xJKjOsDJUkSVKFtHXrVh544AHmzZvHunXryMvLK3T+3Xff3a/rTZgwgXvuuYecnBxatmzJuHHj9mlgyVtvvUW7du1o1aoV77///n59pqSKa/fhSY1qBpPkd2+RT6kDJzWG3LDDkyRpdyZDJUmSVCFdccUVzJ49m+7du/Ob3/yGmJiYYl/r2WefZcCAAUyYMIEzzjiDRx55hPPOO49PPvmEZs2a7fV9mzZtonfv3nTo0IG1a9cW+/MlVSzhcJgHH3wQ2DU86YJj4eZ2ULUS/LgDXl0GM5fCgAGXOjxJknZjMlSSJEkV0ssvv8ysWbM444wzDvhaY8eO5corr+Sqq64CYNy4cbz22ms89NBDjBo1aq/vu+aaa+jZM5jyPH369AOOQ9KhLysri4EDbuCrVcEk+d2HJ81cumtf/vCkLl26RCFKSSq7fGaoJEmSKqTGjRtTo0aNA77O9u3beeedd+jYsWOh9Y4dO7JgwYK9vm/ixIl88cUXDBs2bJ8+Z9u2bWzevLnQl6SKJSsri+7du9ModjV5kaA9fuQc6NoS/jsY5vWDqZfCnGvghEbQKNEWeUn6KZOhkiRJqpDGjBnDrbfeysqVKw/oOuvXryccDtOwYcNC6w0bNiQ3N7fI93z++ef85S9/4emnnyY+ft+atUaNGkWtWrUKvpo2bXpAcUsqX8LhMINuupG0FhGuPT1YG50WVIMWNTxp1qdw8R9skZekn7JNXpIkSRXSqaeeytatWzniiCOoVq0alSpVKnR+48aN+3W9nz5zNBKJFPkc0nA4TM+ePRkxYgS/+tWv9vn6gwcPZuDAgQXHmzdvNiEqVSChUIgV2auYdj1s3RGs7d4iv/vwJFvkJWnvTIZKkiSpQurRowerV69m5MiRNGzYsNgDlOrVq0dcXNweVaDr1q3bo1oUYMuWLbz99tu89957XHfddQDk5eURiUSIj4/n9ddf5+yzz97jfQkJCSQkJBQrRknlX05ODgCtEoMhSc1rBy3y0/tAl5YQ+hJytkDD6nBvCCp/39QWeUkqgslQSZIkVUgLFixg4cKFnHDCCQd0ncqVK3PKKacwe/ZsunXrVrA+e/bsIquyatasyUcffVRobcKECcydO5fMzExSUlIOKB5Jh6YGDRoAsCQX2iTDmM7QfUrQIj/47KBFfkkujJwLLy+NITNznC3yklQEk6GSJEmqkI499lh+/PHHErnWwIEDueyyyzj11FNp27Ytjz76KNnZ2fTr1w8IWtxXr17NlClTiI2NpVWrVoXe36BBA6pUqbLHuiTlC4VCxMdCxhx4qQ+kty66RT6pYX0yMx8mPT09arFKUlnmACVJkiRVSHfddReDBg3ijTfeYMOGDQc0qf2SSy5h3Lhx3HHHHZx44om8+eabzJo1i+TkZCBob83Ozj4Y34akCiAcDvPg+AfYmQcv/29g0sIVcO7R8GQPaJu8a+89Y+41ESpJP8PKUEmSJFVInTp1AqBDhw6F1vMHH4XD4f26Xv/+/enfv3+R5yZNmvSz7x0+fDjDhw/fr8+TVHGEQiHWbwiGuo3sBI8sKlwNmlIHRp4HQ16Bxo0bRylKSSofTIZKkiSpQpo3b160Q5CkffLSSy8BkFwbFqyEz26Ft1YEA5OSasAZzaHbZGhYv65DkyTpF5gMlSRJUoXUrl27aIcgSb8oHA4zbepTAPRrA0NehYumBEOT0loEQ5PSpwTt8yNG3ODQJEn6BSZDJUmSVCG9+eabP3v+zDPPLKVIJGnvQqEQa9etp1HNoCr0uV5wy8zCbfLVE6D24TUZOnRo9AKVpHLCZKgkSZIqpPbt2++xFhMTU/Dr/X1mqCQdDNOnTwdgdBpcNi1Ye7IHbN4Ki1fBa8tg4UoY8KcrrAqVpH1gMlSSJEkV0jfffFPoeMeOHbz33nvcdtttZGRkRCkqSdrl+eefZ8L4BwA4si5k9oZBMyB1wq49jWsGr126dIlChJJU/pgMlSRJUoVUq1atPdbOPfdcEhISuOmmm3jnnXeiEJUkBbKysrj44osBaFQTRs6B6X2gS0sIfRkMT2pYHcbMh0i1+g5OkqR9FBvtACRJkqSypH79+ixbtizaYUiqwMLhMINuupGTGwfHo9Ng5lLoOgn+kw2nNIHmtWFcCGZ9Chf/4VJb5CVpH1kZKkmSpArpww8/LHQciUTIycnhrrvu4oQTTohSVJIUDE1akb2KW7rBuy8WbpHffXCSLfKStP9MhkqSJKlCOvHEE4mJiSESiRRab9OmDU888USUopIkeOmllwC49GS45429t8iPfRMq125qi7wk7QeToZIkSaqQli9fXug4NjaW+vXrU6VKlShFJElBi/y0qU8BsHQdjOkM3acELfKDzw5a5JfkQsacoEU+M3OcLfKStB9MhkqSJKlCSk5OjnYIkrSHUCjE2nXrCw1NKqpFPqFSLM899yzp6elRi1WSyiMHKEmSJKlCmTt3LscddxybN2/e49ymTZto2bIloVAoCpFJEuTk5ACFhyYl1YD3boLxXSkYqnTNn66je/fuUYtTksorK0MlSZJUoYwbN44//vGP1KxZc49ztWrV4pprrmHs2LE+g09SVDRo0AD45aFJnTt3jkJ0klT+WRkqSZKkCuWDDz6gU6dOez3fsWNH3nnnnVKMSJIKi48NngnatSX8dzDM6wdTL4U518CJjYPzkqTiieofoaNGjeLXv/41NWrUoEGDBnTt2pVly5YV2hOJRBg+fDiNGjWiatWqtG/fno8//jhKEUuSJKm8W7t2LZUqVdrr+fj4eL7++utSjEiSdsnNzWVnHrz8vxb5/2QHQ5Oa14ZxoWBo0s68YJ8kaf9FNRk6f/58rr32WhYtWsTs2bPZuXMnHTt25Pvvvy/YM3r0aMaOHcv48eNZvHgxiYmJnHvuuWzZsiWKkUuSJKm8aty4MR999NFez3/44YckJSWVYkSStEv+P8aM7AQf5QQt8jX/GrwuyYWMToX3SZL2T1SfGfrqq68WOp44cSINGjTgnXfe4cwzzyQSiTBu3DiGDh1aMCFv8uTJNGzYkKlTp3LNNdfscc1t27axbdu2guOiHowvSZKkiuv888/n9ttv57zzzqNKlSqFzv34448MGzaMtLS0KEUnqaKrX78+8bGwYCV8diu8tQJytgRDlM5oDhdNCdrk69evH+1QJalcKlNPGtm0aRMAderUAWD58uXk5ubSsWPHgj0JCQm0a9eOBQsWFHmNUaNGUatWrYKvpk2bHvzAJUmSVG789a9/ZePGjfzqV79i9OjRvPTSS8yYMYO7776bY445ho0bNzJ06NBohympgkpMTGRnHsz8JEh8JsRDWovg9aIpwfrOvGCfJGn/lZlp8pFIhIEDB/Lb3/6WVq1aAbuegdKwYcNCexs2bMjKlSuLvM7gwYMZOHBgwfHmzZtNiEqSJKlAw4YNWbBgAX/6058YPHgwkUgEgJiYGH73u98xYcKEPe4/Jak0xcfCCY12tcnnS6kDJzeBD9ZELzZJKu/KTDL0uuuu48MPP+Tf//73HudiYmIKHUcikT3W8iUkJJCQkHBQYpQkSdKhITk5mVmzZvHNN9/w3//+l0gkwtFHH03t2rWjHZqkCm7mzJnszIN3V8MFx8LN7aBqJfhxB7y6DF7+FCIRWLduXbRDlaRyqUwkQ6+//npmzJjBm2++SZMmTQrW88v+c3NzCz3Eft26df5rvSRJkg5Y7dq1+fWvfx3tMCQJgHA4zLSpTwHBAKVHFsHMpbvOp9QJBigNeQUHvUlSMUU1GRqJRLj++ut58cUXeeONN0hJSSl0PiUlhcTERGbPns1JJ50EwPbt25k/fz533313NEKWJEmSJOmgCIVCrF23nkY19z5AqdtkaJRYn9TU1GiHK0nlUlQHKF177bU89dRTTJ06lRo1apCbm0tubi4//vgjELTHDxgwgJEjR/Liiy+yZMkS+vTpQ7Vq1ejZs2c0Q5ckSZIkqUStXr0agNFpQUVoUQOUXl4Kv7+kJ3FxcVGOVpLKp6hWhj700EMAtG/fvtD6xIkT6dOnDwB//vOf+fHHH+nfvz/ffPMNp512Gq+//jo1atQo5WglSZIkSTp4/vWvfwFwZF3I7A2DZhQeoNS4ZvDavHnz0g9Okg4RUW+T/yUxMTEMHz6c4cOHH/yAJEmS/r+9e4+Lss77P/4eQPGIeUAOgkBt90rqbWltaPesupXpSmEjW2mWtrUb2UHUDhr7S6wb2m1Fycxq2xLNG9JoVluyzExr1sPWlu3mSlopojaIWJuYeWC4fn9cAY6DinK4gHk9H495THPNd+b6zLfx8vv4+P3MBwAACzidTuXk5CgoQMpcK62YJCX1lVw7zTL5sE7SvA+k/Yel0NBQq8MFgBbL0jJ5AAAAAAD8ncfj0eSU3yqht1RRKRVsk8bkSB8WS4OipNiuUrbLLJGvqJR69epldcgA0GI1i27yAAAAAAD4q4yMDO0/cFCv3ytNyJV6dJQ+c3uXyMd1kwZGSd8ERtM8CQDqgWQoAAAAAAAW8Xg8emb+05KkAZFS1g1S8hJpdB/pwaFS+zbSDyekVZ9Lb22X8vOzaZ4EAPVAMhQAAAAAAIu4XC6VHfxGkrS1RHL0r2meVFBYMy4oQEpPny2Hw2FRpADQOvCboQAAAAAAWMTtdkuSYrqajZMqK82E6JczpXUp0tJxUkJvqVu3bkpLS7M4WgBo+UiGAgAAAABgkZ49e0qSUhLMnaBjcqRNRdKR41JwkPTqP6XNxdI9995PeTwANADK5AEAAAAAsFBQgLRht7R8gvRQgXfjpM7BUoBNNE0CgAZCMhQAAAAAAIuUlpaqolJ6s1CySXplnHToqPTRXmn1dmnT7ppxAID6IxkKAAAAAIBFqsrkM0dKL2yW7AtrnovrJmWOkh59q2YcAKB+SIYCAAAAAGChqjL5HY9IG4okd7kU0Vm6KlZyLDGfBwA0DC6pAAAAAABYpKSkpLpMfuwSs2lSYrx5P3aJebyi0hwHAKg/doYCAAAAAGCRd999V1JNmfzJzZPiukkZI80y+QMHDlgUIQC0LiRDAQAAAACwgNPpVE5OjoICpI2nKZMf+2OZfGhoqNXhAkCrQJk8AAAAAABNzOPxaPrUKRocY5bBF2yrvUy+YJv5fK9evawOGQBaBXaGAgAAAADQxFwul4qK92rpvdKEXKlHR+kzt2+Z/MAo6ZvAaNntduuCBYBWhGQoAAAAAABNzO12S5IGREpZN0jJS6TRfaQHh0rt20g/nJBWfS69tV3Kz89WYGCgxREDQOtAMhQAAAAAgCbWs2dPSdLWEsnRX8q/XZr+hlRQWDMmKEB67LFZcjgcFkUJAK0PvxkKAAAAAEATc7lcCgqQMtZKlZVmQvTLmdK6FGnpOCkhRjIMUR4PAA2MZCgAAAAAAE3E4/Fo7dq1mjd3jioqpTcLpTE50qYi6chxs3HSsn9Kfy+WPIZUWlpqdcgA0KqQDAUAAAAAoAk4nU795MJYXXPNNTpU/r0kKXNkTeOkkN+Z91tLpIyR5msiIiIsjBgAWh9+MxQAAAAAgEbmdDqVnJysxHhDd1wnzVotxXSVNu6WdjwibSiS3OVSRGfpqljpxsVSWGh3yuQBoIGxMxQAAAAAgEbk8Xg0feoUJcYbWjFJ+nmceTwlwWyYNHaJWR6fGG/eO5aY5fOT73uALvIA0MDYGQoAAAAAQCNyuVwqKt6rvPulgADJfqEU++Ou0OUTpIcKzPL4Kp2DpZ6h3ZWWlmZd0ADQSpEMBQAAAACgEbndbklSv3DzcWCAlHWDlLzEfPzKOOnQUemjvdLqHWYzpZzn/8SuUABoBCRDAQAAAABoRD179pRkNkZKiDGPOfpL+bdL09+Q7AtrxsbFROv117PlcDgsiBQAWj9+MxQAAAAAgEbkcrkUFCBlrJUqK2uOO/qbzZMSYqQAmzRnzhx98dUuEqEA0IhIhgIAAAAA0Eg8Ho+eXfCMKirNpkhjcswy+PKj5v3YJdLfi6VKQ4qMjKQ0HgAaGWXyAAAAAAA0EpfLpbKD30iSMkdKL2z2bpYU103KGCk9+pYUERFhUZQA4D9IhgIAAAAA0EhWrlwpSYr5sXv8jkekDUWSu1yK6CxdFSvduFgKC+0uu91uaawA4A8okwcAAAAAoBF4PB7l5S6VJKUkSAWFZll8cJCUGG/eO5aY5fOT73uAEnkAaALsDAUAAAAAoBG4XC7tLy1TZIi5K3T5BOmhAu8y+U7BUtcLQpSWlmZdoADgR0iGAgAAAADQCKpK5J9KlG7LM4+9Mk46dFT6aK+0eru0abeUes+v2RUKAE2EZCgAAAAAAA3M4/Fo8aKXJUkXdZfyb5emvyHZF9aM6RVi3iclJVkQIQD4J5KhAAAAAAA0sIyMDH373SFFhkiZa6UVk6SkvpJrp9k8KayTlPW+ZHQIpXESADQhGigBAAAAANCAPB6Pnpn/tCSzRL6gUBqTI31YLA2KkmK7StkuadXn0k233EqJPAA0IXaGAgAAAADQgFwul8oOfiPJu0T+5MZJlMgDgDVIhgIAAAAA0IDcbrckKabrmUvkK4K7UyIPAE2MMnkAAAAAABpQz549JUkpCbWXyM/7sUQ+ZfJ9lMgDQBNjZygAAAAAAA3I5XIpKEDasFtaPkF6qMC7RL5zsBRgE7tCAcACJEMBAAAAAGggHo9Hzy54RhWV0puFkk3SK+OkQ0elj/ZKq7dLm3abY0tLSy2NFQD8EclQAAAAAAAayMnNkzJHSi9sluwLa56P6yZljpIefUuKiIiwKEoA8F8kQwEAAAAAaCArV66UZDZP2rhb2vGItKHIbJwU0Vm6Kla6cbEUFkrzJACwAg2UAAAAAABoAB6PR3m5SyXVNE8au0QKDpIS4817xxKzfH7yfQ/QPAkALMDOUAAAAAAAGoDL5dL+0jJFhpi7QmtrntQpWOp6QYjS0tKsCxQA/BjJUAAAAAAAGkBVifxTidJteeax2ponpd7za3aFAoBFSIYCAAAAAFBPHo9Hixe9LEm6qLuUf7s0/Q3v5km9Qsz7pKQkCyIEAEgkQwEAAAAAqLeMjAx9+90hRYZImWulFZOkpL6Sa6fZPCmsk5T1vmR0CKVxEgBYiGQo/E5xcbHKysqsDqPBFBYWWh0CAAAA4Nc8Ho+emf+0pJoS+TE50sxfSIOipK0l0pPvSas+l1JTb6VEHgAsRDIUfqW4uFjxfX6qIz8ctToUAAAAAK2Ey+VS2cFvJHmXyJ/cOIkSeQBoHkiGwq+UlZXpyA9HtXS8FN/T6mgaxqrPpf/3ttVRAAAAAP6rqnFSTNczl8hXBHenRB4ALEYyFH4pvqc0MMrqKBpGYanVEQAAAAD+y+PxKC93qSQpJUF69G3fEvnMH0vkZ89+gBJ5ALAYyVAAAAAAAM5TRkaG9peWKTJE2rhbWj5BeqjAu0S+U7DU9YIQpaWlWRcoAEASyVAAAAAAAM5Lfn6+Zs2aJammcZIkvTJOOnRU+mivtHq7tGm3lHrPr9kVCgDNAMlQAAAAAADO0Wuvvabbbh2nhN7S5mLvxkn2hTXjaJwEAM0LyVAAAAAAAM6B0+nUTTfdJEmac700Iff0jZPmfiC17RpN4yQAaCYCrA4AAAAAAICWwuPxaPrUKRrYy3w8IFLKukEqKDQbJ31YbDZOiu1qJkJXfS7NmZtNiTwANBPsDAUAAAAAoI4yMjJUVLxXD90offIXs1u8o39NifzJjZOCAqT09NlyOBzWBQwA8MLOUAAAAAAA6sDpdFY3TLp1oLn7M3OtVFlpJkS/nCmtS5GWjpMSYqSoqCg6yANAM0MyFAAAAACAs6gqjx8cYz4uLPUuj99UJB05LgUHSXmfSn8vlrLmPU15PAA0M5TJAwAAAABwFi6XS0XFe7X0Xu+GSbWVx7drE6jly1+lPB4AmiF2hgIAAAAAcBYrVqyQ5NswKaKztGWqtGCMdGmkOXbJ/+UpOTnZqlABAGfAzlAAAAAAAM7gtdde08IFz0g6e8Ok2bNn61e/+pVFkQIAzoZkKAAAAAAAp+F0OnXTTTdJkiJDasrjHf2lpL6Sa6e07ztpwQZp97EeNEwCgGaOMnkAAAAAAGpR1TRpYC/z8VOJtTdMWvZPaXOxdPO4CTRMAoBmjp2hAAAAAADUoqpp0kM3Sp/8Rbqoe+3l8b1CzPukpCRrAgUA1BnJUAAAAAAAarFy5UpJ0q0DpT+urymRryqPd5dLYZ2kuR9IbbtGy263WxovAODsKJMHAAAAAOAUHo9Hixe9LEkqLPXuIP9hsTQoSortaiZCV30uzZmbTYk8ALQA7AwFAAAAAOAUGRkZ+va7Q15Nk2orkQ9uE6Dly5fJ4XBYFisAoO7YGQoAAAAAwEk8Ho+emf+0JO+mSRGdpS1TpQVjVN1U6e577lNycrJlsQIAzg3JUAAAAKABLFy4UHFxcWrXrp0GDRokl8t12rFOp1PXXnutQkNDFRISosGDB2v16tVNGC2AM3G5XCo7+I2kmqZJn7nNHaFdH5PuWyHtLzfH3njjjdYFCgA4ZyRDAQAAgHpatmyZUlNTlZaWpi1btshut2vUqFEqLi6udfwHH3yga6+9VqtWrdLHH3+s4cOH6/rrr9eWLVuaOHIAtXG73ZKkmK5mifyYvtKXM6V1KVLurdLau6UBkVJYaHeaJgFAC0MyFAAAAKinuXPn6s4779Rdd92l+Ph4ZWdnKzo6Ws8991yt47Ozs/Xwww/riiuu0MUXX6zMzExdfPHF+utf/9rEkQOoTc+ePSVJKQm1N02a5zKbJqVMvo+mSQDQwtBACQAAAKiH48eP6+OPP9aMGTO8jo8YMUIbN26s03tUVlaqvLxc3bp1O+2YY8eO6dixY9WPDx06dH4BAzgrl8uloABpw25p+QTpoQLvpkmdg6UAm9gVCgAtEMlQAAAAoB7Kysrk8XgUFhbmdTwsLEwlJSV1eo+srCx9//33uummm0475sknn9Ts2bPrFSuAs3M6ndV/1t4slGySXhknHToqfbRXWr1d2rTbHFtaWmpdoACA80KZPAAAANAAbDab12PDMHyO1SYvL0/p6elatmxZdWlubWbOnKnvvvuu+rZnz556xwzAm8fj0eSU3yqht/k4c6TZOMm+UBr9spT+jlRSLmWOMp+PiIiwLlgAwHlhZygAAABQDz169FBgYKDPLtDS0lKf3aKnWrZsme6880699tpruuaaa844Njg4WMHBwfWOF8DpZWRkaP+Bg3r9XmlCrrRxt7TjEWlDkeQulyI6S1fFSo4lUlxMNGXyANACsTMUAAAAqIe2bdtq0KBBWrNmjdfxNWvWaMiQIad9XV5eniZNmqTc3FyNHj26scMEcBYej0fPzH9aktkpPusGs3nS2CVScJCUGG/e37jYLJ+fMzeb5kkA0AKxMxQAAACop2nTpum2227T5ZdfrsGDB+tPf/qTiouLlZKSIskscd+3b5+WLFkiyUyE3n777Xr66aeVkJBQvau0ffv26tKli2WfA/BnLpdLZQe/kSRtLZEc/aX826Xpb3g3TwoKkNLTZ8vhcFgUKQCgPkiGAgAAAPV088036+DBg3r88cfldrvVr18/rVq1SjExMZIkt9ut4uLi6vEvvPCCKioqdO+99+ree++tPj5x4kTl5OQ0dfgAJK1cuVKSFNNVylwrrZhkJkST+kqundK+76QFG6SdR7opLS3N2mABAOeNZCgAAADQACZPnqzJkyfX+typCc7169c3fkAA6uz48eNasniRJCklQXr0bWlMjjTzF1K/cLM8/tV/SpuLpdmzp1AeDwAtGMlQAAAAAIDfcjqdmnzP3frm2+8UGWI2TVo+QXqowLs8vlOw1PWCEHaFAkALRzIUAAAAAOCXnE6nkpOTdVmkof2SnkqUbsszn3tlnHToqPTRXmn1dmnTbin1nl+zKxQAWjhLu8l/8MEHuv766xUZGSmbzaYVK1Z4PW8YhtLT0xUZGan27dtr2LBh+ve//21NsAAAAACAVsPj8Whyym81uo+hPyaaxy7qbjZN+swt2RdKo1+W0t+Rir81n09KSrIuYABAg7A0Gfr9999rwIABWrBgQa3PP/XUU5o7d64WLFigjz76SOHh4br22mtVXl7exJECAAAAAFqTjIwM7T9wUGnXSEMvkmJ/bJw0pq/05UxpXYqUe6u09m7psigpLiZadrvd6rABAPVkaZn8qFGjNGrUqFqfMwxD2dnZSktLk8PhkCQtXrxYYWFhys3N1d13392UoQIAAAAAWgmPx6Nn5j8tyWyQFBggZd0gJS+paZw0KEraWiJlvie9WWhTfn42JfIA0ApYujP0THbt2qWSkhKNGDGi+lhwcLCGDh2qjRs3nvZ1x44d06FDh7xuAAAAAABUcblcKjv4jSQz4SlJjv41JfJDFkghvzPvP/kmVPn5+dWbdAAALVuzTYaWlJh/I4WFhXkdDwsLq36uNk8++aS6dOlSfYuOjm7UOAEAAAAALcvKlSslSTE/lsZXVprHHf3NEvm1d0uXRkpdu4Ro1+69JEIBoBVptsnQKjabzeuxYRg+x042c+ZMfffdd9W3PXv2NHaIAAAAAIAWwuPxKC93qSQpJUEqKDRL4zcVSeVHpQ+LpXku6dOvpdRp09W2bVtL4wUANCxLfzP0TMLDwyWZO0QjIiKqj5eWlvrsFj1ZcHCwgoODGz0+AAAAAEDL43K5tL+0TJEh0sbd0vIJ0kMFZkl8lU7BUtcLQpSWlmZdoACARtFsd4bGxcUpPDxca9asqT52/Phxvf/++xoyZIiFkQEAAAAAWqqqEvmnEs1doUs+ll4ZJ735ayl9hDQ4Rjp8TJo46dc0TAKAVsjSnaGHDx/Wl19+Wf14165d+vTTT9WtWzf17t1bqampyszM1MUXX6yLL75YmZmZ6tChg8aPH29h1AAAAACAlujkEvmLupsNk6a/IdkX1ozpFWLeJyUlWRAhAKCxWZoM/cc//qHhw4dXP542bZokaeLEicrJydHDDz+sH374QZMnT9a3336rK6+8Uu+88446d+5sVcgAAAAAgBbq5BL5zLXSiklSUl/JtVNyl0thnaSs9yWjQ6jsdrvV4QIAGoGlydBhw4bJMIzTPm+z2ZSenq709PSmCwoAAAAA0Crt27dPklkif1ue2Thp5i+kQVHS1hLpyfekVZ9LU6aMp0QeAFqpZttACQAAAACAhnTgwAFJ3iXyJzdOqiqRj42NbfrgAABNgmQoAACnKCwstDqEBtWjRw/17t3b6jAAALDcrl27FBRw+hL5eR9I+w9LoaGhVocKAGgkJEMBAPiR+5AUYJMmTJhgdSgNqkP7dir8fDsJUQCAX/N4PFr2aq4qKqWCbbWXyL9ZKBmSevXqZXW4AIBGQjIUAIAf/eeoVGlIS8dL8T2tjqZhFJZKE3KPqqysjGQoAMCvndw8KTJE+sztXSIf1026rJdU4qF5EgC0ZiRDAQA4RXxPaWCU1VEAAICG5Ha7JdU0TxrdR3pwqNS+jfTDCent7VJBoZSaeivNkwCgFSMZCgAAAABo9Xr2NMs+Tm6eVHDSz4RXNU9KTEy0IDoAQFMhGQoAAAAA8AtBAVLGWmnlJN/mSXN/bJ4EAGjdAqwOAAAAAACAxlZSUqKKSrNJ0pgc6cNis3lSbFcp2yWt+lyqqDTHAQBaL3aGAgAAAABavQMHDkiSMkdKL2z2bZ6UMVJ69K2acQCA1olkKAAAAACg1evevbuCAqSNu6Udj0gbiswS+YjO0lWx0tglZhl9aGio1aECABoRZfIAAAAAgFbN6XTqoenTVFEpFWwzE5/BQVJivHk/dol5vKJSCg8PtzpcAEAjYmcoAAAAAKDVcjqdSk5O1pXRhg4GSAMipc/cvmXyA6Okf35tXZwAgKZBMhQAAAAA0Cp5PB5NnzpFifGGbh4gTciTPtknje4jPThUat9G+uGE9PZ26c3PJcOQSktLrQ4bANCISIYCAAAAAFoll8ulouK9yrtfOnrCPFbVQKmgsGbcyQ2UIiIirAkWANAkSIYCAAAAAFqllStXSpL6hZu7QGO7nqGB0is2xcVEyW63WxozAKBx0UAJAAAAANDqeDwe5eUulSRtLZECA6SsG8wdoac2UHL82EBpztxsBQYGWhw5AKAxkQwFAAAAALQ6LpdL+0vLFBkiZa6VKislR38p//aaBkohvzPv//19lPLz8+VwOKwOGwDQyEiGAgAAAABaFY/Ho7Vr10qSnko0d4OOyZE2FUnXXiy9Mk4aHGOOHTt2rL74qohEKAD4CX4zFAAAAADQajidTk2fOkVFxXslSRd1N3eDTn/D3AVapVeIeX/PPfdQGg8AfoSdoQAAAACAVsHpdCo5OVn9O+3VM2OkoAApY600pq/05UxpXYqUe6u09m7p0l7m8wAA/8KlHwAAAADQ4nk8Hk2fOkWJ8YZWTJK6d5QqKqU3fyyR/7BYGhRldpTPdkmrPjefLy0ttTp0AEATokweAAAAANDiuVwuFRXvVd79UkCAFNHZPJ45Unphs3eJfFw3KWOk9OhbUkREhDUBAwAsQTIUAAAAANDirVy5UpLUL9x8bL/Q3AW6cbe04xFpQ5HkLjeTpFfFSmNfsSkuJkp2u92ymAEATY8yeQAAAABAs+XxeLR+/Xrl5eVp/fr18ng8tY7Jy10qSdpaYh4LDJCybjA7yY9dIgUHSYnx5v3YV2wq2CbNmZtN8yQA8DMkQwEAAAAAzZLT6dRPLozV8OHDNX78eA0fPlw/uTBWTqfTa5zL5dL+0jJFhkiZa6XKSvO4o7/ZSf4zt1kmH/I7837r4Sjl5+fL4XBY8KkAAFYiGQoAAAAAaHZO7gy/6X6pPEPadL/Uv/M+JScneyVE3W63JOmpRHMn6JgcaVORVH7ULIuvKp0fOXKk1q1bpy++2kUiFAD8FL8ZCgAAAABoVjwejyan/Faj+5id4QN+3MaTECOtmGhozGKbHpyWqqSkJAUGBlY3Qbqou7kTdPob3g2TeoWY94888oiGDRvWpJ8FANC8sDMUAAAAANCsZGRkaP+Bg0q7piYRWiUgQJo53NCu3XvkcrkkSXa7XbG9o5T5nk1j+kpfzpTWpUi5t0pr75Yui5LiYqJplgQAYGcoAAAAAMBaHo9HLpdLbrdbPXv21DPzn5ZUU95+qqrjVeXxgYGBypr3tJKTkzVmsU0zhxsaFGU2U3pynU1vFkr5+TRLAgCQDAUAAAAAWMjpdGr61CkqKt7r89zWErM0vrbjkqrL4yXJ4XAoPz9f06dO0ZAFNe8VFxOl/PxsfiMUACCJZCgAAAAAwCJVTZIS4w3l3W/u+Jz7gTRrtRTT1ewMf/Jvhkpmp/iMtVJYaHefsneHw6GkpKTqXaYRERGy2+3sCAUAVCMZCgAAAABocsePH9d9k1M0Ot67SdLP48z7lATp0bfNzvAzf2EmSreWSJnvSW8WSrNnP1BrkjMwMJAmSQCA0yIZCgAAAABoUk6nU5PvuVv7S8uUdpP3zk/7hVJsV2nDbmn5BOmhAu/O8J2DpZ6h3ZWWltb0gQMAWjySoQAAAACAJlNVGn9ZpKH98m2SFBggZd0gJS+RDEN6ZZx06Kj00V5p9Q5pU5GU8/yfKH0HAJwXkqEAAAAAgCbh8Xg0feoUjY43NNUuXf1C7U2SHP2ljJHSY6vNkvgqcTHRev11miEBAM4fyVAAAAAAQJNwuVwqKt6rvPulK6LNcvjTNUnaVGxTVFQv/fnlHJWWltIMCQDQIEiGAgAAAACaxL59+ySZpfEnl8OfrklSfv7Tuvrqq60NGgDQqpAMBQAAAAA0iXfffVdSTWm8o7+Uf7s0/Q3vJkk9ul2g/PyXKIcHADQ4kqE4o+LiYpWVlVkdRoMpLCw8+yAAAAAADcbj8cjlcmnlypXKyclRUIB3abyjv5TUV3r/K7Nz/KdfS3Oz55MIBQA0CpKhOK3i4mLF9/mpjvxw1OpQAAAAALRATqdT06dOUVHxXgUFSAm9pc3FUsE239L4bJe0ZZ9kSIqOjrY6dABAK0UyFKdVVlamIz8c1dLxUnxPq6NpGKs+l/7f21ZHAQAAALR+TqdTycnJSow39NCN0r1/keZcL03IlXp0lD5ze5fGx3WTBkZJ3wRGy263Wxc4AKBVIxmKs4rvaS5KWoPCUqsjAAAAAFo3j8ej9evX6567f6PEeEMrJknL/mk+NyCypmnS6D7Sg0Ol9m2kH06YGxfe2i7l52fTMR4A0GhIhgIAAAAAGsTJZfGS9Og483dBIzqbz28t8W6aVHDST/oHBUjp6bP5rVAAQKMKsDoAAAAAAEDLV1UW37/TXs2+zjzWL9y8t18oxXY1GydVVpoJ0S9nSutSpKXjpMGxUlRUlNLS0iyLHwDgH0iGAgAAAADqxePxaPrUKdVl8T+PM49vLTHvAwPM8viCQrNx0qYi6chxKThIWvYvmzbvtilr3tOUxwMAGh3JUAAAAABAvbhcLhUV79WjV5tl8afuBJVqyuOrGieF/M6833o4Svn5+ZTHAwCaBMlQAAAAAMB583g8evbZZyXVlMXXthO0/Kj526H9IswxqampWrdunb74aheJUABAk6GBEgAAAADgvDidTk1LfUB79u6TZJbFJ8SYz53cKGnIgprXxMVE6/XXs0mAAgAswc5QAAAAAMA5q2qYFBmwT5WGFBniXRYvmQnRHY9ICb2lC7p01rvvvstOUACApUiGAgAAAADOyfHjx3Xf5BSNjjd07xDz2FOJvmXxm4qksUukzcXSpDvu1NVXX02TJACApSiTBwAAAADUmdPp1OR77tb+0jKl3SQdPWEev6h77WXxvULM+6SkpKYPFgCAU5AMBQAAAADUSVVp/GWRhvbLbJjUvk1N5/gVk6SkvpJrp+Qul8I6SfNcUtvvo2W3260OHwAAyuQBAAAAAGfn8Xg0feoUJcYb+mOieWxriW/n+A+LpUFRZoJ0nkt6s9CmOXOzKY8HADQLJEMBAAAAAGflcrlUVLxXj14tDb2oZjdoZWVN5/jP3GaJfMjvzPt/fx+l/Px8GiYBAJoNkqEAAAAAgLNyu92SzNL4U3eDbiqSrr1YemWclBBjjp89e7a++KqIRCgAoFnhN0MBAAAAAGfVs2dPSWZpfEJMzW7QUxsmRYSF6vXXnycJCgBoltgZCgAAAACok6AAKePH0njJTIh+OVNae7d0WS8pwCblLFlKIhQA0GyRDAUAAAAAnNXXX3+tikrpzZNK48uPmg2Tsl3Sp19LlYZ04MABq0MFAOC0KJMHAAAAAJyR0+nUlAfukyRljpRe2OxdGh/XTcoYKT36FslQAEDzRjIUAAAAAHBaTqdTycnJujTCUPkhaeNuaccj0oYiyV0uRXSWroqVxi4xy+hDQ0OtDhkAgNOiTB4AAAAAUCuPx6PpU6coMd7QnOulikqpYJuZ+AwOkhLjzfuxS8zjFZVSr169rA4bAIDTYmcoAAAAAKBWGRkZKireq7z7pSuipdiuUo+O0mdu3zL5QdHSwYBo2e126wIGAOAsSIYCAAAAQCvg8XjkcrnkdrsVEREhu92uwMDA834/p9OpWbNmSZL6hUuBAVLWDVLyEml0H+nBoVL7NtIPJ6S3tkurPrcpPz+7XucEAKCxkQwFAAAAgBbO6XRq+tQpKireW30stneUsuY9LYfDcc7vV1UePzhG2rRb2loiJcRIjv5S/u3S9DekgsKa8ZHhocrPf/68zgUAQFPiN0MBAAAAoAWranDUv9NebbpfKs+QNt0v9e+8T8nJyXI6nef8ni6XS0XFe/XHRLM0PnOtVFlpPufoL305U1p7t3RZLyk8LFS7du8lEQoAaBFIhgIAAABAC3Vyg6MVk8zdm52CzfsVEw0lXiI9OC1VHo/nnN7X7XZLkgZEmqXxBYXSmBxpU5FUflT6sFia+4H06dfSswufV9u2bRv8swEA0BgokwcAwA8UFhaefVAL0qNHD/Xu3dvqMADAcic3OAo4ZatLQIA0c7ihIQv2yOVyadiwYXV+34iICElmefzJpfEnN00KCpDS02ezIxQA0KKQDAUAoBVzH5ICbNKECROsDqVBdWjfToWfbychCsCvndrgqDZVx6t2etaV3W5XbO8oZb63TysmGnL0l5L6Sq6d0r7vpGc3Se7KKKWlpdXnIwAA0ORIhgIA0Ir956hUaUhLx0vxPa2OpmEUlkoTco+qrKyMZCgAv+TxeLR+/Xrdc/dvfBocnWpriXlftdOzrgIDA5U172klJydrzGKbZg431C9cCg6Slv3Lps27pfz8p+kcDwBocUiGAgDgB+J7SgOjrI4CAFBfp3aNd94sTcg1GxytmORdKl9ZKWW+J8XFRMtut5/zuRwOh/Lz8zV96hQNWVDTpT4uJkr5+dmUxwMAWiSSoQAAAADQAlR1jU+MN3THddKs1TUNjpKXmA2OZv7CLI3fWiJlrJVWfS7l52ef9w5Oh8OhpKQkuVwuud1uRUREyG63syMUANBikQwFAAAAgGauqmv86B+7xn+w0zzeFA2OAgMDz6n5EgAAzRnJUAAAAABo5lwul1fXePuFUmzXmvJ4GhwBAFA3AWcfAgAAAACw0r59+yTVdIcPDDDL4wsKzfL4TUXSkeMnNziyKWseDY4AADgVO0MBAAAAoJk7cOCAJO+u8acrj6fBEQAAp0cytAEVFxerrKzM6jAaTGFhodUhAABwWq3p76kePXqod+/eVocBoIl5PJ46NybatWuXggJ8u8Y7+kvXx0tDn5P+XizNmPmoHn/8cXaEAgBwGiRDG0hxcbHi+/xUR344anUoAAC0au5DUoBNmjBhgtWhNJgO7dup8PPtJEQBP+J0OjV96hQVFe+tPhbbO0pZ85722dHp8Xi07NVcVVRKBdt8u8Y/+Z60ebdkSLr22mtJhAIAcAYkQxtIWVmZjvxwVEvHS/E9rY6mYaz6XPp/b1sdBQAA3v5zVKo01Gr+zi0slSbkHlVZWRnJUMBPOJ1OJScnKzHeUN79NUnNzPf2KTk5Wfn5+V4JUZfLpf2lZYoMkSJDpM/cp5TFd5Mu6yWVeEJlt9st+EQAALQcJEMbWHxPaWCU1VE0jMJSqyMAAOD0WtPfuUBzdi6l3Dg7j8ej6VOnKDHe8Cp3T4iRVkw0NGaxTQ9OS1VSUlL1PLvdbknSU4nSbXnS6D7Sg0Ol9m2kH05Ib283Gymlpt7K/xsAAM6CZCgAAACAWp1LKTfqxuVyqah4r/Lur0mEVgkIkGYONzRkwR65XC4NGzZMkhQRESFJuqh7TcOkgpN+NrlXiHmflJTUBJ8AAICWLeDsQwAAAAD4m6pS7v6d9mrT/VJ5hrTpfql/Z7OU2+l0Wh1ii1S1y7NfeO3PVx2vGidJdrtdsb2jlPmeTWP6Sl/OlNalSLm3Smvvli6LkuJioimRBwCgDkiGAgAAAPByail3QozUKbimlDvxEunBaanyeDxWh9riVO3y3FpS+/NVx6vGSVJgYKCy5j1tNk9abNOHxdKgKCm2q5T9N5veLLRpztxsSuQBAKiDFpEMXbhwoeLi4tSuXTsNGjRILpfL6pAAAAAAL+e6Zn3//fc1aNAgtWvXThdeeKGef/75Jor07KpKuR+9+vSl3Lt272Fdfh5O3uVZWen9XGWl9OQ6W627PB0Oh/Lz8/VZeS8NWSCF/M5sorT1cJRPwyUAAHB6zT4ZumzZMqWmpiotLU1btmyR3W7XqFGjVFxcbHVoAAAAgKRzX7Pu2rVLv/zlL2W327VlyxY9+uijeuCBB/T66683ceS1O59SbtTNqbs8NxVJ5UelTUXm44JtOu0uT4fDoS93FmndunXKzc3VunXr9MVXu0iEAgBwDpp9MnTu3Lm68847dddddyk+Pl7Z2dmKjo7Wc889Z3VoAAAAgKRzX7M+//zz6t27t7KzsxUfH6+77rpLv/71rzVnzpwmjrx251PKjbqrzy7PwMBADRs2TOPGjdOwYcMojQcA4Bw1627yx48f18cff6wZM2Z4HR8xYoQ2btxY62uOHTumY8eOVT/+7rvvJEmHDh1qvEAlHT58WJL08T7p8LGzDG4hCkvNez5T88Znahn4TC0Dn6llaG2faXuZeX/48OFGX69Uvb9hGI16Hn9zPmvWTZs2acSIEV7HrrvuOr300ks6ceKE2rRp4/OaplznDhgwQL2jIjV7zdfKG+9dKl9ZKT3+rhQT3UsDBgxo9O9ta3XNNdfok0//pY0bN6qkpETh4eEaMmSIAgMDmVMAAM7ROa1zjWZs3759hiRjw4YNXsczMjKM//qv/6r1NbNmzTIkcePGjRs3bty4cTvNbc+ePU2xlPMb57Nmvfjii42MjAyvYxs2bDAkGV9//XWtr2Gdy40bN27cuHHjduZbXda5zXpnaBWbzeb12DAMn2NVZs6cqWnTplU/rqys1DfffKPu3bvLZrPp0KFDio6O1p49exQSEtKocbcEzIcv5sQXc+KLOfHGfPhiTnwxJ76aek4Mw1B5ebkiIyMb/Vz+6FzWrKcbX9vxKqxzzx1z4o358MWc+GJOfDEn3pgPX8yJr+a8zm3WydAePXooMDBQJSXeP1ZUWlqqsLCwWl8THBys4OBgr2MXXHCBz7iQkBC+oCdhPnwxJ76YE1/MiTfmwxdz4os58dWUc9KlS5cmOY8/OZ81a3h4eK3jg4KC1L1791pfwzr3/DEn3pgPX8yJL+bEF3PijfnwxZz4ao7r3GbdQKlt27YaNGiQ1qxZ43V8zZo1GjJkiEVRAQAAADXOZ806ePBgn/HvvPOOLr/88lp/LxQAAAANo1knQyVp2rRp+vOf/6yXX35ZhYWFmjp1qoqLi5WSkmJ1aAAAAICks69ZZ86cqdtvv716fEpKinbv3q1p06apsLBQL7/8sl566SU9+OCDVn0EAAAAv9Csy+Ql6eabb9bBgwf1+OOPy+12q1+/flq1apViYmLO6/2Cg4M1a9YsnxIjf8V8+GJOfDEnvpgTb8yHL+bEF3PiizlpPc62ZnW73SouLq4eHxcXp1WrVmnq1Kl69tlnFRkZqfnz52vs2LHnHQPfJ1/MiTfmwxdz4os58cWceGM+fDEnvprznNgMoy495wEAAAAAAACgZWv2ZfIAAAAAAAAA0BBIhgIAAAAAAADwCyRDAQAAAAAAAPgFkqEAAAAAAAAA/EKLS4YuXLhQcXFxateunQYNGiSXy3XasW63W+PHj9dPf/pTBQQEKDU1tdZxr7/+ui655BIFBwfrkksu0V/+8pd6nbcpNfR8vPjii7Lb7eratau6du2qa665Rh9++KHXmPT0dNlsNq9beHh4Q3+089bQc5KTk+PzeW02m44ePXre521qDT0nw4YNq3VORo8eXT2mNX1PnE6nrr32WoWGhiokJESDBw/W6tWrfcb5y7WkLvPhb9eSusyJv11L6jIn/nYt+dvf/qarrrpK3bt3V/v27dWnTx/NmzfPZ1xLvpagfljn+mKt6411ri/Wub5Y5/pireuNda4v1rm+WvU612hBXn31VaNNmzbGiy++aGzbts2YMmWK0bFjR2P37t21jt+1a5fxwAMPGIsXLzYuvfRSY8qUKT5jNm7caAQGBhqZmZlGYWGhkZmZaQQFBRmbN28+7/M2lcaYj/HjxxvPPvussWXLFqOwsNC44447jC5duhh79+6tHjNr1iyjb9++htvtrr6VlpY21sc8J40xJ4sWLTJCQkK8Pq/b7a7XeZtSY8zJwYMHveZi69atRmBgoLFo0aLqMa3pezJlyhTjD3/4g/Hhhx8aO3bsMGbOnGm0adPG+OSTT6rH+NO1pC7z4W/XkrrMib9dS+oyJ/52Lfnkk0+M3NxcY+vWrcauXbuMV155xejQoYPxwgsvVI9pydcS1A/rXF+sdb2xzvXFOtcX61xfrHW9sc71xTrXV2tf57aoZOjPfvYzIyUlxetYnz59jBkzZpz1tUOHDq31L7ubbrrJGDlypNex6667zrjlllsa5LyNqTHm41QVFRVG586djcWLF1cfmzVrljFgwIBzDbdJNMacLFq0yOjSpUujnbexNcX3ZN68eUbnzp2Nw4cPVx9rrd+TKpdccokxe/bs6sf+ei2pcup8nMqfriVVTp0Tf76WVDnb98QfryU33nijMWHChOrHLflagvphneuLta431rm+WOf6Yp3ri7WuN9a5vljn+mrt69wWUyZ//PhxffzxxxoxYoTX8REjRmjjxo3n/b6bNm3yec/rrruu+j0b67z11VRxHTlyRCdOnFC3bt28jn/xxReKjIxUXFycbrnlFu3cubPBznm+GnNODh8+rJiYGEVFRSkxMVFbtmxpkvPWV1PF9tJLL+mWW25Rx44dvY631u9JZWWlysvLvf5c+PO1pLb5OJW/XUtONyf+fC2py/fE364lW7Zs0caNGzV06NDqYy31WoL6YZ3ri7WuN9a5vljn+mKd64u1rjfWub5Y5/ryh3Vui0mGlpWVyePxKCwszOt4WFiYSkpKzvt9S0pKzviejXXe+mqquGbMmKFevXrpmmuuqT525ZVXasmSJVq9erVefPFFlZSUaMiQITp48GCDnfd8NNac9OnTRzk5OXrjjTeUl5endu3a6aqrrtIXX3zRqOdtCE0R24cffqitW7fqrrvu8jremr8nWVlZ+v7773XTTTdVH/Pna0lt83Eqf7uW1DYn/n4tOdv3xJ+uJVFRUQoODtbll1+ue++91+szt9RrCeqHda4v1rreWOf6Yp3ri3WuL9a63ljn+mKd68sf1rlBDfpuTcBms3k9NgzD51hjvGdjnLchNGZcTz31lPLy8rR+/Xq1a9eu+vioUaOq/7t///4aPHiwLrroIi1evFjTpk1rkHPXR0PPSUJCghISEqofX3XVVRo4cKCeeeYZzZ8/v9HO25AaM7aXXnpJ/fr1089+9jOv4631e5KXl6f09HStXLlSPXv2POf3bK7fk8aYjyr+di053Zz487WkLt8Tf7qWuFwuHT58WJs3b9aMGTP0k5/8ROPGjTun92zO3xOcP9a5vljremOd64t1ri/Wub5Y63pjneuLda6v1rzObTHJ0B49eigwMNAnG1xaWuqTNT4X4eHhZ3zPxjpvfTV2XHPmzFFmZqbeffdd/fd///cZx3bs2FH9+/ev/lcfqzTV/6uAgABdccUV1Z+3uX5HpMaP7ciRI3r11Vf1+OOPn3Vsa/ieLFu2THfeeadee+01r3/1lfzzWnKm+ajib9eSusxJFX+5ltRlTvztWhIXFyfJXPTu379f6enp1YvElnotQf2wzvXFWtcb61xfrHN9sc71xVrXG+tcX6xzffnDOrfFlMm3bdtWgwYN0po1a7yOr1mzRkOGDDnv9x08eLDPe77zzjvV79lY562vxozrj3/8o5544gm9/fbbuvzyy886/tixYyosLFRERES9zltfTfX/yjAMffrpp9Wft7l+R6TGj2358uU6duyYJkyYcNaxLf17kpeXp0mTJik3N1ejR4/2ed7friVnmw/J/64ldZmTk/nDtaSuc+JP15JTGYahY8eOVT9uqdcS1A/rXF+sdb2xzvXFOtcX61xfrHW9sc71xTrXl1+scxu0HVMje/XVV402bdoYL730krFt2zYjNTXV6Nixo1FUVGQYhmHMmDHDuO2227xes2XLFmPLli3GoEGDjPHjxxtbtmwx/v3vf1c/v2HDBiMwMND4/e9/bxQWFhq///3vjaCgIGPz5s11Pq9VGmM+/vCHPxht27Y18vPzDbfbXX0rLy+vHjN9+nRj/fr1xs6dO43NmzcbiYmJRufOnS2fD8NonDlJT0833n77beOrr74ytmzZYtxxxx1GUFCQ8fe//73O57VSY8xJlf/5n/8xbr755lrP25q+J7m5uUZQUJDx7LPPev25+M9//lM9xp+uJXWZD3+7ltRlTvztWlKXOaniL9eSBQsWGG+88YaxY8cOY8eOHcbLL79shISEGGlpadVjWvK1BPXDOtcXa11vrHN9sc71xTrXF2tdb6xzfbHO9dXa17ktKhlqGIbx7LPPGjExMUbbtm2NgQMHGu+//371cxMnTjSGDh3qNV6Szy0mJsZrzGuvvWb89Kc/Ndq0aWP06dPHeP3118/pvFZq6PmIiYmpdcysWbOqx9x8881GRESE0aZNGyMyMtJwOBy1LiCs0tBzkpqaavTu3dto27atERoaaowYMcLYuHHjOZ3Xao3x52b79u2GJOOdd96p9Zyt6XsydOjQWudk4sSJXu/pL9eSusyHv11L6jIn/nYtqeufG3+6lsyfP9/o27ev0aFDByMkJMS47LLLjIULFxoej8frPVvytQT1wzrXF2tdb6xzfbHO9cU61xdrXW+sc32xzvXVmte5NsMwjNPvGwUAAAAAAACA1qHF/GYoAAAAAAAAANQHyVAAAAAAAAAAfoFkKAAAAAAAAAC/QDIUAAAAAAAAgF8gGQoAAAAAAADAL5AMBQAAAAAAAOAXSIYCAAAAAAAA8AskQwEAAAAAAAD4BZKhAAAAAAAAAPwCyVAAkDRp0iTZbDaf25dfflnv987JydEFF1xQ/yABAACAc8Q6FwC8BVkdAAA0FyNHjtSiRYu8joWGhloUTe1OnDihNm3aWB0GAAAAWhDWuQBQg52hAPCj4OBghYeHe90CAwP117/+VYMGDVK7du104YUXavbs2aqoqKh+3dy5c9W/f3917NhR0dHRmjx5sg4fPixJWr9+ve644w5999131f8Kn56eLkmy2WxasWKFVwwXXHCBcnJyJElFRUWy2Wxavny5hg0bpnbt2mnp0qWSpEWLFik+Pl7t2rVTnz59tHDhwkafHwAAALRMrHMBoAY7QwHgDFavXq0JEyZo/vz5stvt+uqrr/Tb3/5WkjRr1ixJUkBAgObPn6/Y2Fjt2rVLkydP1sMPP6yFCxdqyJAhys7O1mOPPabt27dLkjp16nROMTzyyCPKysrSokWLFBwcrBdffFGzZs3SggULdNlll2nLli36zW9+o44dO2rixIkNOwEAAABolVjnAvBXJEMB4EcFBQVeC7hRo0Zp//79mjFjRvXi68ILL9QTTzyhhx9+uHqRmJqaWv2auLg4PfHEE7rnnnu0cOFCtW3bVl26dJHNZlN4ePh5xZWamiqHw1H9+IknnlBWVlb1sbi4OG3btk0vvPACi0QAAAD4YJ0LADVIhgLAj4YPH67nnnuu+nHHjh31k5/8RB999JEyMjKqj3s8Hh09elRHjhxRhw4dtG7dOmVmZmrbtm06dOiQKioqdPToUX3//ffq2LFjveO6/PLLq//7wIED2rNnj+6880795je/qT5eUVGhLl261PtcAAAAaH1Y5wJADZKhAPCjqkXhySorKzV79myvf7Gu0q5dO+3evVu//OUvlZKSoieeeELdunXT3/72N9155506ceLEGc9ns9lkGIbXsdpec/JCs7KyUpL04osv6sorr/QaFxgYeOYPCAAAAL/EOhcAapAMBYAzGDhwoLZv3+6zeKzyj3/8QxUVFcrKylJAgNmTbvny5V5j2rZtK4/H4/Pa0NBQud3u6sdffPGFjhw5csZ4wsLC1KtXL+3cuVO33nrruX4cAAAAQBLrXAD+i2QoAJzBY489psTEREVHR+tXv/qVAgIC9K9//UufffaZ/vd//1cXXXSRKioq9Mwzz+j666/Xhg0b9Pzzz3u9R2xsrA4fPqy1a9dqwIAB6tChgzp06KBf/OIXWrBggRISElRZWalHHnlEbdq0OWtM6enpeuCBBxQSEqJRo0bp2LFj+sc//qFvv/1W06ZNa6ypAAAAQCvCOheAvwqwOgAAaM6uu+46FRQUaM2aNbriiiuUkJCguXPnKiYmRpJ06aWXau7cufrDH/6gfv366f/+7//05JNPer3HkCFDlJKSoptvvlmhoaF66qmnJElZWVmKjo7Wz3/+c40fP14PPvigOnTocNaY7rrrLv35z39WTk6O+vfvr6FDhyonJ0dxcXENPwEAAABolVjnAvBXNuPUH/IAAAAAAAAAgFaInaEAAAAAAAAA/ALJUAAAAAAAAAB+gWQoAAAAAAAAAL9AMhQAAAAAAACAXyAZCgAAAAAAAMAvkAwFAAAAAAAA4BdIhgIAAAAAAADwCyRDAQAAAAAAAPgFkqEAAAAAAAAA/ALJUAAAAAAAAAB+gWQoAAAAAAAAAL/w/wGWutdHlwMeHwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np; import matplotlib.pyplot as plt \n", "Y = np.random.normal(loc = 0.2,scale=0.03,size=200)\n", "plt.subplot(121)\n", "plt.hist(Y,color='darkorange',edgecolor='black'); plt.xlabel('Feature'); plt.ylabel('Frequency'); plt.title('Histogram')\n", "plt.subplot(122)\n", "plt.scatter(np.sort(Y),np.arange(1,len(Y)+1,1)/len(Y),color='darkorange',edgecolor='black'); plt.xlabel('Feature'); plt.ylabel('Cumulative Probability'); plt.title('Cumulative Distribution Function'); plt.ylim([0,1])\n", "plt.subplots_adjust(left=0.0,bottom=0.0,right=2.0,top=1.1); plt.show() # set plot size" ] }, { "cell_type": "markdown", "id": "71cb158f", "metadata": {}, "source": [ "##### Maginal, Joint or Conditional Probility or Distribution\n", "\n", "**Marginal** - related to a single event $A$ or a single feature, probability $P(A)$ or distribution $f_X(x)$ \n", "\n", "**Joint** - related to more than one event $A$ or feature, probability $P(A,B,C)$ or distribution $f_{X,Y,Z}(x,y,z)$ \n", "\n", "**Conditional** - given a condition, the probability $P(A|B)$ [read as probability A given B] or distribution $f_{X|Y}(x|y)$ \n", "\n", "##### Pearson Product Moment Correlation Coefficient (Correlation Coefficient)\n", "\n", "The correlation coefficient measures the linear relationship between two features:\n", "\n", "\\begin{equation}\n", "\\rho_{𝑋,π‘Œ}= \\sum_{𝑖=1}^𝑛 \\frac{(π‘₯_𝑖 - \\overline{x})(y_i - \\overline{y})} {(π‘›βˆ’1) \\sigma_π‘₯ \\sigma_𝑦 }, \\quad βˆ’1.0 \\le \\rho_{X,Y} \\le 1.0\n", "\\end{equation}\n", "\n", "#### Getting Started\n", "\n", "Here's the steps to get setup in Python with the GeostatsPy package:\n", "\n", "1. Install Anaconda 3 on your machine (https://www.anaconda.com/download/). \n", "\n", "That's all!\n", "\n", "#### Load and Configure the Required Libraries\n", "\n", "The following code loads the required libraries and sets a plotting default." ] }, { "cell_type": "code", "execution_count": 2, "id": "a0b427ac", "metadata": {}, "outputs": [], "source": [ "import os # operating system\n", "import numpy as np\n", "import matplotlib.pyplot as plt # plotting\n", "from matplotlib.ticker import (MultipleLocator, AutoMinorLocator, AutoLocator) # control of axes ticks\n", "plt.rc('axes', axisbelow=False) # set axes and grids in the background for all plots\n", "import matplotlib.patches as patches\n", "from ipywidgets import interactive # widgets and interactivity\n", "from ipywidgets import widgets \n", "from ipywidgets import Layout\n", "from ipywidgets import Label\n", "from ipywidgets import VBox, HBox\n", "import warnings\n", "warnings.filterwarnings('ignore') # supress warnings" ] }, { "cell_type": "markdown", "id": "af526285", "metadata": {}, "source": [ "#### Calculate a Synthetic Mining Grade Bivariate Dataset\n", "\n", "Let's make a bivariate distribution for Gold and Silver grades with the following steps:\n", "\n", "1. draw values from a bivariate Guassian distribution with some correlation\n", "2. impose a nonlinear relationship with a specified weight\n", "3. correct the mean and standard deviations of each feature\n", "\n", "Then we scatter plot to check the data visually." ] }, { "cell_type": "code", "execution_count": 3, "id": "266c7f76", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAJoCAYAAACp5x3AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eXhkZ3Xn/6nt1r6oqlSbVNqlXu321t7ANBAbwoQEHrKQHZLfJCweJhMyw5CEEJNMTAaSmSSDSchMEmYJZIEEQjYwxhhsMF7b7lZ3q7WrpNpU+3pv1a2q3x/VKkutpaVuqbvVfj/Po6efvnXr3Peee6vq+5573nM0rVarhUAgEAgEAoFAILhstNd6AAKBQCAQCAQCwX5HiGqBQCAQCAQCgeAKEaJaIBAIBAKBQCC4QoSoFggEAoFAIBAIrhAhqgUCgUAgEAgEgitEiGqBQCAQCAQCgeAKEaJaIBAIBAKBQCC4QoSoFggEAoFAIBAIrhAhqgUCgUAgEAgEgitEiGqBQPCq5bOf/SwajQaNRsM3v/nNda+3Wi1GRkbQaDS8/vWvX/OaRqPhoYceuirjvBJWznFubm5b+7/88sv8f//f/8fw8DBmsxmz2czo6Cjvec97eO655/Z2sKt46KGH0Gg0V+14AoFAcKXor/UABAKB4Fpjt9v5sz/7s3XC+YknnmB6ehq73b7uPd/97nfp7e29SiO8OnzmM5/h3/27f8eBAwf4pV/6JY4cOYJGo+Hs2bN8/vOf5/jx40xNTTE8PHythyoQCATXHUJUCwSCVz3vfOc7+cu//EseeeQRHA5HZ/uf/dmfcc8991AoFNa95+67776aQ+xQqVSwWCy7bvepp57i/e9/Pz/wAz/AF77wBSRJ6rz2xje+kQcffJC//du/xWw2X5PxCQQCwfWOSP8QCASven7iJ34CgM9//vOdbfl8ni9+8Yv8/M///IbvuTj9YyXN4vHHH+d973sfXq8Xj8fDO97xDqLR6Lr3//Vf/zX33HMPVqsVm83Gm9/8Zl588cU1+7z73e/GZrNx6tQp3vSmN2G32/m+7/s+AB599FHe9ra30dvbi8lkYmRkhPe85z2kUqnL8sHDDz+MTqfjM5/5zBpBvZof/dEfJRQK7fr4/umf/olbbrkFo9HI4OAgv/d7v7fh8VutFp/+9Ke55ZZbMJvNdHV18SM/8iPMzMys2e/FF1/krW99Kz6fD6PRSCgU4gd+4AdYXFy8LN8IBALBdhCiWiAQvOpxOBz8yI/8CH/+53/e2fb5z38erVbLO9/5zh3Z+rf/9t9iMBj43Oc+xyc+8Qm++c1v8tM//dNr9nn44Yf5iZ/4CQ4fPszf/M3f8H//7/+lWCxy3333cebMmTX71mo1fuiHfog3vvGNfPnLX+ZjH/sYANPT09xzzz388R//MV/72tf46Ec/yve+9z1e+9rXUq/XdzTmRqPB448/zh133EEwGNzRe690fI899hhve9vbsNvt/NVf/RWf/OQn+Zu/+Rv+4i/+Yt2x3vOe9/Af/sN/4P777+dLX/oSn/70pxkfH+fee+8lkUgAUC6XeeCBB0gkEjzyyCM8+uij/MEf/AF9fX0Ui8UdnZtAIBDsiJZAIBC8SvmLv/iLFtB69tlnW48//ngLaJ0+fbrVarVax48fb7373e9utVqt1pEjR1onTpxY816g9Zu/+ZvrbL3//e9fs98nPvGJFtCKxWKtVqvVWlhYaOn1+tYHPvCBNfsVi8VWIBBo/diP/Vhn27ve9a4W0PrzP//zLc+j2Wy26vV6a35+vgW0vvzlL68b1+zs7Kbvj8fjLaD14z/+4+teU1W1Va/XO3/NZnNXx3fXXXe1QqFQq1qtdrYVCoWW2+1urf6J+u53v9sCWr//+7+/xnYkEmmZzebWhz70oVar1Wo999xzLaD1pS99acsxCQQCwW4jItUCgUAAnDhxguHhYf78z/+cU6dO8eyzz26a+rEVP/RDP7Tm/zfffDMA8/PzAHz1q19FVVV+9md/FlVVO38mk4kTJ05sWIXkh3/4h9dtSyaTvPe97yUcDqPX6zEYDPT39wNw9uzZHY97M26//XYMBkPn7/d///d3bXzlcplnn32Wd7zjHZhMps577XY7P/iDP7jG3j/+4z+i0Wj46Z/+6TV+CwQCHDt2rOO3kZERurq6+M//+T/zJ3/yJ+si/wKBQLBXiIWKAoFAQDtH+ud+7uf4oz/6I2RZZmxsjPvuu2/Hdjwez5r/G41GAKrVKkAnTeH48eMbvl+rXRvrsFgsaxZPAjSbTd70pjcRjUb5jd/4DW666SasVivNZpO77767c6zt4vV6MZvNHeG/ms997nNUKhVisdi6CcOVji+bzdJsNgkEAuvsXrwtkUjQarXw+/0bnsPQ0BAATqeTJ554gt/5nd/h137t18hmswSDQX7hF36Bj3zkIxgMhu05RSAQCHaIENUCgUBwgXe/+9189KMf5U/+5E/4nd/5nT05htfrBeALX/hCJ3K7FRvVaj59+jQvvfQSn/3sZ3nXu97V2T41NXVZY9LpdLzxjW/ka1/7GrFYbE1e9eHDhwE2rXN9JePr6upCo9EQj8fX2bh4m9frRaPR8O1vf7szUVnN6m033XQTf/VXf0Wr1eLll1/ms5/9LL/1W7+F2Wzmwx/+8IbnIRAIBFeKENUCgUBwgZ6eHv7Tf/pPnDt3bo0Y3E3e/OY3o9frmZ6e3jBtYjusCNmLxeVnPvOZyx7Xr/7qr/Iv//IvvPe97+ULX/jCFUV0tzs+q9XKnXfeyd/93d/xyU9+spMCUiwW+cpXvrJm37e+9a387u/+LktLS/zYj/3Ytsdx7Ngx/vt//+989rOf5YUXXrjcUxIIBIJLIkS1QCAQrOJ3f/d399T+wMAAv/Vbv8Wv//qvMzMzw/d///fT1dVFIpHgmWeewWq1dipobMbBgwcZHh7mwx/+MK1WC7fbzVe+8hUeffTRyx7Xa17zGh555BE+8IEPcNttt/GLv/iLHDlyBK1WSywW44tf/CLAulSPKx3fb//2b/P93//9PPDAA/zKr/wKjUaD//pf/ytWq5VMJrNmfL/4i7/Iz/3cz/Hcc8/xute9DqvVSiwW48knn+Smm27ife97H//4j//Ipz/9ad7+9rczNDREq9Xi7/7u78jlcjzwwAOX7R+BQCC4FEJUCwQCwVXmV3/1Vzl8+DB/+Id/yOc//3kURSEQCHD8+HHe+973XvL9BoOBr3zlK/zSL/0S73nPe9Dr9dx///18/etfp6+v77LH9d73vpd77rmHP/zDP+S///f/TjQaRaPR0Nvby7333stjjz3GG9/4xl0d3wMPPMCXvvQlPvKRj/DOd76TQCDA+9//fqrV6rrJxWc+8xnuvvtuPvOZz/DpT3+aZrNJKBTiNa95DXfeeScAo6OjuFwuPvGJTxCNRpEkiQMHDqxLRREIBILdRtNqtVrXehACgUAgEAgEAsF+RpTUEwgEAoFAIBAIrhAhqgUCgUAgEAgEgitEiGqBQCAQCAQCgeAKuaai+lvf+hY/+IM/SCgUQqPR8KUvfWnN63/3d3/Hm9/85k590pMnT16TcQoEAoFAIBAIBFtxTUV1uVzm2LFjfOpTn9r09de85jV7XuJKIBAIBAKBQCC4Eq5pSb23vOUtvOUtb9n09Z/5mZ8BNu/kJRAIBAKBQCAQXA/ccHWqFUVBUZQt92k2m6TT6U5aiUAgEAgEAoHgxqbValEsFgmFQmi1u5+sccOJ6o9//OOX7EYG8M53vpOf+ImfuAojEggEAoFAIBBcD7z97W8nEonQ29u767ZvOFH9q7/6q3zwgx/ccp98Ps/3vvc9BgYG8Hq9u3p8WZYBMJlMu2p3L23v5ZjL5TJnz57l0KFDWK3WXbW9H32917b3o7+Fr9ezX32yH/29X/2xH30N+9cne2Vb+Prq2k6lUgDY7fZdtw03oKg2Go0YjcZL7mcwGPB6vfT09Ozq8UulEgA2m21X7e6l7b0ccy6X4+zZs/h8Plwu167a3o++3mvb+9Hfwtfr2a8+2Y/+3q/+2I++hv3rk72yfTm+lmUZRVEwmUxb6p396I+9tr3CXqX+3nCiWiAQCAQCgeBGQ1VV5mZnyCcXQFVAb8Tp62NwaBidTnethyfgGovqUqnE1NRU5/+zs7OcPHkSt9tNX18fmUyGhYUFotEoABMTEwAEAgECgcA1GbNAIBAIBIL1bDeCKrg85mZnKEfHGfQ7sVk9lMoVItFxZoGR0bFrPTwB11hUP/fcc7zhDW/o/H8lF/pd73oXn/3sZ/mHf/gHfu7nfq7z+o//+I8D8Ju/+Zs89NBDV3WsAoFAIBAI1iMiqHuPLMvkkwsM+p24u5wAuKX2v7PJCEpfv5jIXAdcU1H9+te/nlartenr7373u3n3u9999QYkEAgEgl1HRDBvbEQEde9RFAVUBZvVs2a7zWqBRBpZlsVn6zpA5FQLBAKBYE8QEczd43qdmIgI6tXBaDSC3kipXOn4F6BUroDetCeVMgQ7R4hqgUAgEOwJIoJ55Ww2MfH5A3vSvGKniAjq1cFkMuH09RGJjgNt/5bKFSKJPM7QEeHj6wQhqgUCgUCw64gI5u6w2cQkUqvR3z9wrYcnIqhXkcGhYWZpf35IpEFvwhk6wuDQ8LUemuACQlQLBAKBYNcREcwrZ6uJyWQyRi0YupbDA0QE9Wqi0+kYGR1D6etHluXrLhVIIES1QCAQCPaA/RDBlGWZYrF43QqTLScmaqr9+nWAiKBeXbbb5E5w9RGiWiAQCAS7zvUcwVydp6wqMuglPMGB624B5dYTk+tHWIkIqkDQRohqgUAgEOwJ12sEc3WeskbnolKVSV2HCyi3mpjYvKNIknSNR7gWEUEVvNp5VYtqWZY7PeZ3i0qlsqv2robtvRxztVrt/KvX7+7tth99vde296O/ha/Xs199spHtQDCE2+NFURSMRiOSJHV8txN2y9+KopCOzdHbZUcyW6koKgaTGW8XLMbmcXu8uyZWd8PXPn+ASK3GZDIGagr0RmzeUTwe755dS3FvXz3bwtdX17Ysy3tmG14FovqRRx7hkUceWbOt2Wxy4sQJjh49eo1GJRAIBK8eJEm6bqKqtVoN1BoWs2vNdovZBKkciqJcN2MF0Gq19PcPUAuG1kxM9lJ4CASCy+OGF9UPPvggDz744JpthUKBxx9/HJPJhM1m25Pj7pXdvbS9F3ZVVQXAbDbvq3HvV9v72d/C1+vZbz7ZS9u75W+9Xs8sWvK5DEF/NxZj+2ewVi2jN5pxu927nsLwavX1Vuw3n+yVbeHrq2s7n8/vus3V3PCiWiAQCAQCaAuYxcgCy8tJls5O4nW76Ar043Y5yRYq13wBpUAg2N8IUS0QCASCVwUrCxTvPdpDIW8mGY0wfX6COVc/R2+7+5ovoBQIBPsbIaoFAoFAcMNzcSOVbq+bcLgPT3SZRElPuK//uiqnJxAI9h/aaz0AgUAgEAj2mlcaqVg62yRJotvtRtI097wqwHaRZZl8Pr9rjV12255AINgcEakWCAQCwQ3PZo1UKlUZ9MZd7fAoyzKKotBoNLZdSWR1QxpUBfRGnL6+y25Is9v2BALBpRGiWiAQCAQ3PJs1Uomlitj8o7uyQPFiIatqDNg8IQ4ePHRJIbu6IY3N6mk3ebmChjS7bW+/szLREd0eBXuJENUCgUAgeFWwUYdHs3+UcLhvV+xfLGSXsyViiUlmJWlLIXtxvjfQiabPJiMoff07EoK7bW8/IyL2gquJENUCgUAgeFWg0+kYGR1D6etHlmVMJhP1en1XbG8kZJ1OOwDxSwjZV/K9PWu226wWSKSRZXlHIni37e02K6kxVyNqLCL2gquJENUCgUAgeFVhNBo7Ym63RPVmQtZiNkE2v6WQ3Szfu1SugN6043zv3ba3W6iqyvz8HKV0FH2rvudRYxGxF1xtRPUPgUAgEAiukNVCdjXthZBbC9lOvnciTyabp1ark8nmiSTyOH3hHQu/3ba3W8zNzlBNTNLr0nLTkIdBj5ZydJzZmek9Od5GFV/gQsRela+bii+CGwchqgW7hkaj4Utf+tJ1Y0cgEAiuFhsJ2Xy+SCxV3JaQHRwaxho6wmy6xamZNLPpFtbQkctuSLPb9rZiO2X7VqLGQa8dp9OOJBlwdzkJ+53kk5E9Kfm32UTnWkfsRZnDGxchqvcp8XicD3zgAwwNDWE0GgmHw/zgD/4gjz322LUe2rZ56KGHuOWWW9Ztj8VivOUtb7n6A9ohp06d4sSJE5jNZnp6evit3/otWq3WJd/3r//6r7zhDW/AbDbj9Xp5xzveseb1xx57jHvvvRe73U4wGOQ//+f/jKqqndcfeughNBrNuj+r1brr5ygQCLbPxUJ2MdfC7B/dlpBdyfc+esdrGbnlte1/R8cuOy1it+1thKqqTE2eZ/z5J5k6+SSnn/s2U5PnaTQa6/ZdiRpbzGuF7F5Gja+3iP1G/ooszF/VMQj2lld1TrUsy5RKpV21WalULr3TFdqen5/ngQcewOl08lu/9VscOXIEVVX5+te/zvve9z5eeOGFy7Jbr9cxGAzrXt9s+0ZUq9U1Pq1Wq51/9fq1t1utVqPZbK67BjabjXq9fslcx6vh680oFArcf//9vO51r+OJJ55gcnKS973vfej1ev79v//3m77vy1/+Mv/u3/07fu3Xfo0//dM/pdVqcebMmY4PTp8+zb/5N/+G//Sf/hN//Md/TCwW45d+6ZeoVqs8/PDDALz3ve/lZ37mZ9bYfetb38ptt922pb+vlL3y97W8jlfCfvT1fra9V/7e7TEHgiHcHi+KotBsNjEYDJ2xbxedTnfJ78CdjHs79lazXV/Pz89RTUwS9NqxmJ1UqjKxyDjnajX6+wfW7KuqKqrGQKZQwW5/JQCQz5dQNRKNRuOKf4838onPHyBSqzGZjIGaAr0Rm3cUnz+wo+Ptxn2ykb/mEzOAVnyPXCXbe53yc8NHqh955BEOHz685u/OO+/kn//5n6/10C6bD37wg2g0Gr75zW/y9re/ndHRUQ4dOsQHPvABvvGNb3T2i0QivPOd7yQQCBAKhfjZn/1Zkslk5/WHH36Ye++9l8997nMcP34cj8dDq9XCbrfzZ3/2Z7zzne/E7/fziU98AoB//ud/5r777sPr9XLTTTfx8Y9/fE0E9WJ+4zd+g9e+9rX82I/9GHfffTe//du/3flS/3//7//x8Y9/nFOnTmG327Hb7fy///f/ALDb7XzlK1/p2BkfH+cHfuAH6O7upq+vjw984ANrvgzf85738OM//uP84R/+ISMjI/T19fHBD35w1xYgbcTf/M3foCgKf/Inf8Lhw4d529vexq/8yq/wqU99atNotaqqfOhDH+KjH/0o73rXuxgdHWVsbIy3v/3tnX2+8IUvcPToUT784Q8zPDzMa1/7Wh566CH+5//8nxSLRaA96fD7/Z2/ZDLJuXPn+Nmf/dk9O1+BQLB9JEnCbrdvOxixH1EUhVI62knnMEgGnE47Qa+dUjpGrVZbs7/RaMTmCbGcLVMslqmvSo+xeYLbbpKzU7RaLf39A4wevZ2+Q7czevR2+vsH0GqvrvzZzF/drna+98X+EuxPbvhI9YMPPsiDDz64ZluhUODxxx/HZDJhs9n25Lh7ZTeTyfDoo4/yO7/zO/j9/k2P22q1+Kmf+imsVitPPPEEqqry/ve/n5//+Z/nm9/8JtD+4p+ZmeGf/umf+NznPofdbu+8/+GHH+bjH/84/+N//A90Oh1PPfUUv/ALv8Af/dEfcd999zE9Pc0v/uIvIkkSv/mbv9k5vtls7tjweDx8+tOfZn5+Hrvdzi//8i/j8Xj40Ic+xLve9S6mpqb413/9V77+9a8D4HQ6MZvNa+xUKhXe8Y53cPfdd/Pss8+STCb5t//23/LhD3+YT33qUwAYDAa+/e1vEw6H+eY3v8nU1BTvfOc7OX78OL/wC7+woR+//e1vXzLF5Fd+5Vf42Mc+tuFrL7zwAidOnMDjeWWl/w/90A/x0EMPkUqlGBwcXPeeZ555hmg0islk4oEHHiCZTHLLLbfwe7/3exw5cqRz3SwWy5r7x+12I8syExMTvP71r19n93Of+xxjY2O8+c1vJpfLrfHfXrDf7O6V7ZUJ5X709X60vdf+3m/+2Evb2/F1o9FA36rT3eVBkl6REpLWRjybRqfTrXvvwYOHOAek0jFypTzoTbjCR3a9+sf16O/N/OVyWCAqb+iv3eJ69Me1sp3P53fd5mpueFF9ozEzM0Or1eLgwYNb7vf1r3+dl19+mdnZWcLhMAD/9//+X44cOcKzzz7L8ePHgfbs+E//9E/p7u5ecwP/5E/+JD//8z/f+f/P/MzP8OEPf5h3vetdAAwNDfHbv/3bfOhDH1ojqlfzkY98hFwuhyzLnDhxgsXFRf76r/+aD33oQ50va71eTyAQ2PQ8/vIv/5Jqtcr/+T//p5Mz/KlPfYof/MEf5KMf/Sg+nw+Arq4uPvWpT6HT6Th48CA/8AM/wGOPPbapqL7jjjs4efLkpsctl8t0dXVt+no8HmdgYGDNtpVJTjwe31BUz8zMAPDxj3+cj3/84xw8eJDf//3f58SJE5w/fx63282b3/xm/uAP/oDPf/7z/NiP/RjxeJz/8l/+C9DONb8YRVH4y7/8Sz784Q9vOlaBQCDYbS6nbJ9Op6O/f4BaMIROp7sm3Q2vVWfFzfxVrbbTEfYqUi+4ughRvc9YSS3QaDRb7nf27FnC4XBHUAMcPnwYl8vF2bNnO6K6v7+f7u7ude+/44471vz/+eef59lnn+V3fud3OtsajQayLFOpVLBYLBeb4Atf+AK/93u/x8TEBPV6HVVVcTgc2z/ZC+dx7NixNYvwXvOa19BsNjl//nxHVB85cmRNpCMYDHLq1KlN7ZrNZkZGRjZ9fTu5dhdfg0tdm2azCcB//I//kbe97W3YbDb+4i/+gt7eXv72b/+W97znPbzpTW/ik5/8ZCdv2mg08hu/8Rs8+eSTG0Zy/u7v/o5isShSPwQCwVVls7bvkUQeZ+jIloJVkqQ9jXBuxLXurLiZv+LpEqAVovoG4YbPqb7RGB4eRqPRcPbs2S33a7VaG4q7i7dvVjHi4u3NZpOPfexjnDx5svN36tQpJicnN4xIPP300/z4j/84999/Px/5yEd44okn+PVf//Ud541tdh6wVrxenLuo0Wg6InYjvv3tb2Oz2Tb9CwQCfPKTn9z0/YFAgHg8vmbbSr76Rmk50Bb6wJqnDEajkaGhIRYWFjrbPvjBD5LL5VhYWCCVSvG2t70NYMPo9//6X/+Lt771rVtG+wUCgWAvuJpl+66UTmdFz9Wpkb0RG/nL3D101Y4v2HtEpHqfsZIi8Mgjj/Dv//2/Xyd+c7kcLpeLw4cPs7CwQCQS6USrz5w5Qz6f59ChQzs+7m233cbExMSW0d3VPPXUU/T39/Mf/+N/5IknnmB4eJj5+bWlgyRJ2rD00moOHz7M//7f/5tyudw516eeegqtVsvo6OiOz2OFK03/uOeee/i1X/s1arVaJ8Lwta99jVAotC4tZIXbb78do9HI5OQk9957L9CurDI3N0d/f/+afTUaDaFQCIDPf/7zhMNhbrvttjX7zM7O8vjjj/MP//APlzpdgUAg2HU2avt+PXYovF46K27kr2q1yszs3J4fW3B1EJHqfcinP/1pGo0Gd955J1/84heZnJzk7Nmz/NEf/RH33HMPAPfffz8333wzP/VTP8ULL7zAM888w8/+7M9y4sSJdakd2+GjH/0o/+f//B8eeughxsfHOXv2LH/913/NRz7ykQ33HxkZYWFhgS9+8YvEYjE+85nP8Pd///dr9hkYGGB2dpaTJ0+SSqU2LIT/Uz/1U5hMJt71rndx+vRpHn/8cT7wgQ/wMz/zM53Uj8thJf1js7/h4WHcbvem7//Jn/xJjEYj7373uzl9+jR///d/z8MPP9ypzALthYkHDx5kaWkJAIfDwXvf+14efvhhHnvsMSYmJnjf+94HwI/+6I92bH/yk5/k1KlTjI+P89u//dv87u/+Ln/0R3+07hHln//5nxMMBvdFTW+BQHDjYjQacTqd16Wghuuvs+L17i/B5SNE9T5kcHCQF154gTe84Q38yq/8CkePHuWBBx7gscce44//+I+BV7oSdnV18brXvY7777+foaEh/vqv//qyjvnmN7+Zf/zHf+TRRx/l+PHj3H333fy3//bf1kVYV3jb297GL//yL/OhD32IX/7lX+Z73/sev/Ebv7Fmnx/+4R/m+7//+3nDG95Ad3c3n//859fZsVgsfPWrXyWTyXD8+HF+5Ed+hO/7vu/rVP64VjidTh599FEWFxe54447eP/7388HP/hBPvjBD3b2qVQqnXzyFT75yU/ywz/8w/zCL/wCx48fZ35+nm984xtrouL/8i//wn333ccdd9zBP/3TP/HlL395Tdk9aKfjfPazn+Xd7373VckHFAgEgv3K9dpZUXDjoWltpwXcDcZKSb077riDnp6eXbW9ssBtLxZh7JXtvRxzLpfjiSee4MSJE7hcrl21vR99vde296O/ha/Xs199crX8bTKZdq2Cw371x7W8t6+kgsa18snU5HnK0XHCfueaRZXW0BFGRseuyPaVIL5Hrq7tpaUlent7yefzOy6csB1ETrVAIBAI9g2RhXlqxeVNKzhcq5JprwaudQWNK2FwaJhZ2jnUJNKgN+G8ThdVCvYvQlQLBAKBYN9QXZ5hpMeJzeppRxuj48wCA4ND+1bw7Rc6FTT86/2/nWjvtWS/LKoU7G+EqBYIBALBdc9KOc6Ax7ZhBYeJWg01NbkvBd9+4HqpoHGlGI3GfTFOwf5ELFQUCAQCwXXPiqg2m9cuKrNZLSjVPKnFacIXBJ8kGXB3OQn7neSTkQ0rCwl2xvVWQUOwd8iyTD6fF5+by0BEqgUCgUBw3bNSD75alcH1irArlSvUmzokbWtjwZdII8uyiE5eIZfTllywv9jPOfPXC69qUS3L8rbaUe+ESqVy6Z2uM9t7OeZqtdr5V6/f3dttP/p6r23vR38LX69nv/pkL22vNIpaXC6h02qwmE1UqjKxVBFHdz+1YorlbAmn0955Tz5fQtW0m0xt9l2/X/1xLe5tkyvATHSSaq25xv9m/yj1en1N+dBrMe79aPt6+h6Zn5+jmpgk6LVjMTvb1zcyzrlajf7+gSuyvRP20vZeP1G54UX1I488wiOPPLJmW7PZ5MSJExw9evQajUogEAgEl4PJHWYxl4VUDvRGbP5RwuE+IhGJWGISYI3gs/lHO1FuwZURDvcRARbTsXX+F+xvFEWhlI7S67V3JqZOyQC0r3ctGBKfo21ww4vqBx98kAcffHDNtpU61SaTaU/qIMLe1Ffca9t7YVdVVaDdwXA/jXu/2t7P/ha+Xs9+88le2l7x99DwCGazmVwuh0aj6XSmO3jwELOSRDwZgWwe9CZc4SPbfnS9l/7Q6/V7Vubvat/bR44cRVFGr7iCxn67/3Zqe7ulHa+X75FGo4G+Vae7y4MkvSINJa2NeDaNTqfb0M714OudkM/nd93mam54US0QCASvZm60us2NRoPIwnwn7zOyKu/zeiuZ1mg0WFyMIOfiN1SOqqigsTn7NS9Z5MzvDkJUCwQCwQ3IZj/uPn8ArXb/Fn6KLi3SzM5sWjrvWgm+jSYvi4sRqolJhkKvjjJ/N9oE7nLYr7W8TSYTTl8fkeg4wJquk87QkVft9dwpQlQLBALBDchmP+6RDRYd7SdK2TgHrqNayZtNXoKhnk6O6mZjbbValyVCZVmmWCxeN0Jnv0Znd5v9XstbdJ28coSoFggEghuMrX7cJ5PtRUf7FrWOzepcs+lals7bbPJyvlgEtYbF7Fo3VjWa4Mz4aZrV7I5E6Grxqioy6CU8wYFrLl73a3R2t3mllrdnzfb9UtpRdJ28cvbvM0CBQCAQbMjWjTqU/d3UQW9o53mu4lrlfa5MXjZqOlPNJ6i1NFSqa0t4lcoV4stZ1PQ0gx4tNw15GPRoKUfHmZ2Z3vJ4HfHq0TIWdtHr2t779pKtfPBqa7yzOi95NfstL9loNHYWAAt2hhDVAoFAcIOx9Y/7/l5kZusKEEnkyWTz1Gp1Mtl8O+/TF77q57XV5MWobWG0eYmlimvGOh1ZptVqMRz27kiEXixeDZIBp9N+zcXrXnZa3G+d/Tp5ydfJ/Sm4+oj0D4FAILjB2GrRkc27v+s29/SGyZjNe5b3uZPFdpeqmDA0PEwiYWU2neiMVe8ZIaRb2nH3x2uVWnApf+xF1Yj9nKMt8pJf3QhRLRAIBDcgm/24+/yBaz20K0Kr1e5J3udOhNxqoblVxQSTyUR//wCGkVfqOrdaLcafz+5YhF6JeL3cqhyRhXlqxeUt/bEXVSP2c472buQliyoq+xchqgUCgeAGZLMf983adV8LrkQ87HbpvO0IuY2Et83Tg8l/kNl0dF1kcqUF9eqxyrKM1tzFzGI7D3q7IvRi8arRSVSqMqlscdP3XWnEt7o8w0jPpYXtbkZn93sFjRUu5/7czxF6QRshqgUCgeAG5nps1HG9iQdFUbYl5DYU3olzWENHOHrHa7eMTK4+54ZSIZoqs5SuEPS50UnWbYnQ1eJVVXKgN+LZ4n2XG/Gt1WoABDy2bQnb3awasd8raFwJ+zlCL2gjRLVAIBAIrioXi4d0Nsfs5DPUajUOHzm6Y3tX+ri8VqtdUsi1Wq0thXe4rx+n07nO9gprz9nHSMjGdCSF3tnD4SNHtzXu1eI1k8lgNBpxu90b7nslEd8VUW02r00puZSw3Y0J3Ku1s1+tVrshIvSvdoSoFggEAsFVY7XYc9itxKJLlDJxNMUcJ5+M0gIOHjy0rYj1bkW8JUm6pJCTZfmyI6hbCtx0btvjXMFoNGK327fc50oivisLWatVGVyvLKi8GsL21drZbzsTuxv13G8kXtWiWpblXc8vrFQql97pOrO9l2NeySmsVqvo9bt7u+1HX++17f3ob+Hr9exXn1xsW1EUarUaRqOxI9SKxSKqIqPRuZhdWELJRPC4LHidASqNNKnZlzgH67o+buTv+fk5qolJgl47FrOTSlUmFhnn5VKJQCC45ribjUtVVQBMrgAz0UmqtSYWs6ltK1XE7B+lXq+jqiqqxsBytoTTaadWq1Gv16nKCqpGotForPs9WfFHo9HonHNJVlGUGrV6HS0aVKVCJpO5pEi+lK8v5uLxrpDPlzYd7wqNRgOAxeUSOq1mQ3/U6/UdjXe74wbw+QNEajUmkzFQU+3cde8oPn9gy9/s/fi5WbmvG43GZV+vzdiP/thr21dS4nE73PCi+pFHHuGRRx5Zs63ZbHLixAmOHt35Y0aBQCAQbCyYV2g0GiwuRiilo6DWQC9h84Tw+fzUajVqLQ25QpFKbhmfy4LdaiFfrGCzO/EF3STT7a6PW5X+UxSl0wZ8ReRqNS0aSo7J5+cohQeRzJbOcVVVRa/Xk0wm1oxLsncTDAYJh/uIAIvpGKRybSHnHyUc7gPa0WGbJ8Ri/ByJeIymUqRarZAs1HCEb91yYtWOhEsUSmVKpTKl3DI1WSZbqqIYfAzfbNiNS7KGlfHGEpMAa4Sxzb+9soomd5jFXHZDf+wlWq2W/v4BasEQiqJsOjm6kZAk6Yqvl+Dac8OL6gcffJAHH3xwzbZCocDjjz+OyWTCZrPtyXH3yu5e2t4LuytRILPZvK/GvV9t72d/C1+v53r0yVYpFyvEY1HU1CSjfic2q4Ncvsj3Tn6TKb2N3kA3mdQysZllQjaFke4ASqVIKlvC0z1Ej6+LzEwanU63ZowX+7vRaKBv1emyO0kn2ykk8dgiSiGB1HIwGjyMVgvPn3qCSSyEgz4isSRGKtxx0xhOh5dSucJMdI60ZCAQOMqRI0dRlNFNF9sdPHiIb0aXSE2N43fqMVkd9Pd2ozWUSSbimy4ms9lsZIMDvPzM17A1kph1LWqlLKXlLHncvPRiD69/4/2XtUhzq+t48OAhZiWJeDIC2TzoTbjCR7bVDh1gaHgEs9m8Jy2rr8d7+1rYXn1fX+71uhQ2m23PyvTtJ18D5PP5Xbe5mhteVAsEAoFg99iqQkHgQmTx4vzhQrGIizR6ncyB3iH6vBLffSHHM5MJ1KYGu9ONs3uIwf5e8oXStvJ2Vxa0TU9PY6wt47UbUU11tHqJyWSFUjGHUTLg0aQpt6r0eXspRFNYtVXkSpFurxu35KRaa7KYjqEoo7RarS2FR71ex2XRcfi1d2ExmzEZJYxGiUw2f8nFZMFQD+N6G6nMAuZ6ip5uB6PHj6K2dLw48zQToZ41izR3QwTtRlWO67F6zI3KblZRWaHRaDA1ef66qbRzoyNEtUAgEAi2xaUqSrg93nULrmRZIZ+OMxb2kCk1aNGi2+vmtcdvpq610bTqCPUF8XS5yBdK216QZjKZMDn9nDv9JLcP2tHqdJTKFQw6Pf1hD+VcnArQ021nKqGQL5ZxWCT6PGZSmQS1QBBJkrCYTajJNGfGT9OsZtcJj3q93hG3K4v/PF0eJOmVlI3tLCZTVZXuLicNbYABT5CAx4XBYKBeV0nkoywvTaOMjKLT6Xa93OB2hfGKkF+p/iG4NuzmRGZxMYKamhRl+q4SQlQLBIIbGkVRaDQaojvZLnCpihKKoqyrpKHU6tCoo9XqQCdhvJAbarNaCId8GJw9RIs5otnNm4Zstqg8GOph0hYkXqkRLZSZy+kY63VzaLiPl2dipJczFAwKS9kmLa2BXK5A0OGBRgOlVkOSLjRQyeQJtRSGw96O8JhdeJlvzs3isug64tbk9NPQ6C9ZJWRFhK/GaDRSb2lp1ar43T0YDO2f34osY7HaQddElmWWk4mrXqv44pSe2gVp0Gw2O/uILn/7j5V1B6OiTN9VQ4hqgUBwQ6KqKvPzc5TSUfStunjsuQtcqobwyoKy1SXR9DodhUqNWblKcOhoZ8FVqVxBJ1k7KQ8bPe5eLfZqF1btRxbmsdvt6HQ6LBYL4YFhQnYVi9mMs7sPNR8hnsqSyhSp5BLoLXpuGTtAoNvK9/JJnnhhkoH+fsJoyGTzLMQytFothsPeNcJjZi5Cbn6cI/fejdu10uhlimLNQiTRzstcXe7N6jtAZGF+TYRZa3Hj8/kxGAyYTCa8PUOcnn6RaDJNj99DJl9kMZEDaxDJ5ADYtVrFOxHBF6f0xNNFkjlYWozgcDiuq0Y9gu3TfmpUw2Z1rNkuyvTtHUJUCwSCG5K52RmqiUl6vXa6u8Rjz93gUjWEVwTzmrbVaom8phu5VWbQYqdWq29Yd3ijH/fVYq+hcZI8l6G6PMPsjJmR0bHOeJLRccKSxFB/L+PnZJ46O0muqOBzhsAEgW4ndquJA30e/vmZCgbZibRYBL0Jnasfny7eFhoXkGUFtZon5DJgtZiQJENH3CrLKnr3KLPpxJqW3I1GozNWk9HJmYlpJk8/Q8Tpoyc8gNPXx+jYAeKxe3hm8ik0ZxZpNmro9RJ1fZ3usXC7lN0V1ireae3ujVJ6HA4bUKGUTTAxoRPpA/uUlaozr7ZGOtcSIaoFAsENx4pQCF4otyZJevHYc5dYI5gTa1M2VmruXrzg6tBxA9GlRRaSEUhtnuaxmovFXq78Suvs5VXXcK2Az6Gx9zJy1xjl5TluGwtQLGRJZBIkcnlqTTP9o0e54/VvxWKxYDKZKJVKTI3n1wgPpVZHrhTpcjo66SrQFre6RJre3jCmkVeqhLRaLcaff7Iz1qmZeQy1ZY712yjW6/Q4GiSi4ywAr3/j/XytXicz+SR9wS4cji60Jgd1XYlYdOmyugmujkpHFuZ3lD6yWUoPQE0ukVqc5qZ+kT6wH1kpqxi5UKbv1dJI51oiRLVAILjhWBEKFvPattHiseeVs5MKBasXXO20qsFmYs9sNkG+0LmGG42nLXLLNFstwn391AJBlFqNckVGLehxu92d49fr9XXCo1ypksjX8fgda+oDrxa3q88tn893xrqyMHPQa0MrWZATRawWE2GDgdlkhJLPj89p4tY3vgGrxYRRkpCkCxVE0knMrsC2RdDFlR2Uhobl5ST3Hu3ZtgjeLKUHoFSpYZN0a6L4K+O6Xj5Hm+WwC9qEw30kJWnDSbBg9xGiWiAQ3HCsCIVKVca5qkqDeOx5eWyUn3s5FQo2es9mub+bib1qVV53DTeycXGaSr3eIJGpbChONxIe3tF7qOtKZLL5S4rb1WPV6XTQqGOzOEmXFdAaMEoSRkkDiXRHgLtdG1cQCQRDZLYpgi6u7BCNJ1k6O0khb6bb615jW1mIkUgk8Pv9a8Z/cUqPySgxNTkH2KmUchQqeV7WVbj15ldax18Pn6ON0lxMrsBVaU6zn9Bqtbtepk+wOUJUCwSCG44VoRCLtIWCpLXdUI89r1Ylhp3m524XWZYpl8vE4zHkXHxD2xeLvYamLUDj6RLuviOdFuObjW+rNJWLo5sbCQ+9Xs/szPS2xO3qsXa7zNSbGqLJNKW6Hos73IlEozfhdDpZ3iLFw2q14na7LymCNqrsEPB58bpdJKMRwuE+JElCVVVeHp9gfj6BRgfLEfu6a7jaV9GFcaqlPEbfAV53+yGS0Tmmz58F4OYjB66bz9FG9dJnopNEgCNHRLfkixH1xq8O11RUf+tb3+KTn/wkzz//PLFYjL//+7/n7W9/e+f1VqvFxz72Mf70T/+UbDbLXXfdxSOPPMKRI0eu3aAFAsG+YHBomHO1GovpGPEtyrXtJ/ZK5G7GVo1eLmeR2urxRxemqWRjDA8NcuTgCFVZWWd7tdirye2KG+buoc41vNT4LhbKOp2O2ZnpTaObFwuPnUT4VsYaS0aIV4wsJbMMDg4RdHvJZPMdIep0Ordc7LndJwEbVXYwmYz4e/o5e/plQskUQV83L49PsDhzlqNjhzgwFtzwGq6k0OR9fkqlEodGwoxH6xhNEocPHwLg1HSSus6JZLGv+Rxdi1J7m9VLX93IRwhIwbXgmorqcrnMsWPH+Lmf+zl++Id/eN3rn/jEJ/hv/+2/8dnPfpaxsTH+y3/5LzzwwANMTExgt9uvwYgFAsF+QafT0d8/QC0Y6kQ+9/sP7W6L3K24VKOXy1mktjL+UJcZvV3B6bGTl5dZitkZGepfZ3u12IvFYiQnJgj39aPT6bY9vtXidGry/I6jmyvvl2WZfD6/6X20Ord78NCtxGNRiukYU0sF9EbzGiE6ODTMOUXh1MIMki6PZHLseMK3WWWHbk8X590jRIt6ltIx5ucTHB07xOHD7fSNS11Dm0mP02GHaKZzXgcOHKCkcdAzehtOpxNZlkkkEmSzmU2fNGyHyxXkm+XbW8wmSOWui1xvwauTayqq3/KWt/CWt7xlw9darRZ/8Ad/wK//+q/zjne8A4D//b//N36/n8997nO85z3vuZpDFQgE+xRJkrDZbNd6GFfMXojcrbhUo5edCpfV4zcYdOS0LXr8Hhxlmdl0AqUnuM72VnWqdzq+y41u7vTpwIoId7vdZDLttu2rF0au2JPzCSRNi5qqxeHyd7o3lkqlbYnMzSo7RFMljt5+L+G+fhKJdsrHQL+bSrXaWRS5mY9WcsOrVXnNsUrlClq9lVw2wwvfeYxqJkomk6LVrHP8jtu5+fDYhk8aNuNKW2dvlm9fqcrtpw/bzPUWDW0Eu811m1M9OztLPB7nTW96U2eb0WjkxIkTfOc739lUVCuK0v6y3YJCoUC9XqdcLpPL5XZz2FQqFaD9xbnb7JXtvRxzsVhc8+9ush99vde296O/t2O3VqtRu9ABb3U1ht2wfblcbV+XSiVqskxD80p5OWjnGtfkPMvLy9uaPGzXJ7VajRp64unihbrFbQqFEjUMKIqy7vtzK9urx6/Wm8gaC4miitFgpdYosZyr0Gw219iOLMxTXZ6hy26kptWRLDUoxGc4A/gDwR2Nb1P/oaeuFDf138oYAh4bZrODalUmvjBOtVol3Ne/pQ/lCxOBarXaKTe4xp7XQ7Uqs7R0jscWI9hNWlDroDdg6wrQ0xtGq9VuaLtSqeBydZFpDDGRSICaAr2ErWsIt8dLtVpFr9eTTJd4MRvBbjaAVo/F4UEyWTe9hpK9m0h8BtCSLcoUCiXi6RKpqo7KzLfoMpQ5NOIikyxRKTdJxSNM2ZyEe4N0ORssRedwOF2bfk4rlQqxWIxGbuGyfLp6nFNLMwTkBmaziWpVZnG5hNHdt8bfG9FoNIguLVLKxnfkb9j975L9+J29n22Xy+Vdt7kaTavVau3pEbaJRqNZk1P9ne98h9e85jUsLS0RCoU6+/3iL/4i8/PzfPWrX93QzkMPPcTHPvaxSx7vne98Jz/xEz+xK2MXCAQCgUAgEFz/vP3tbyefz+NwOC698w65biPVK2g0mjX/b7Va67at5ld/9Vf54Ac/uKXNQqHA008/zaFDh/D5fLsyzhVWZlgWi+USe14/tvdyzMVikRdeeIHbbrtt1/Pg96Ov99r2fvT3VnbXRgnb0ah4uoS5e2hbEa0bzddX6o+tbG9Es9lkaTFCKZsAtXYhEurfNKJ3Kdurx2+UJCKRCPOLUXQWD/5QeI3tUqnEc9/+Kj6pSK/XRkNn5uW0DZe6RLZm5I773ozFYumMr6FUSWULaDTgdTvQGkzroo8b+W8lujk8vDafuVarkclkSC6cZayni3QmRWx+ilo5S6PZJFY2cfSe7+fgoUOXjG5aLJY19g71ezEY2j+/NaXGxLmztOoV+kcOY5AMGAwGqlWFpXyL4UO3bBj1vZSva7Ua02dfJGCDUrlMKZ+BZp2yrJJVrdx61+twOBwb2l65tw8dOkSxWKQYm6C4PI9DU2TAZ6RYkkkVqvjdVjLlFrLBx4HDN9FsNllIN7C4ulFKqU4U2OzoRqPRUMknKRUKZFMxDg8FCIV60OravqvXVaYW84QP3LKjdK3VT7FWIptb3dsrfulxatc84chk85yaXqbL7cagaa2LXu/Vd8l+/M7ez7aTyeSu21zNdSuqA4EAAPF4nGAw2NmeTCbx+/2bvm+7ZWMMBgNWqxWXy3XFY12NXt926V7kcO6V7b0c8wp2u134+irYXmE/+Xszu7IsUysuM9LzSg4sLgs2k47ZdAqz+eAlP+s3mq/tdjuzM2aWkxHIF0Bvwt13ZEeLw3bqE7fbjaIoaypgbJaLumJbr9dv+Pra8ZfQ2IIcuvsWAsEQVqt13fWsFlKEBvX0dZvIyRpIQ7e1yVIqg8PhwOFwdMZ3Zvw0Ju00Q73eVRU1ZsiYzZ0c34385wyNEg73daJWq3OolXKRpdnzKEkw1FJ4tAX6+pykcmWSsUVi55/G5+tel0O84h+NRkOj0WBpaRE5F+/Y69IWOgsH840atWKKhqqQj01g0AA6A5Ldg65pxmg04nSubcqyneuYz+eRUOnxeZAkL4rSrvyRSMRInZtnaeIFkmYbZpefAwcPbShgXC4XxeUFxsJu5mrLKKk4Zhpkqzmi8xGW5xtkawbsoaMcODBKtlBDaVqwlxY44HdiszoplSt87+R3URstXnP7YWpeD+PlJSrxc5Qt+s5kMJOtIpnMdHd3X3Z+c6lU2tInq/0S8KytE56O56ktn6Nv8C5CAd+6+2e3vks2++zsp+/s/Wx7r9M/rltRPTg4SCAQ4NFHH+XWW28F2jPMJ554gv/6X//rNR6dQCDYa3Z7odyNwE66Ge4mK8EKVVW3XGDWaDRYXIxsWhFiJ+PXaDTYHC5K1Sz5YglVYwWgqqjYHQ5WZy62Wi2a1SxDvd4tF3FudPx6vb7muGsqrPQFaclpnv32Vwl3aTh4cx/JdJ7pxSRuixk1NcFLzzgJ9fRisVg6gjwdnSUZnWuv2ylUMDQKHDowxq03H0JqFjp1nw8cOEC5UuXsXJxhr5Z+bw8Wk4mKLDMxN0GMPo5dZoOVixfzGY0SyUSMUmIGr92I01gnmxhn6exTLEyOcuS2e9dNztpl+xS8bg+VSpizySUee24Ov1lmwK2hpFoo51sUCjmem1hm9Ojt2DNRwr5XJsLWlgmXvoKMBqvFjNTSEujpI7NwisX5GbrcXmp19bJrX++0o+JGixwVRSEZXcDr6SLo70aSDOvunytlswWvbo/3im0Lrh+uqagulUpMTU11/j87O8vJkydxu9309fXxH/7Df+Dhhx9mdHSU0dFRHn74YSwWCz/5kz95DUctEAiuBput8L8eurlda65VI4dLlfRbXIxQTUwyFNq65N92xm80GvH3DNCqmYjmKshqCXDQMnnxu31rrv9OJ2Crj79aVG9UIeTQ2BDjL3czl1xAdyYO9Qr9IR+jYS8TkTRn4meZOHeWW2+7veMfS71AnzFFplYllz5Ps9UkMpGjKle57547gHbd55LGQUtjQu/owepQaDSg1YJGA8pynVKzgqIol3WtL26eY9DrWJyfRlVbaAwWNJUYx/rtNMJmpuIpcvMn112ndtm+9mdwsL+XSuUYj85EqJbK6PRGeseO8pp7DmOQzMQqRrp9fuT0AjbrK5/XWr2OxaBFowFZqaGTTPi73VRKfZydXqB2PobN4d1xScHL7ah4sV9sVgvx5TTRZJ5DR2/GaHwlHWb1/XOldeA3++xUq0NXZFdwfXFNRfVzzz3HG97whs7/V3Kh3/Wud/HZz36WD33oQ1SrVd7//vd3mr987WtfEzWqBYJXARv9+F0v3dxejVwsOGVZQafT4esyE01G2o1D0lF6vfZdKflnMplwBwcpRyt0+QMoKiwsyDT1VtyBgW21NN/uBExRFBqNxobi3GI2cWB0mLNKHr0kcefhID6Pg2KlglZvwu/vRs4nyefz5JMLhLrM5GIxWhoVp67K0VBbpHW7JV6YeZEXrTYOHximrnPSM3pbu3sjdWx6mdlMGjWeJpMrIss1lMos3/vWVxk8cOyyGvysbp5TKsRZStY4NDpMvZIj7LXhdtmo11VchQaWLjOpi6KykiR1PoOqqtJs1PDYJKw6N6auPgbGjjIwMEij0SQ9k24/PbjoOkgGA5V6E1nVoNdpiUaXqOSWUQtpWhgwdvVx6OZjO86fvZKOiqv9oizEKCkqTXsf3Z6uNfutvn8ufqKxE7YqhzmRSFy2XcH1xzUV1a9//evZqviIRqPhoYce4qGHHrp6gxIIBNcNW7WaFlxdVgSnyehkamaefDqOIpepKk0yNRuenmFQa1jMrjXvu5J0nZXrv5SMUCrlAR16V9+663+5EzBVVZmfn6OUjqJv1VGakEwk6fNKdHvdF2wbsTq95GpG9Ms5qn0O0vkii/EC6YaT3tEhqq0m+XweVAXJYKQmV9AqJbrdFspaG7HEMvmShXopxdkXnySfiVExhDjm9aLVatEZLQQ8NqwDYc6dP48pG8WmK1FraWilz3Ly2/NUqw9w083HNvXVRrm6q9NdcrkckslOl00lXUljs7TzVXOFIpWait9iJlWSO2UAL74G333hO5Ri52hojQyP9jPY62c5FyG6ZMBqd4He1M7BvnAdlFoNyaCnrjbIqRbURouZmRnUcgqL0UBdr+PISACDEie65NlR8yJZlklGpgjZde2UkgvpGtvtqKjT6RgYHOJ8rUapVMJu0VOtSDx9coK7bzmA02Ffd/9ciaje8kmKmrpsu4Lrj+s2p1ogEAiuVQ7x9cJeN6fYyP5mx1yJBp+ZmEZTiSO1ZPT1EtVsmnhM5aWuIN1OM5WqTJfD3HnflaTrrIifiVqNXKG9CE0ppZidmV4Xub2cCdjc7AzVxCS9XjvdXe1oZz5R4emTE7zm9sPYrBZy+QKRRJqmyc+5xQyFb56jy+3GFx5h5MBNuLtcLOS0OJ1OlvVGanUVtaWhJZex+7soFMxMLRXo91YZDVioGzQ0G0UahjLRpUVGRsc6EwJfV41kZApLLU1TK+G0WzGqaWqxCR7/SqLd3fDgoTXnvVmubjDUg6qqnevo9/spFkZIzr5IuVJjOZsnn8uxuLSEye5lYvxFko1uDhkM7VzqVdegN9zH8uIUx4bcVCpV6vkILXR0OUxMzc9gcPXh6r8Fo9FIuK+fJ+dmGf/uS2jVMk29FW//TQR8Pk49+xh+u4aa1oQn1Mtgfy/5QmlHTzJUVeXsmXHmz72I1m8inVjE6Qkw2N+7o46Kc7Mz1FOT3NTvxGa1kA/YeO7UeZ46tUQ42L2rE/itn6RIwOY1tQX7CyGqBQLBdc+1yiG+Vlxqwd9G7ESAb9TRzuoOodFoKKWXNjymyWTC5PRz+qUnCduqmPUVPFY9Vq0VR5eFmegpcobbkFoyZkm7a+k6c7MzqKlJRoM2Xpyv0OPUkt0gT3unE7CVR/JBrx2n044k6XFLTu64aYzvnF5iIqagbRV5+fRZKpkl7hrxkXAfRCkuE/S66Bseo9vr6Zyf0+nE6esjGR0Ho4tETkFnSFNQoGWwotGoKE2JasPK2NgtOJxuFi6IyZUJwemJlzg1McexQRfoTPgkmQG/jYP+AN8+k2Z5+jkkSVpz3henQeTyBZ5//lFOP28hHPStuY4rAjGaqfKPTz6Nz1RlbKiPLo+X6aUcWkpElxbxdq8tNasoCpK2RSjgQ6fTMjtvYDadoK4ozCYVDq2yHVmYxytVOHzPzeh1etSGSjJbpQkMDo3R47Vgs5lxO9rpHjt9kjE3O4OanmLAJzHsN6LTaokszzALmK2ObXVU3Cgdo9vr5q5bDjERVwgfuh2n07lr3zlbPUmxdQ2RzM3tynEE1x4hqgUCgeA6Y7sL/mDnbbRX7KupyTX5qN87+Xin7NlmxwyGepiwdZPOncHWBUrLhK3bTU+Xm/KZOCp19F2DzKYzu5Kus1r8aCUzUMHhsLXLKm4S3dzuBGzlkbzFvLZcndNhpzfQTfjQ7cxMT2HXPsuJ4z14uhzIvQ5emGiSkWH51DTBsonQwMHO+a2I40x8jrimn5nJGC6bFafLh2/QS1NnpC94kKHhEWq1OqTaYtLpdDIyOoZkNLEw8TLhXgepVAKP3YDNLFFsNrBaTPR228mtynsuFosszZzlQMjSEYdKtYRHk6bcqjLWM0xdVZmafZFiscjhI0cZGR3D7fHyL5UKVqmArDcTK0kEh27ioMPOQjKCw+la51OloSEaTxL0dzMy1I/SEySWWKblNnD4yFF0Ot2GYhXAKOU5F0ug0UvodNo1tbF38iRjxf5wuJuyy0B2eQa/x0bAZeLM/Aymrj4cvYc3vP6rJ51bpWNImuqeTOI3e5Li9niZmZ3b1WMJrh1CVAsEAsF1hCzLO1rwd6mKHBejKAqldJRR/xZlzy7kqMpKjcmZs/j8ARwOBxaLBY+/F60+Td+QF6vZjMFgIJ7K0NQa0GpU/IEAbvfhK07XkWWZZDJJqZCm5fasyWndSXTzUukslaqMc1W94hWRZzQaqeRi6Op5UokC1WwcyWSi121ifFGmrMi0GjLVXJzZGakziVmJlo8cuYPpqUnSiQWS8+NUtDZ6+4YI9fSuOc5qMenz+XAF+vn2i8+gKccx9ZtJxrWkK00k7wH8vm5yi0VKpRLxeIzEwjTJmRdw1T3U5TLebh+lTJzBHjcL6Qa1ep1sLk85vUBiZgq5kKC7ZwS3x8vB4X7Geuw0Wy1MRgmjUeoI/dXpH6qqshhZYHk5ydLZSbxuF/6efro9XeQrDbp7X6kXv5VYNWqraO0BYqkFACStbcdPMlbbdzpsRIFoJkFNVkjkFIYG+9dV/9iwSojTT0Ojv6qVhTZ7knJxm3jB/kaIaoFAILiOaAuH7S3426qqwGaR3Hbt4Ro26ysteteVPdNpmVtYIhVfJBZNA9AzdIjBoWG8PUOcm3uRXKGKJBmZmp1mem6JKlbUsoGuYByfz7dhw5LtsLrW8/zMJPPnT1KcsRMcOAgEaDaalGrKJcXPpSL4K4/kY5H2I/mLRZ6qqpw99RLa5CTOmhGdw0GzbmExVSQXL3L4lju580hfu8byRZOYlUindPgItZFR5nuGaGSmsdpdNBpN8oXShmLSZDJh9/SQnKijazZRlBr1ZotUViUcdlGrqygNLVOT52nmI4RcRuiyoGsUSM6Nk83lMTTqNJs60EnEkynUfITDPWbcFi0ue4NcdBxFGQG9kbqqrokor4jK1ZHklUnbvUd7KOTNJKMRzp5+mfPuEY7efu+apxCXqsJy4OAhZmeNLKZjxLM7f5Kxxn6Xk3BfP7VAkFgyRb9Tz8jo6LrulhtOOhNTFGsWIok8cHUrC73aUtlebQhRLRAIBNcRbeEgbWvB3+U0yGnXHpY2LXtmMkrMLSxRXp4hYNVg7vfiD5lIXBCOBw8dJh6L8r3Jp9GfXaRVK+L1eui2umjZvTSyc8zOWHdUzWE1KyJIVy0w5CjjG/NQSEWRCwmwBJiZmcVgsl5S/Gwngj84NMy5Wm1DkffSyRdp5ue4dcBFj6OJVt9gKZ1hPpJCp9cT6hvCZrN2jrfZJEaSJG4+dguzM/ZLLqKUZRmXRctrX/d6ZibP8fz0GbosYLHamJ4YZ3wmhTfUR734LJK2TtpoJLa4wNncIm6nhaYpglayEvQ66A4fQi6mGfTa0OlAMukI+rzYrVVm00lMrgCRxGTnflktKldEda1WWzNp6/a6CYf7CCVTRIvtboirU4wuVYVFq9XidnvweLyYzeYtn2Rs9IRhY/tVciWV7p4D61qubzXpVJIqBs8os+mEqCwk2DWEqBYIBILrCJPJhM0TIpaYvOSCv8upz2w0GrF5QmsEVbkid8qepbN5UvFFAlYNNbWF299DwOdFMuSZTUZQ+/p5/Rvv52WPl+e/9Y/0dbuwe304PX58/gCpTJ7IqpSRndBZPOgyEyvGGAw6cY4FefmcmclEGaMFzi0kue3eN20pfrYbwdfpdPT3D1ALhjrR65U27KnoLB6XDZOtSdPYoqVWqVZyJDIFxg7dTDAY7BxvZRKTy+XaCzovEovbXUSpKAq6lsqBAwfQ6Aw01QrdlgYWg5YnTy0hWVR6HT1U62WsWpmFVAm/ScZ3wEs2kyOeT1I2+Cg0bYRHjRTTVRpNI6mcjK17CEmSsKGBRJpgMERGkjYU+sViEXilo+LqSZskSQR93aRKG0/aLs4dVpoaDNYQ2mqV8eefRFVk0Et4ggMbXsNLPWHYqspLtbq2isZWk05dK01PbxjTyOirsrKQYG94VYtqWZYplUq7arNSqeyqvathey/HvPIlV61W0et393bbj77ea9v70d/C1+vxeLzEanUmk6l2HVu9EZt3FJ8/sO47y+QKMBOdpFprYjGbqFRlYqkiZv8o9Xp9XX3dSqWCx+MlDYwvzVNXUhiMNnoPvxaAc0tzLCdK6Hu6cHr9OD0BSrKKRiehKjkymQx2u51AMMSBQ8fo97WrOei0WqYX4hSyy8QTaZ5rgr9vmHC4b90j+c0oFouoioxqkVAb7c5/pboGm92GMdMAQIuGUqlMuVze1O6KHY3ORUlWO9svPgdFUSgUCu0mJ04n9XodWZaZOHeOxOIkRr2B2UyNhNmM1+FC2+3D3efFGx6jqTF0bKczeSLxNBX1OSRNC/QSNk8Ij8e7bow6nW7D6wJtQVmpw7mZJfK5LHfechSLWSK+nCYQljgyEqJUa1BRGni7nXQpYELHgbEBkukcckzlzlvuZSpWYS6rZTnVpN5qEOgZ6lzHfL6EqmlHdAPBEG6Pt9O1UZIkqtVq595uNBqoGgPL2RJO5ytN11ZsNBqNDX9DA8EQTlcXszMzNEopklOnaFSSDPaF6Qn2otTqZCPjnKvV6O8fWPPe+fk5qolJPE4TBr0BtVEnddG+m4374s+7qqqXHH+9Xt/ymqywV98l+/E7ez/bvrgO+25zw4vqRx55hEceeWTNtmazyYkTJzh6dOuuSwKBQHClKIpCrVbr/PhvB61WS09PD3p9/xrhsBHhcB8RYDEdg1SuLcD9o1u2a17TdKsJ0EKr0xEO93XKqXn9El6Pu7NbpSqD/pV8UEmSkMyWTjWH+YUllHwMt0mDtacLr18ilWh3uLtYOG3GSmqK2miAVk9FVqgrZUqpKF22LrKA12mikZsnErFuanfFzsWLEFfOQa/Xd5q+qDUFdAZcvl7C4T4WFyM0cvMMdFuwabpplDMUFZWmwYnHZcSc1FLT2qlUFSxoqFRlXjo7i6SDoe7QKxObxCSxWp2enp5tnXuj0SAej5HJpJmPT1Cv5LG0+gh0OymU6thtdnxuF6VoBp3BSL5cp9lUkQwNsoUS1To4nE6cDgeBuonA8E3Y3QGa+XksVgeNRpNiqUIsVcTmH+3cT5IkbXpvSZLUeWoCrJm0rdjY7P5OJhNoy1F6nCY0hRrdbhv1eoZ8zkq334/JoGUxHaMWDHXepygKuUQEs1qikExCUwWtHq3OQn55cc2+W417hZWnMluNXyDYTW54Uf3ggw/y4IMPrtlWKBR4/PHH249ZbbY9Oe5e2d1L23thV1XbkRyz2byvxr1fbe9nf99ovt5uU47dGPeRI0dRlO0/xp6fn0NNTXKk55V84+nIONOKwuEjR+kbOUQ+Oo7DUu6kn6SyRTyhI7jd7s7YssEBUtFxNC2VYmqRLjPUGy38gTDhHh8OS57ZdALDyNYd7lafbzY4QGr2Raq1JjPzMSjHMOoaWLoCZIFgwE+Pz7Wl3dVjW51Cs3IO+Vy2Xfva70Sjs1CpyqRSk0RaLeR8ggP9XspFPaXkFHqDk2Z6mXOTU0jOHoZueQP9AwPE01HI5lEaWlo6E8eP9tDtbbe57nKYMUtaJpMp9Pr+bV3HqcnzqKlJ7j0SJOXTcfrZJ5g6+xLLuVGGxw6ikVKUC1lMRgNBv5e6XGJhcYl8I4/Z7kYy2fC7vOi1LfRGM4FAgN7eXmZnuognI5DNt7seho9csuX56nv74MFDzEpSx4bS1GB29REO9xGPRddV1QiGetrl9XJxhkJOdDod2aU6gwEnVUVmLpPCEOjG1WUjnk2j0+k6/mk0GmQSCwxasoQDLiwmKxVZJhJfYildQXfrPdvy5ep9Lh7/dn2wHdu70ZxpP39n70fb+Xx+122u5oYX1QKBQHAt2ElTjsv5cYf1P+rbLUu2uqSeqqqUiznU/AKTk1PI+QTu4CAm/0Fm09EtF3Gt5LdOzpwlFk2j7wvg9Po7ZeN22thDVVUajQaxbJVyOsX8YoJ8epnjN40Q0LsA6An6sZl0l7S7We5tMNTDuZPf7eRbl2QVp2TALGk5NT+DpG9iswY7JdtKmQQ6p5FmvszgHf+GO47fiU6nQ1GGOv43nn0Wp+OV9AJZVmg0mtSq5XZe7yW4OAe82+vGKOlZPH8SWW8iEAiRLymcnFokPDiKwaijVKygsfgAByaHh1odWgYbiUxlTe79lXYkXckHL4d6OD9xDk0+QbMY5xv//DJGKtxx0xhWi5Pp6WnOnX6SSVuQLm+AbCrO4Z6jaDQa0BkoVWTsVhM0y9TqdVqN+rq8/1arRamQw+Yx4LS3BZXTYCObL1OMF9q2dshedGUtlUpMnp9ALiQupPvsfMIsuDERologEAh2mY0Wym3UlGOretIb2VwR0DqdbscNX1a4uKReLLpEdXmGkYAZjUZLwKaST5zDGjrC0Tteu6UQWREs3T4/AN7udsrIyhhWL5jcTlRvbnYGOXGO+471IRmGiCeSPP295/AE+xk9cJDURBatTrutesKbial8Pr/p4jWDJk9N1W5Ysu2AW88tt97WObeVSYwsy53Fog6tlbmFJfLpOMV8lnjVgt3Xj8/n27ITZjKZpCYXsVlfWfzYPzBIC3j25SlemIhjsHRTMKucm1umIefJVproLR58LjvPRarYHQ787iDuwPoFgDsp47bZWqNYdAltcYEDQSd6nY5C9AxWbRW5UkSuFDHWlrl90E68UiPg0ZCaizF+zsQdtx7F6QkQWZ7BWSpTb1qoygrxorxu4a1Go8Fsc5Eq5nDkStgsJkoVmVRRxWJzrU1bWjXelftqK3ajlN1KJ9LTzz9FIzNNyOfEFerDatfz4i5PmAX7EyGqBQLBJZFlmWKxKKIv22R11QFZVigUS2TikU5Tjmar1RHbm5ViW2GjNJJcpUGXrshgyL2thi+rWV1Sz9oyUcrECXlsNBpgMOoI+rtxVKrMJiOE+/q3VW/a6XTSM3SIVGQcg764puaz1XeAyML8JScAG01ERmyDVCtlzpyfo/dCF8FCoUQ2X9p2PWGj0Uir1UKW5c5franZsGKK0erA5fJfVGrulZJtGx1vdZm3+lwEynG8dj1Gmw5Htxd1kxKDq6+rUi4yP3seW6vA4cOH0Ol06HQ6LDYn3vABhm6+i0IhzxEqUG1RLbYrs6SKdaSuEPefeANarfaK0xBWxlO7sJgrsjCP3W6nXq+vuTb5QgmHRaLPYyaaWESjadHvtWE2mkjP5+lyOhkbHuTM+Tl6Qn56gn7G80W+NzWH2e2kUdLj2eDJh9FoJBQegEqc2UwFlvOgk8AaINQdXCOcN2zq4gpsuZbgSllcjFBeGsfZSnH4aACTUU8iHWFheRmPJnPZE2bBjYMQ1QKBYFNW/3BdXApLRGA2x2g0oqLn5fEJNGqZSrnA8tICVb8HrS2AydheILWd9IiL00jS2Rxzp5/G2T+Iu2sQuHTDl4vHtlJSz2rIkM+lsRvspEsqzu4hjEap/Zh9B2kbsHnN50ajsWG96HOKQm+4ryMENyt/NjIywmS0xLlIAXRmlvIturdZT3h1I5nY4hzVUg6bw0UDPdG5ArccGsBmd6E2GqSyxU6Ky+zMxqXmtjx3ReHMU//CgKtBteXAGWpXTimWKsQv1QmzL4jULDB9/iwAw8PDTE9Pc356Fp0tSGTyFMvLSfq7WljIMTLgpKWzkEjlODlzimh0jCNHrmzh/erxNDROkucyVJdnmJ0xt59ErLo2RskAOgPNZhNVqYCmhcXkpFiWQSdhMkqMjIwwtyxzPqZgyzbQ2Hs5euJ2XK4uzGZzJzd/NSaTCXdwkHK0gq/Lj16nR22oJLNVrMGBzpMBRVFYWoxQT02uua9mou2FsZfri62epqykTfm7zKSrEl0OG5Kkp1arM3PqPDcfHiKW1+xowiy48RCiWiAQbMrqH1qNztVe0CUiMJfEZDJRqkFx5iy3jHQz5HFwOtdgZmYS/wEfxgui+lJpDBtFb21WMyGXhCoXUJRax9ZO8peDwRAvRpc4efo5UvPn6e4yMzh2E4d6g9sa10bjVBSFYDAEq2o+t1otxp9/cs34HVor9bkIZ576Fwojo0gmeycf9eKa26qqMjU1RbGYw2Oxg86M0ebZ9qRudSOZXlMOb7eefClFvKRlPhrlKwvzBAI9mFx+Dh07TjDUQ6lUItzXT3gHObg6nY7ecB+FkVHGQnbsNiutVotcScag14FauWQnzFtvPkStXueZ8XnORHJQzTE8NMiRgyMkltPMvXyW5YrEnYd7MEoS2Uodl8OG31kktThNvjcMcFnR6ovHkyu325QHPDaWk5G2qNYbSWdz2KxmjJKE0xPg/MwpWloJq1liKZEmL7c6E7NMNk+ob4TRm47TarU647pUGduVXPhoMgKqfGFSM0S4r5+pyfOdyP7k+XFGwx5Mfd1IkgG35KRaa7KYjqEo21sYu8KlamPDK2lTbpeTdKKdI+6WbOh1OjSNKopSB53tkhPm3VjcKLh+EaJaIBBsyMU/tKsXdIkIzNbIsozdCL6xQ1QbFarZGg1LEEeXBPUKxWK5/Yj4Em2RN4reSgYDFquNbL6AvEpU70QIx2JRvFKFw/fdzsJgD6XkNEY1SySyQJe7e9vtmi9esKVqDNg8IQ4ebKcwbJS/PLewBOU4A64GYyE7Go2WSHScGKzrljd+5izPP/MdTFYXTo2TDE4Wzz+H1WrhwMFDl7wGFzeScbtsnJmYRl+K8obbhoiXDHQFBsiVaixGFiill3aco76C0WhEMtlpNJok4jFKmTg1tUWhWifTcHHI8Eppv4uvq6qqxKJLWDUVNGqJZLzK7UeGufXmth8DPi9Ou5VMfIYFl0StUkZFR0lukKpo0dbnOfn0N7GZ9Jc19s2eEpjNJsgXUFWVXKXB3OmnCbkkLFYbLYOdTNMNejv5qsJUNM7w0AA9QT+ZbL5zD12qAdDFInOzXPipyfOUo+OEPTZm8znUzDSx8hT5VJzRw8cY7O/FYjZBKrejJyywve6bq8s9ruSIA1RlhYKsYS5RJDw6vOnncTPh7vZ4tz1OwfWPENUCgWBDLqcFtuCVhWeNeoUDBw4ALZRajQG9nujS4qqFZzbMzr5OpYyN2KhjotFoRGtykljIUqlWMZuMm3Zc3IiLq3/4vG5m5x1E5meYeXmK/oMOunu2TndYEQgXL9gymF0kE5PMShIjo2Prxi/LCvl0O+e42nJgt1lpNls4LSVii9Mcu+sEUS48Nl+M8uyzZ/BZTNx/fBAkO9+Jg508Z09+j4HBoS3PdeX+NeiN0KhjszhRajUaSoluux5vl51CrY7dZiGZSpOKjnPkda/F7bp0jvpWLbSff/5RPJo0gz1uKnU92XwBbat97VdsXeyXlcWiTklDyOukoZShkmB2fpGRoX5MJiOhviH+/plnsBgU7jzYh4KOxXqVUmqZUrrIa28bw9Pl2lF+/QqbdeasVtuR4ng8RpeuiLN/EFUukM0XSOSzeEfv5p7X3Icsy8RiUeRcgjPzuW2lzFwqOnxxLvzKBD+TzaGtxDkcdhC0t8hW8+Si55kFzFZHO7d6m09YVq7ldrpvrk6bCnnt1Op9vLSwQCqdJWccwqSz4XTYqdXqG34eNxPu1erQtscquP4RologEGzI5bTAfjWz1cIz+4V6q13ubnpHrRisHprVLM1inLMvZjeNLK5eBAftCU06myOnaHAM3E60aCCa3V7e74oQLJVKa6p/6HQ6Rob68Xd7eWEizvDh2/H5fFue69zsDJnZF9ct2GpqDAS9DuYXp3A4XTidzjXjbzSaFPNZjDYdVp+XhcUY+XSculJlLiFjcvq4+dgtqH39TE5OYtQ/y2uODdHtcZCT250J+/1Onj63RD6f33KcK/dvXVU7Jd0MBi2KXMZhs1KV6yTTWZTGeVILs+hqeXKZZbo9XZvmxKqqysS5s6SWZpC0LSSLbc21C4Z6OP28hXKrykK6gaqV6A4f4IjbzsIqW6uvq1KrkUksYtU1OTWTotY0oFWyZKtpkvk6oYAPi8WM19OFxuKjWqsTSRXRWiQkqxuXdRmzZMbtcnbSIDYa+1ZcfJ81NO2oejxdwuofQc7FGQy5cXcNoig1ZKVGpVolWtSj0+lwu9243e4d1UrfKjocCIbWPAEpySrZVJwh7yj5dJzhUBflsp7i8gI66rhsOubmZzB19eHoPbyjyf5OggfhcB9JSWIhGYGWFZP/CCNjPkZGx0jEY+3tqfWfx62E+0Qise2xCq5/hKgWCAQbcvEPrUbX7lC3sqBLRKnXstXCswMHDnSiV0rTgl2JEw46O01JtoosriyCe3FmknzqDHK1gsXmJBQ2YHb5CQRDWK3WziKuUqm0RtSsEYL6JioG0qk0Q34j3d5XFosVy5VtRflWBILvogVbANPpJJWqzML5WeqVEjaXG5unp1PzWikXiZUM2Lq6kPMVWuUYw0EXjWY7KtnITDN53oxeryc2d4Z8ap4XT6coVoYIhto5wxotbKfr+cr9uxwdp6W3MhOL4zC1SOQUWgY7C9NR9M0W3XYPJZMGm8NKI7dIdMlCuK9/nahSVZUnHn+M1OR38TsNaCx2Wg0nBSXXuXaqqhIO+hjrGabZatGg3W1S0rYgtVagreQOn589S2w+jU7TwKbXcPdNIfJZI7H5Kaaj5zh1tp/RoX7mY1luu+M4Y70OKtk4LY2BBmB3hwg6PWtSgS7nadLqut41ud0gw9w9RDDUw2x64ZVFikYJo1HCbDISza49xk5qpW8kMlVV5bsvfIcXazW0xYXOE5CA087TczFeOt3Erm8/dXA6zEyUKizFMvisDRK5BkOD/Tuu/rGT4IFWq9205rXdbt+0FvaWwl1N7Wi8gusbIaoFAsGmrP6hVZUc6I0blsJ6tbNRJOrQ2BClcoUXJ5YoaRxIJgcmzwj2TJSwz4nFbKIqK1gtZsL+jSOLK9FvOZ8gn45RWF5kbGyEW286RFVWiCQmyUgSDoejs4hr9aP0cF8/T37rm+RmvtvJhZW1dhqVHN9+Jsvr77kZk1HizMQ00zOzWLqCTJ56Zsuc3BWB4PatXbBlMZnIp+dptuL4XTZuOxC4kDf+Ss3rUqlEXjUwMfk0Sn6JcLeV+aaMyWSht38Eq93Ft04+Q6DLiLVVxmXWkI/N8NxylO7B26H7dqLJAuaunm2V+lu5fzOxOaJpmUqqQFXTTyYlY9LWue/mMBVVT05uEuz20htwEc0kqAWClMrVNaJq4txZcjPf5a4ROyGfh1JFJpJapg7kV1+7C9HxlXUIsF6grTw1CPf10+3zoyg1yE1yy6ATuVJBLpcoVxWymSxPfPsZ6lI3Xf3HkOxR/D4DtqEhssUqADN1BVnVdBbIAaQyOUqyuqNmKatzmZeXl0k+/zzhvv72mC9K4VFqdSrV6mU/sWov+lsvMouFLOXYWex2K3eufgJiGGJseJCT45P43RayBR0mox690crYLQfRGy3U3HpGRkfRbmfGtQqTyYTJ6efczEsMheu4Xc5LplNtNnnYavvmwl0Cqjsas+D6RYhqgUCwKat/aDOZDEajccNSWK92VkeiVFXtNAAxUQW1Tl3v5titx6nX65xLzBJP5qkWUtCog86A2eGloZrWRRZXot+hLjP6rgZOfzd5OcfsfIRwbxC/28JSMsJErYZ6UXmxSHScb5yfoDD/PHeN2PF7XSwuLpJcmkHbMBPJqjz2rBUtKlSSHB4bZGRkpC3Wt4icdwRCpYrWaGc6tgRAVamynM7i8XgJ9w9ht1s77zkXmcbhdJFaTuI3K3QN9ZKaWcYpNVhaiuIM38RYTy/lcpVqZgnF6MGlK/Ha20aoJDWUC3km5qcJdN9OruXk4LG7thURXX3/Hjh2FxqNBlVVmTw/wfQL32AuVUcjmegKHaCuLSIrKjVZIZZMkSupHVElyzKppRlCLokevweDQY9baqf0nE8WkNU0iUQCv9+/Jq2j0dKiNhrkLzQ60el0TE2eJxmZol4tIVlsdPeO4A70M7twkmi0iq6WQamW0LdkxnqdnI6niGfL3POGw8zOGIlExwn7QTK0nxzlVAtqo0W5UqXRaHBmYpqJiUn09m7GX3iS7p6RHS+4XN0eeiXiP7vwMjNzEdRqHrlSJJGv4x29B71+5zKivehvrchUFIVkdAGnw4bbYVnzBCSaSdA3dIi5ZZnlaoMnT0cJ+Vz4QmEcTjfRVInungNtuztgZdJazkRJZsvMRaLYHU78vYO4dzF4sFEa14pwt3UNkczN7cpxBNceIaoFAsElMRqN2O32S+/4KmV1JCqTzVFenmHQa+ukNRjqCaJLi/SG+4gtp6k1Fjgy6MdmcVKqyIzPniWt6+fYqqhfsVhkaeYsB0IWrBYTOW0Lv9dFdWGRsye/Qz3XDzoD8xkdLm+eW4Zcax6ly0qN5178Hn1dWkI+D5nMMlI9y3DAwnIZrFYbmFosF1t83713E/C1qxCYze0xbJaTq9fryVUaTL30NF67nlxJYWIhQ0OtU2pYGOsdY7C/vfhSVVXiyRTz5yYpFVOk41GODgc4dNNRJrUK3dYm/Vo9iwU9qtogk8tTb9TRqhXCfhtORzfLThvZ5SjxSLshSWDk9h2Xc7w4gnjslltpVrMEbCoOVxd6nY5kIs6Z+RkSOYV+p57ungMdUaUoCgZdA4vVRkWWcRraotNkMjA3M0FZm8FoNrAcsWN2BUhUjYyfexldS0XBgDMwzBtvCzI1eZ7JF76BTVvFLGmpFpqcjc7QPXQbsuTj7PTLeE1VTFQZ7gtgtNjBVKKYOM3EuSP0DwxyvlhkIpZE22qn6wzd8sb29UpHmZ06RXrxDEG3haC9TDHyPGcXJ2k03rSmWspOy7oNDg3zzblZcvPjhFwGupwOPH4HdV2J2Znpy7oeF4vM+HKaaDLP0OhBmkphzRMQGnlyhSKhvhFee/i29tObQpJcvUkup+3kL1erO4v4rkxaR/xObhk8RjqbYzqSwuoO7XrJ0NVP/VbXP3d7vMzMzu3qsQTXjle1qN6sHeuVUKlUdtXe1bC9l2Ne+ZKrVquXFdHYiv3o6722vR/9faP42uQKcG7uDNVclBG/DaWlI51X8PYMYbE6WIzNY7XZ0Wh16LRGlJYOrapFaenQGYxo0FIul5FlmZmZGdKxBdIL41hrLixOLwpGZiJJUMq4bBJul41KVaGUW0ZttKj02NAUKhguROvUphajXoNGshHNVpALZbocLppaG9VcDr25C1/ASzozjUYrdVIVoJ0/ryo5MpnMmsmUoihMT01hauYYHRmmqZSQjGViGRmNe5Sww4TdYaZab0FdZX5hieXFaXp9NkIhN7pyHLWcYjFmx+wOk85EcNgMVJUac0tJ0nkFgyNIrV5AY7BQVXXY3CHqejsBnUqedvfGnYqnjXD4+kglJmlo2xVUzFYHpq4+hgb7GRkdRZKkznFUVUUn2ZBrdiYXk/i7wW6xcOrcAul8kTvuvImxvm4qVZmXTj+J2oDjtxwmtpylnM9Qip/ma1/Jkk5nGe6qMdbbjcVkpFCp8NypWZ59Ik6Xp5tkuYlOZ+L2sQEko0Q0I9M7MEKu0uTU898htjCFplVDozVitHsJ9/XR1dUFQNHpYnp6ioMD3XhtBlr1ClpNlXwqylPfULHZHbRaLZaXl6kVl0GtgV7C5gkRDvetSZu4+N5WFAWbUcPw8Tsxm4xIBgMGSSKfL7IYm8ft8W47SrzymfT5A0RqNSaTMVBT1FpadJ5RPN5uiiULM8sRqg0djWaDVAUM6Sr2nkEMBgOjYweo1QZRFKVdyvDCtdrJ511RFNKxObqtJpQGKPky6CR6Ah6S6RiZTGjNOe3Gd0kgGMLt8a4Zd7FYBPbXd/Z+ti1f6Ba6V9zwovqRRx7hkUceWbOt2Wxy4sQJjh69sg5UAoFgf6AoCrVarfNDthfvC4f7KJfKpCLzOM1aDJIJizuM3x+g0WhCKkepVKLb48QlmUgWctAsgtaAKzgEtXZXwUwmjZKeo8dtxKS4sBtU6sUYRVmLkkrgtemQJAuq2iRXUbHbzMzNTzIllelyu7C4uvH7A6iNBnqTHaPNxeLyMpJcwmNzkcyWSJcbDIcDdLtdaLWQKxSw2iydc6lUZdC/Et1tNBosLkbIxOZZmj5Dj8eAvacP90B/e3GerJAo6dGYnCxnlzAZtOh0WuJLC5j1Grp7wricDiSThWazTH45zuDBo2SA+aUIi+kaLZcBd3iYMW+V6ecfJZnO4fe6KJTLJFMF9OYgqGC4UO95u9dms/3C4T4iQDy5BNkCesmEo/fwOoEJ7eh8odogtxhFapZZSizTbGmJpQr0Dx/i0KGDaHU6zLSw62RqaCiXK0iNAj09dgwaI+NzCSLxSRrWXqBBsVykWCjhM8tUqxVuO3grzxWjLETOYzaZ8HX7sHUFcNnNLKUTpKOnMNW6Cbit1Jo6soUkJpOxI6prtRotpYDDrcWgFnA6jRi9bswS/P13X+Dxr5pwWIzI+SR9fWFGh/qRlRqxRLsLYX//wKY+XGl84rS7MEiv1NteqQutKMqOUy+0Wi2BQJCSrT1ps9vtxGJRkolJfF1W6mqQc9EYmWweyT3ASM/hNYsQJUna8TFXU61WiS0uoBir5LIZKpUyJpMVt9tDpmaid/jwFdnfjCsdt+D65oYX1Q8++CAPPvjgmm2FQoHHH38ck8m0JndsN9kru3tpey/sqmo7+mU2m/fVuPer7f3s772wuyIG5Vx8R009ttNhbSNf33zsGI1qmm57g6DPS7PZQqnVkatV9EYzPp+PQnKegMeObSCMUqthlCRK5SrVdAuLxUJ0Zpywz47TacfQkikvz+A0aSiU6yzLDTL5Eka7EXMVai0DQy6ZSlaDtlXFqdNTSmaZLxdpGhx09x/Gqisi02A2Ms9yJktZ46ArOMZNBwfIF0qYHN0USgrd1XIn1zOVLeIJHenkz09NnkdNTRJ26jB4tQz79WSzM1T0EO7rp1arky6mCfT0kLNaiOcSlHIplnNljt88Qm9PgMhSnEw6yVJqgVpTQ8tgZqCvl3w5yMGhYQ4fOYrRaKTRaJDLZnhp6iks07M0GzXqLQ2yTsEWPobZbCYei255bbZ7DY8cOUomGEJRFNxu96apEFOT5/EYynT19aLKBQr5DNOLOVoWH9/3ursxm9vvK6oyDkODXL1OfjnCSMiB025E12hRysSppud4IT5O5JQRs0mPjiZBrwuzNkC328E9d97KU8UlmvUqo/0+dDotc7EU0xOnaMo5ekJ1HE07Da2JWiXL7ISOI0dvwmg0XnjKUaJeSBPss2O36IAGM8UcejmGU40SMrnxuI3k5QTZjJWRof52M6d0AsPIK10IL7639Xo9UaOJVqOGHi1KrY7JKFFr1NAbzVv6brPP5cXXsO7rY3R0jAVJYjkZAa0Vi28M96iPAwcPYbFYLm34Aqu/SzZLdZmfm6VRXESvVhmyVLC5dKRKVUrFCo2ahXwuS09Pz5a2d4P9/J29H23n8/ldt7maG15UCwSCVy+LixGqiUmGQpt3StuI7XRY2wiTyUR3zwiphZdZXj6/blGXzWbr5JKG/WsXLDlDR9pGVAWLuZ0bPdjfyywQTywxHUtTo5tDh0IcHB1Cr9OyNHMGs8bI6MgoNpeXdDFDsZQhGk9yy2tv577RMRbm52glIxi6ZZLLS4yMjHL44Aj5QolIIs/BY3eh0+k6uZ5KQ4vZ9UpTmtWVTSxmE+nEIjqtFr/Htq5Shtlsxul0YhgZJZfLIVltdLlNRJbilJdnuGPETcRcZXYpzczUBEt5DUdvv3eN0NXpdLz+jffztXqd6NlvIakKDbWG0aEA8LV//WcOh+0MBru2vDbbvYYrkcPNRGHn/C+q0zyay/P0C+fIF0udPHTJYKBSb1Ko1vE69VhMbZvnZiJo6gW8pjrUkxz1h6g0NCwuF0lGs8SNdhx2G+4uJwtLt3P2pWc5eT6Ox9vNdLxKdjnG624d5OhwN9FYknRyipbGzVI6zYsvHuL48TtxOp3orX5mo1P0+6wYDSrpfIUzM3H6wyG6nWZo1ujxB3GUZWbTCZSe4LbK75lMJqzuEE89vyofvNak1DQzdvv37bi85uJiZMOFtQsXrs1mpel2wlaTqnq9jpxPMNAXJj39PQbCVrrdTjS6HIuzOQYOjlLNJXbc7lwgEKJaIBDckMiyTCkdpddr37JT2kbv206Htc241KKuzRYsrfzYozdSqco4JUOnMYvVakEx92Fy+qinp1FqNVoGPblcjrJehzsUZGSoH0WpUSiWMUZL9PSGkS50NlT6+hk8dCuxWJRSOsbUUgG90dw5rk6noxzq4fzEOTSFxJqmNG6Pt1PZRJIMnRbNXRYd+WyZyGKUUq29WGzlsbbRaMTv91MsjDA1+yKF5Vn8xjLpaIFyroS3O4C9O0zD0k24r3/dU4N6vY7bakBxOKgkkwRcJvRWLQVgeepZWt5bcXcNrLs2eZ+/Y+NKruFqLq4xvLpOs9kWYyayjGQwXGjMU2CpoEFtGLHVWhRKFRoNlZOnzhCw68irRZSmFqXRQtJBstDC5bBhMkC9XsNotHHz0aNk6jaaXV3ktA2Wy0n0dh9jfQFyuQI6tcCI38x0tolFalKJn2N2xkNvuI+BsZt4du4Uz03l8ThrpPMy2bqRe4f60VsdaDQtKrKMzWKC5TyyUqPRaGyrNJ5Go0Gv02DSazDrodXSIKvbL9m32p+rO3pudm2uVMxuNamyO5yUchmGgz7KSS+leh0lWaLWlDA5LPT0hlnKyqJrrGDHCFEtEAhuSNpiqIbF7Fqz/VKRuSttz16v13FZdBy5926sFhPGC5HQTDbfrvfd179pNE6n0+H09RGLtKsiSFobpXKFaLqEqrWjqRXIFsp887tRdEYztaqWg4OBTrUNo1FCV6kiWexrRNKKSHG73WQyG6c7xKJLaIsLHAisbUpTKIQpySqZXJ6Az0u4J8CTkSWee+kU+XIVb0ZDz+gdHOofaOfe8soj91BPL8VikYlnnqZmzdDt6WJweBSzycRcLE4iq27oT0VRmJ89j1SY5d4DDrQ0ieXTbVEdX2B6QuLwkUOYL5yjySgRmRunVCphM+k7HfgO96xdN3M5TVG2qjEcCg9i84SYTESJLb5EtZTHYrOj10qciydJ5eOoNQVadfxdJrJxib7AAA0aKE0TersRvcOFydginc1SqzeIpkrcetcJwn39JBIJWg0Ny6YmE0txXLoKfR4Dcr3BQrKA2dXDaJ+P55//DstLUxhaKlZvH+eSEUZMFizeIJ6WjVpLj8/fvkcSyzNI+jL1lkSlWiWZrV6ymVN7grrEXbccwmY1r0lbmk1HUZStW8avZiU/e6Wj56WuzU4rlay8J7k4SY9Dj81q7nSaVNUG33n+O3R1dRGLTKJkNDQbBpy+ADariVJZodusp0VLdI0VXBZCVAsEghuSthhq1/Ltcpg72y/VZv1K27N3mqO42pFdRVEolkpIBj2oxY5o2CwaNzg0zLlajcV0jPiFFuQ51U6XrsiAz80tg8fI5PLMRJbJM4jBXCdfKK1LJdlMgGyU7rBRdN6htaJdjDD+3DcwGC2k5lKMDQ+i0UlI9QwHBgPYfIP4A0GS2QoL83N0+/zrcthrGjNao5WesIvRwR6iySzRaJzM8jJnl+bxDtzEHXccX5Mz22q1KOUz9BnU9qJJJQO4ANA3ysyee4FvPRni/jecQKfTcWZimkYpzoGbB3C7nKSzOb4zF2P8nIk7bj164RwV4sl2G/CdiKXVNYZlpYZBr0dtqCSzVdyhI4yMjnFmHBrlJEMXjl8qV5ict7KQ11BdnqZlcJGrm2iZvRzsd2KzGjgbKTE67KepNXFmqUIwVcOqtNY8PfD5fCx3uTFrRpg/X2J+OclCvEYqVyDbcjMa1HN+8jz1VJLQqIegz8egz8x3X7RQrBnw+UKUdT5ylBmx2LFZLUzli5yankNnC2AoGnCGhi5Zj3n1RFOSDEiShCwrNBpNapXSjiYp7RrV0prP10bXplQqtVuV5xPtjpQX5cRvJrYbjQaT5ydYmDiJNWiikopgcwcI9fSSymRpZKYYGL2LXvsI6cgE8VyW58dLHB4OkSqqYA1cmGhsf6IgEKwgRLVAILghMZlM2DwhYolJzJJ226Jzq0YN22nPviLKc/kCSrVEKROHRp1cpUay0c0hg2HL9+t0Ovr7B6gFQ520iKnTzzLgcXcEb8DnRTIYmFpW0bsHmE0n1qWS7ISNovOx6BKacoyQrcHBm0ZZjNo5OT5JvlDi9kO99PYPEerpRafTYZTaUfhiqUwjO8dQyInJ6GR6eppzp8+yuLDIrNZILJnCbWniNutYqlWxIzP/7D+Qjc1y5LZXcqsbjQZVpcGZpSWWtAV0Gi1am4K1G8ZCDjT1Aum5l3jhJS8Op4Pzk1PcdGiELqcdpabg6XIyNjzImfNz+H1eiqUyiaV5UpkckneUyML8jhqihPv6eXJuljNPv4RGLdPSW/ENHeNQ/wCyLFPNxTk4FFqTzjAKlOeKeCyjWAeDNPKL2GsNXpqdw6hrMBUt0bQ2UTVmPMOv5+id93faza+wci8WlByBgcN8dXwCi7yIy26kf8BHj1PDmfMv4PKECPq8SJKBbq+b195xExNxheHDt3PMZiO6tMhCMgKpHJh7OfTa29e0t78UqyeaDq2109yomM8SKxlwhkaw2Wzb8qfRaMTmCRFJTKKqDVKZ7JprMzszjUaj4dxL36OWmsTrduHs6afbJRGNjjOpquj1+g1zpaGdr11PTeF3SgS6jJiMWhLLM8woNRJLEUI+F0GfF51Oh2QwUNdO8eK5GMuNGs4uN6HuINbgwCU/Q5cTQd9trocxCNYiRLVAIABuzC/olbJpOxWdW+U9bwetuYunTz5JwJBnsMdNs6kjla2gpUR0aXHdYseNfC9JEjabrb1a/YLgXWkRbTJK2KwWdIk0vb1hTCOjV7Sw6+LovKIolDJxbGYDis5Jl8tBwO/Fbrfx3WdOcuDILbjdXZ3326wWlMUocqHEgZ52DntkYR5jbZnjoy7Uah690cjE5CQHwk4yBjsamtx7tJdQf5j5VIrc/MnOIsLpqSmaxRh2qYlayLCYrWLqajECyPUmVkeIUqHC1772GO5AmJpcJptJMTleRNdqgM5Ao2Wk0tTzr9+ZwK3NEPK5uO3Wm9sd+DZYsLjV/R9ZmMcrVThy7zEMeh11tUEi80p0frN0IYM2h4wOWpAsqBSrGl6erFHNL9PtsXNk2I/TN0xX0E0mnUKr1ZJIJHC5XDgc7fSIwaFhJlWVp1/8IslkmiG3lrDfTaBbIp+KUsznCIQG1h1b0lQxGo1YLJZtL/5b8cFKGk+pVMJsNq+ZaNbnIlCO47XrMdp0ePx+6qlJZmekbTdMCYf7SEoS33n+OzQyU51rY7LY+d7T/4yqtgh3wcixIDqtnkhqgbxBT9jfbmPf67Uw1Otdlyvd5fa087X7usnYDcSXZwh7bXQ5TJycniSdK3P8+K2d3P9wXz9dbi+qLcbQ0XtxOByX/Axtp6rMXnM9jEGwMUJUCwSvcm7kL2itVkt//wCGHYrO1e2tt/u+1X6slLJMz0QoObQg2dAZzASHbuKgw87CqgV1er2eWHRpne99/kCnVrLRaERFz7Mvnkat5pH0LSSjhZbeStMS7IztSiZCF0fnW61mZxGkK+THaGyLkKDPi9FoIpPNYZAMnXzxUrlCvanDoG1hMZs6ojzksWE2mphYLKDXaxjo8WG1SVTrWvp8LvzhMJ4uF/lKHkuXmXhslmKxyNNf/wKWWhyvXWIqY8RMhj5buyGERSdTTeep6bo4eiDM0Vvu4ntPP0V29jmChw4SDAZ49oXTnJs4S6Rowmx34z8yzM233YnVau1c35VFcRuVXTQ5/QRDPVitVlqtFvnkAqEu85ocecnQjs53+/woTZiNLOF2OnDYbRiNbZ9IJjuZcoHkzMvccSCAfewIRmo0qk5cg3dw332vw2azEY0t8+V//CJGbY2mXKCptxA+dBffd/+bkCSJSqVCs5zkvtsG8Jg15LLLpCbmqLbM5Cpg0GlQarWOWNwoVWn1PXLxBGL1vasqZeKpAhgdzJ99nsS8Faevj77+ASYVhTNP/QsDrgbVlgNnyE+op5d8obSjBaBarZbecB/LS1N099lwOmwUCnlSi5M0kmcoyE0K+LAPH8B0wd5sOoHTYaeaWaJ79GasFhNKTcFmNdPtqjE5c5YWhzv52k6HrT0xTieoKwpLuQZmZx8Op3vNWGp1FZvDi8/n29bYL7cy0G5yPYxBsDFCVAsEr3JeDV/Qlys6d/K+1X5subvQ59ztFuW2bg4fGMFolKhUqkROvrKgbjG+jFYtcfctB3A6XvF9pFbrNOPQ6/VMzCxSmHiUQ71W7C4XctlAvNDEeSCw4/NaiUQaDIY1710dnVeqBeZyesb6/Z1FkACyUmO51OSp7z7NkN+J2WpB1VvRmFx4Q0coZWJUqjJ6rQEadSwmJ8WyjD/Yg97kYDydIxdNYTTbODgygqvLTSqbpd7S4XE5efn8WWhO4dakOHHXEGemlogmMvRIMiaDlgYw5Ddz/uw05Rb4/EG8bhcWswWLxkgpn+W5ZIZCYoIelw6v14nRpMNUnGL8lIc7774HWLsobnXZRZPRyYunzvLy01/H2d1L//BBmgY70blJ9M46OW0LdAZs7gDebj+qkuL8xDleOvkScvw03U4jDm8P/t5hNHoL6ZqZ8vIsJj2MTy/R0hjQGowcGb2ZltXdEcEvvjxOceob+IJ2XMYm+aLMqX95nujiEsfvuouTT/4T1maaTLaItdHgjbf2UKybWC6pvDC5zPhMnEO3yRglYydVyeQZ6XSPW11/eqMJdKPRQE6cY9DvJJuRUYmTwoFZV2PAY++Uu+sN91EYGWUsZMdus3bGfzkLQMvlMqlYBItdIToZRy6mcLs9DAbMpIs15EKSmTkrI0NhNNomdaVCLJmi2WpSLRWYSUVQazJLy3lqaoNSTYNcU6hWqgz5jXR73e2KOD1BYollWm4DTl+YaGoSnU6347Sulc/OblWVuVyutDqRYG8RologeBXzav+C3q2Ul4v9qCgKLpcLs6ZKWil19lu9oM5qNlFbPoOqVsgXinR73R3fTyZj1IIhAF5+6SRqeoJbD/bSbdMiVytUS2XsriHsJk2n5fGlWBFU6dgcqDWiRtOaJxIXR+edwTHU1GRnEWQuX+Tvv/otdHIGjUnHMy+fBVWmpTNi67mZN4SPYXH5iaVm0GKm1tSwlEiTl1u4u4cYGepHVhQmzp3D7raTL1bIpV5mOVtC6+ilfn6SQi7LzYcGmEyYSeXK2KUaR4MSbrMTg8FIA4hm6uglE5V0gYbWBBoNoW4XJgy8fHaWpWiUo702hvp7aLY0ZGs6ugwyC0uTlEo3YbPZOpFcWZZJLEwz6DPhsFt54qlniE+/iFNbR4nnqLnNxFJ5ogszHLt7kB6/h4osk1ieYSpfJJ5u0Zif5Uh3DVvPCHIpSyw5y0vLeUyhW+jrrmN3wW23HaFUqTKxkCKRN+Lt9pMpqRSLRXKFEieffYKQsczBbis93Q60Wgee8wm++K2/waQuM+IFu9vL5PlllGqBpaSd/j43iXwGh81GwR5mNt1kKZOmUm8SzyjYc+MUYtNIFlvnOm80gZ6afZFYtsp9x/qwWkwk5tP0h7pIpUEp57Faegn76UTlJZMdjUa7pivgdhfxriYei1LJxjA7TZitdWwuK5lSkZlUAbvdQ9BvZfzMGaqFZRpqg/PJBhYflOo6CvFpDgz4iCYUHM04rYaC2RpmtMfOmckMT5+c4DW3H8ZmtVCuVMlXGnT3HmxPHGeky07ralcuufzKQLvBlVYnEuwtQlQLBK9iXq1f0Lud8rK+lrERmztAPnqeYilDoVimns0zPTPL4bFBAj4vxVIJl0XC7TOzeKERh/FCrjRqikqlQiy6xMkn/wlNOYauO0BD6mKgb5hQXWUp26JSK296jS6eMKwIqt4uOxazi1ajtuETiZXovM1m6wgQZSHGxEyEZjnNW+4cQFYaxCwVNBixdQVoGA0UF09h9B3A7B8lmksQLRqpZLMMDw3QE/STyeYxWV303fIAk+MvMD/5/7P3X8+SHFl6L/rLjMiIjEit9daidBVQALqBRjd6FHkphoc21w7HeM4xXrMxvvXfQLOhGZ/4xoc2/gHkJc3uJTkcXp7hNGfYEmjo0mJrkZk7tZYhM+7DRm1UFaqAAlDVCvt7KbOsne4enuHLly//1rduszYXJz+3iCRJfHjvFgMnykI+w+ZtP9c2b3I+I+L1ioT8HhqWjAeoNHv0GkMOuhLT6RhRcCNIMkFpRjwzx9TQef1KAY8ErSG4AwH6zSPGg86JbN1+tUPPCjC68R7Nw7tIWpg7t+9S2X6fcwmbaMBDqTGguXcN01EIB1RaQ5Og/xONZ3p8fPM2BArMB0wuzKeJhv0Ypkmr3eX+0ZijYY1M/ALDZp/+YEA8FuHCkofu3Rq3dqpMpjr75So721scbt5g6UyAoJIi4FMQ3G6W8xHUa1t4rC7h8BzOSCMe9OKNeNioDKlqLeoDyJ95lbOZNfJrlzkql7jxwY+wWhskQjLGJ1Hzgd5jQ9fR+vXPHKCTwxF7eztIniUM00SfTlDkT5JpZyaabpzYA+BrJfE+vF60fp3lpUU6/RLydEJuLophDql2DGxJIOoCyzCodsaMdQe3N4nLLRxXKbUcxhOTfrdDNqzQHYHhFggF/FxYW+T6VpXNqo7knj7iOH8VWtfDOFYu+erKQM8DX1ed6BQvFqdO9SlO8Q3GN9VAP2/Ky5PmMZvL0+sPqdQayJURxsyFGsmwsrICHFffQ/Dgds/APq7S5zjOsbSYI9JqNumVbpDzT4mEIyR9Jv1BnYbHw3w2wXa5giG5H/mNNE1jPB5Tr1WZPsYRHncqrKRCSMoxr9jvPZYZfNqNhCAILCwusWUYtDsdrGGVuKwxGo3o9/tcWIzi9Qjs1jVmtkbEJ9DqNVi9cBXfyupJsRmtV+feYe/YuSlcYj2bQ3YZWIUwsttk7DiMLYnC6kX0wwa3721jzxxKjSGO7rBb0rmHSboQJwssZ/wcWSoj26ayd5fDbA5H9HFjp0giO4e32aDa7uFXZJRIjrlEil+0++z1TZKfyNY9kCjMpPz4jDAyU967+Q5xd5sLhQUEASTBTUsbcqvUYu38FYRgnu1mj25zi36/T7VpEJg6jB0RRYme/KaJWJRiY4I2aFGv19D7HboH+4SDAQKRBKrkYuPIpNOssRCeEQv58apBBDR6zSNkSSQSDlNtjcHlIhbyIvljGOYIWwqjSFNEcczICbB6+QLnzp6h2HPT7XYo3v0lEX2Hq5fDBFUP9U6dTtUknDtH62gPSZzh92Ue+Z2j4RDODOqtDrqmsbmzh9+vQCZJvTXgsig8Yg++ShLvwwc8+DTie/7MCvuHMhs3Ggx2OsiySjyzRGpumZt3P8ASI+Sy58lFU6yvLNBodfjlhzcJplfYbtSp1vooc2FCqTQeW8IwTQJ+H/l0gsLZq8iy/ETH+avQwR7QprzhNKX69vEa+oqHisfn48vg66oTPcuYfhcDKb8qnDrVpzjFNwwPG88XZaB/k/EiKC+Pz6NHFOj0B+goXHnz75HLF4BjabyppqMo3pNo9v7eHQaWzP5hmW6zQqvTwwkssL15j6WghjMd0LeHOJqbRCxEo9HAtmdUeiZnLyx/JtGsdLCLPaqytrzIysoKU01nY+8mje6YK4uXMWafjvtJNxIPvx+l4iFma5u1tIw89GM2S9y/8Q69sU2UFA4ixcoAl2+IR1aoayHyy+dOCstEo1F0/dEk0X6/j+Jxc/G1l3AcB0038MoSLpeL+3v/k/3tu6znA3QTUYTpER4MNo4mWD6TLLBZ0XBZAmeX04zaVf7H3/yCV978I+T576C7LbpU+fn9bV45N8+6P0ip2qQ3dXHxzT/m8uvfO/kdMgH/cWEQX4jqYQ3R6hMMOYw1DcEloPhDRD0W/W6Z7lDjjTeXKZWKiEaXxXSIdMFDu9OlfrTDzq7ExXPrAAxHY47qXfb2i4SFEXPpIARUXJjcuXOHzWGU3OIay9kQ57IqAZ/Mxn6Nm8W72GaNw/oYl6iy29ToTkW6vTHfLszRUVXaA5Pd8iYjMcVLl79DIpmi0hrhja3QrxcRrT5x1UJxhjCBgNuiO9AZ95M4fgWDzx6gLdtGieZ4/8YGTn8fnzPEGvQhA/1ujdv3t/H6woSy54/1w0cjCnPzJJIp+v3+I0olj+NJN0LecJpkMgWizFTTOXdmFUl00a9s4VckCKlEE1GKapT11TNcubB+kigbDYdw4SYcDrJQyAEOqYyEInvQe85xmfipduzoh0LPxX49TptyiR6GhoresBCcL0chedJ8SIHElx7T11Un+qIx/a4kqv86cOpUn+IU3xA8zXjOzS9Q5PkY6N8GvCjKywPps1/c/IBp94jZDNRolrN54UTD9/EDjFcN0HZiHDQG9Pv3T6TFSvUunZ27hON5gstzdKq79PtDhsaAUseGlsjcpe+zfuYs8GnkPRNWGIsjYikRxlVazQCFuXkW8wYHpQrtbo9A6FMpvIcjkI+/H/oMGvUG37mYJ+D3cee6Rq/RwZ4M6HenfHirj21oKIE43375Ndwe2K03aTQa5HK5kz4ejwo+EtWPhE4cpmq9iUcQ8Kkxrt29T+XoCMHskgh6UT0CgnJcElsUHM6vz/PKy5e5f9jies2mOZiymI1haEPOX7jMQSXP5qDH7ocVZqKf1Orv8d23fg9Jkmi321SKu7jUKaNeg9HUpNYZ0u4NkW24fTDEzQysCv3BiN2DMW3hkKtXm4y7dWIhlfbYwsKD2+WmNxjyi3few7JtsukUH97eod0bE42GkN0WzriFNW5RHgvUBzYWQfR+nVlwRiqR5qjW4bUzSe7ebbBRrSPUmvQtGc3tJxmJsrW1ReiX7/Laa6+RW7lAU/cSUmJYnijVoZtY9jyqz8/BvY/Rxl1Uc4wsqMTDAaaaRq3doVjcI39phUR++TNR1v1qB1ENs/n+zym4D0gmfJhyEhPwMeW9a/f4vT/+P7Ftm7sfv32sDtLsohs68UgQxR8ikVt5ohP2pBuhvco2DY5pJDv710kOR8TjSaZTjTu7Bwj+MDPNize1ztJ87lh9ZTDCK0snB4Bmd0rA5yORKbBduo8suogV1plMdaqtIeHC8wsIPJE2Ve/jia2Syxe+VGT3iZz2oz3A/aXG9HVpLF80pt+1RPVfJb7RTrWmHV9lPk9MJpPn2t6vou0XOebpdHryryg+39ftt3GuX3Tbnzffh4cHTOvbZOIBVCXEZKpRLd1F/0RpIhqLnyS9SZJ00taLHvfzaPfB1eyDsX9e25ZlYbk8NLsjQqHAyef9/gjLJWHb9jPZhSfNtT2bkQyrROcuEA4GGU81SjvXmEw1VldXSabSlAyD7UYVrBaIMun11/EEDoirJtlUAtHjodHskstmGE4tCvMpbLcXU6pTrPWxIzkuffsPOXPmLNPpFF3XaVcPSAdVyrUm1VoFNSEzNQwO2xqOqOB2C3h9QbaKbfIZN4pXpt83qbaGKKlVTNNkZ2f7kfej2elQ7Zc5aviYk7y0BhpeWWUxs4C9X2M8GqIZIm1BpjFyMF0zIvEk/VaFTmf+kd/h8d/KFgNsFQ8pGDNUxctkqrFXaqPN3CyFBBTDz8XkKtVmn95oSq+jIwaSAHz71ZfwizOGpghyHF/Ajd3eJrYcRPSptLo9pFwAOX6FSCRKIBDA7/djGAaGYVAsHjIdtNEdnZhikQj7Cfslep1FzNmYG3UBr9HE73XT01SShSyFlMJf/vQOKT/k0hGmJqiMyC/ESEVe5/0b2/z4ZhV518LtCbN67jyTXgVB69OxLLTpiPZgQiKWJOaPI8k+Bv0j7mxXmFk2l88vk4gF+e8/u4FlTYlKIro7yEsvXUWWRN7+4BZ3dqskEin8sSxzK+cJhSN4PB6GwwHV4jUa9SLtoxreVJDG1AteCccWGLtsWgOLtUia/Ce67Q+/fwPDh8essphSeX3lVabTMe2xCxOIxuPUq8bx7YLVIRMP0DGneHr30UcDRtMknmiErXqR6XT6yEH8wXuZjwSQFB/GDCTFRyRkcVQt4Y8kqPZ09g+LODPwhlMsvvIPSKUzKIqCv1Tk3Zvv4XNryB43ujljPPOycPZbeCQP240qtiHTFhdxucCaenF0GzWyQDKVfi57+8PP4PEqmA6oio94ZEa5XcXOZDFNE9M0v1Rbj8xH0KQ60uj3+19pjxQE4alj+CLb+rQxxSMzytVDorH4U9fxb+se+UAR50Xhd96p/uEPf8gPf/jDRz6bzWa89dZbXLhw4dc0qlOc4lcLXdcZtSvk44ETRzIkHScjldvHShMPylf/NuGBxvCoXQHLAFHCH8tSKMyd6Dw/jgcV3aqfROweOHXV1hB/avUrz8GDOZ7LRPH7FMqVOqNeE2s4YLPWwAUsLS+fVEvUdR1RFNnf26Nd2SWclKlqPVyyH8E1I5lMUC7uEW33CAVUwrEU+x2B5QvfplCYw7IsJEn6hJ9q0O1NsIY1Ij4BcTZCtYbs7d3jx5USkXiKCRG84SyHLQ1Da+EWJJK5ZQqFuSe+H/FohGQsQLtRxe9T8XtmzM1labWaCKIXJeAh4RUpDRzevrZNNJ5iacFL/XCbnWCcxaUlLMs6Oeg8/FvZxpRyY8hhrUcmGUNWg0jxZfxHVUR7AsaEUFQh4JkxNRQmjoY/HD7+zWcwHI9oTaE/CyFLMvGgwO7OJka3AjOdkQ7Dgyr/4P/5f51oUz/4jYxhi0wmTXXvOnJCIhaUsUwHr89Hpe3g9IucWQ4R9CloMwHRl0IMJCmO3PiSC0RiEoOdDTyeAc5IRLIszqwtE8+vUm6bBAMyi0k/P/qr6+TCblRJYGAYKKpMJh5gp6dRWFynpPW5t1MkGVFJB/xUWmNycT8LyRTz6RCNkQOywX5jgt89wuvIpCLzBIJuzO4BA/dxVNjuHrCUCKCuL/BRY/OYfiKIDDSbRndE2/ChJBaIxROMx2MymSx88v4BFLdvo3qDdEtexpMpfkHHGw2xCQRVAWPUZn/rNn/w2hkURaZR3iPjM/ElwzTHM/JxmaNGj72Nm8QTyZM19uC9VJXwI+tE8crUqluE+hUur2RRvQV6wyGdvobsPaZtALhcLkQBJMGFVwTHcaHbIAjuR9bQmU8itLquM5vN8Hg8T137XxYPP4PpfPq5qnih1UPX9We2F0+bD9krA9ozOebPG08b01d5vlMc43feqf7BD37AD37wg0c+GwwG/OQnPzkuY+z3v5B+X1S7L7LtF9GuZVkAx5GH36Jx/7a2/bT5tm0b0TFJRGJI0qfLXnL7qXXbx7qtzzie36TfcWd7C6u1zWoqhN8X/IQPvk1DerS62+Ntnzlzln1JotYoQbcPopdw4fyX4hE+PtcPz3GxXMHq7rEa9yNnItzabTCp3qXh9z0yrp3tLegfkPRDIeLGKzuUa0W6HZOoT6Tasxjf3kbCYqDPqGlBcutDKlvXTug7mWwOGzfd2iGX5wNsTuo0y3tEFYO0Z4jmuNDaU+SEH6Ozz2FXw+syEV020/EIRfGSSKawtTGSEMDjmh1TMrwi2WyGa9dv4VV9jAdt1IgM1oQLy2kCMniYUv+4y3zcJhG3SEbB5cyobb9HZf8ehUzyES1kq7XNYsxPq6OjCx2qrRZl2+Lya+skEkluvPMjNqsbtA/vUvW5cGwDvyIiO3HSUR86cHu3jq1Pyazkyc6t0m8WaVZLRIQhlxfjRIJB6u0+//2D93jv3UX+t3/8Jyfzbds2mBqS4FBvtJh2dQRvB0EOEAxFsByR4WCTdDhJLBIkGI4iSF42a0NE0yIYy3B/+0OMyl2uXkkjCjOmwz4qMyKqC2Pmx3TcFEtF3JM6oupFYIZnuM9ebcKdjX08wSyFbIpAJM1+bUSp2aTb6TLULBbSEZaiNnG/gws3fa1HY3eDl9YT5HJ+ginojOqYrgSjTgWA87nj3IBo0Ev9YI7i/ibF3SbZTBpvYIm13DxtXaZe3EByOY9wZkejEaJjkooF+dhy2Nje4jvrUSRvABxodwf4/X6ccZugKmEYU6x+mYUVPz5FYjgeEVYEpKTCBz+7hs+nEPGrJ8mxLtFz/Bt+khRrWRbXdnap7N4hsxZj2tQRommWC3nioRH77TqelVUcx8EYNvn25TX8PgXdMJAlidF4yn67hcdz5on24kF0+nnZKFEUqcheHNtAPUnwFelMx4iycpI78GXbejAfAJ3usTMdDAZ/5bb1qWP6Es/327ZH9vv9597mw/idd6pPcYpT/ParfDwpM/3hhENV8TLVdHyqcqKpq8/NP7W958lJfIAHc9zq9Oi3ayzG/UTDfvrDEeFwhEg2wdFDiZAPxr/yUEnlTFRBnwzY2T2iNxjiFRzWVs8RCwe5v1PC7Rric/pcXFo/4T5WASWc4uj+O0zTImF5huELc2tvn0DAjzFTyebnqQ1HdKu7BBWRb718kZAX9o+KbH88YC+8SK+8hdG0CIQihGJpFufzqL4QbdPPYO+IUqVDrTIkGfbxnZdztDtd7m9VcdxuLi0maY0M2r0JHjlE2mkwdkzWcsuYlvWIFnKn28PsFbk8H+BCQWGnNmFavcfHB/tEFRu/4EUZCgTcE3pT6I8tLPeE1tAmAMixBTLpNOfOrmOYNnfv3Udrt3jzWzmyyWMVjmDAx2IuRqu8yWAwOEmkk2WZarNNSD/g22eTZMICA8tLqT6ipknMZ+PUtTmiiQyLcxk8oohhWvT7LXTCrK6tUTvcZIqPvbpGOBQknlthwaeyUSnhip9HVaP8/Bd/TRidasfCGPWYdgYshD1M3CLBuICPIbLbw8rZl0jPrzE4ukvCaDEXmlHZ/pDuUCecyDMZ1vGKBtFwBNXnIx0L4/PqbDUGTHQRj+DB74thWRZH1QYuQSIa8KHNJFKLF7l4doXr9/ZRhSnrae+nicifcGbTmSylaoNBpYXAjI3yGJfjIpZWoQATJ8jLLy+zvV865uP7vDgOzGYwmhrglvDKHu7vlBCmDRajbgr5T3i59R2GhkqpfuzE+H0qt+5uUj7coZDw8fJaFsu2qDf3qACpdPYkpwE4yXuQJM+nRWZw/UqlPh9OQI5HjqlKnen4KyVyPy0pvNYeAe5fS0T4m5io/qJx6lSf4hTfAPw6jefXkWr6vMx0XdextAm1hsZ00ALbBMGDEoxjW8eFPb4o6vx1y3s/jAdzvLf1AVa/i5xO0R+OqLdH+BNLRMMhjjrHDoHjODQaDQxtiN+XIRT0s23Z/P9+/nMG1U10t4qJxEIIBu0qQ91FIBLnwrqPrjXBcZwT5ZL9RonFsy9R3F5l86iE2R0QDUZZXHKTSYRpTDxIssTeRx8Slm08Ypz+cMRiKovkETn8YI9Zr8na8gKy3sQvTWlVtnmv2aFU65KNq7x2+WVqZ/Ic3P+QyuEuP/n4gHw2SZMckt+gPdRoTmVyc3lsbUjcH2CvrjPVdZLx6IkW8myWe+TAYZoW4YGNWxXY3r3PYj7LuFRj/cx57FEdeTjmg90xpttDpTLmlXNgh9aod5u03n6fmeij7cQQrB0cBAzTYjQ1KDUnFAp5hlWNWq2G4zgnB0fbNhEcC68/yGjSQ/R6kTwuzKFB15bwxBY4qLXxeAQS0TDFWo+d6pi1772Eqqrk0wns0CsYwwqRZAxV9lJv9zg8arOQCzEej/F5bJL+APqkgy+pUtQUvD4ZnyyRTMcwtBGCHESSPFx95VX2o1FuvfM/UGWDnrRErd8gI+nUehpubxjcIkowysxxcJgx6HdwImk8yvE67nR7jJt7vHImSSM8g70Gg1aVX95WcblkXl5O4FMVJMnziNKNYRjITPC5p7x1OY9Hb9Jq1Oi7bTIFWDl3mXQsQLk3o9nTkGUJtxrl9m4JweMlll6g3R2xsXvI3FyBQj77SB9600KMrrLfrqMXqxwe1llaXmFmGeiGRTR8HImsdOp4vL6TA77jOL8xQYAHShvl6iG0eoiy8pUTuZ+k2qEklmB08LyH/bXG9LucqP6icepUn+IU3xD8qo3n85Bq+rzM9HxhjmqzjWEXOb+Ywq+GGE007u7fpy3Mc9nr/ZXzFB84+7fKFW7tNgiHI/gTS8QTSaqNJlPLRblcQuvV0MdDDve3cEZ18vksg9GImDTm0uUcY3cMZg5e15SZHEJQgiiiSCoeons0RtMNZFlCFARGvTqWZXH+5TdobH8ADiRSMqLbRXukYSCjNUvMhRzm4l4EVaLXrLIhOMyl48y0PolkkpWlRQb9CL1mlaPqDncPN1BUHy+tpul1mqyurhKLRnDEX7Kxe4iYTnLp9ddoVA4ZOyPWr1zBG4hy88MdWnqT9niGpCgMBgVikTDODKrNNtgmfvXYUZpoGsbMhTKbYet9UsllDtpxHMlAsz2MJ300sYfXF8AlHr8zemuXc2cWmJufx8Fhc7/O/zoKceNgRHrogFsiFMtj2zaVdp/swX2G1W0sRGrdMdNuBc0746DSQzdNJK+FSwzSnwywRBHF1LjV7nJvr4JXEulYAbJX/gFv/d4fsL+3y+H+FknVoDe0uf/zLQIek8lU47AvYPuvMWqXsSYN8LiYOQK2pREQDbarM1y+AIVVlXrXYPH8IpInimmanL9wEZfLRe/wBq+dvcqg16G4t0XDmOCN5JiKYZrdEc1Gg0arza2SxbnvvkQ4kWenuMG4XeRcTkESBTxKiFe+cwGXIPHO7RJav8EBDRrVQxLpAovzeURBoN0o4e51eOXiGtpkyKhTJ5Wbw5nZTJRjbnQoGKDSGnHm8rcQBIFKo8RUzrFV7hMOKLh1kd39HhNH5Y1LVx6Jtvp9KkK9TT5fwLuySr1exyXA+lyCSq1BqbUHgCyJ9HoNunaT5OprJ4fc35QI6oNbrQeJ3J9HifiiAMKTbsim0yl7+wcv+Cmejhdxa/dNxqlTfYpTfEPwNOP5QAXneRvTryvV9EV60olkCpfLhSy6EARwuUAQQBZduJ7bU3w5CILwiIMUTEXRJkNufPQulUafhq6y0DzklYtryMkId681+NEHf0UkGEAzbDL+GUupJXyRNKY2IoRNfWLhZobpQLPTB0FFFNzs7B1SOtil3jeQfH6i6UViS1fZGFp8uL0NMxmPA267R0hy8AdDbB/VSKZVVC/cutGgmEwzHA1ZWFxGURRCoRCmaZKLN7BdXsZTDUmvUbq1R604x/KZS3z/D/8ehnoHOZ5jJilMZYsZYwKhKAdHDYbdGmH3kDPzy6QibhrNPXr9BEo0x2BsYUwMqs0uzsxmp1hB9AbpdrtUqg1qjSaJVJZUwMErr3Hz7jbB5gbLSQ9iKI4FLPjH9Gs7mOk4iWSahaxBIrPA0G5T8EXIp2IMRhP+5v1t4tE0F+YC+H0qm5ub6Ie3cTsuLq/N43Y7lOs9xMgy/dGYxLTIykKBVnmKExFp9QYMnSAr2RXOvvIqmxv3sTu7XFhOH1e4tEZYrjbxSJKxKhML28x6tykdFklJPY4OOsRicdIRL/J4RrGjo8gi5d6MUGYVxRdkanhOoq7rD/P8CRNc/DaLkcskvBrjVomjo218Hoeh7ubs2XPElOMDoye+Qn1vh6jqRvIK+BNLZHN5dnZ36Zdv43cbqLoXLC+btRJ7BwU8GJRrAyRJYDFyloWFRYxEEsejMjVmtKtjAK5v1Thz6RVWVtcQBAF9bv6kqM+gUcKYDAmEZHK+ApFI/JG18HBUWZZlkskkzVKAyVSjkEvTEGG/XWfYr1MZSVy5cOWRA/6XCQI8cGZt235hNIoHidxPspFfNoDw8A3Z4ypLvy48z1u7bzJOnepTnOIbhgfG07Isdra3Xojo//MosPJFetL9fp9MMkpMVqj0OmD3QZCIFdZBV56J/vGi8MBB+uV7P2NS3yCdSrC0eoZQ44igq402GbKxcURGbLJ0MUOtM2UwHDPu99g9SvAHF1LUGyKjdptWZ0hITqD4wtzY2Sa/dJbDcpV26T4+0cWrl9aJRL2U6hv4suf5oz/+J9y6eYNeo0SzWqJxeJeLy0kGwxEWLcIKpKNuetUKNz7YpTpVSKTy1GtV4okk+rBNPBrksNPBZQ7IhgKE8nFKrR7D6ha9foaV9QusXnwVx3E4+6qHylGZ7dIu+7slprrEWDOQ1Ab6dMLUdlMdD7nwvT/B4/Hwk7/+S27cuI7kGHhlF4sL8/gCMVZXlqmXDhgFI9hTi16vwwcf36Tf7yBpIsFcgFAOVElEM8Zcv3aNZDIBM4uwbNMTl7lVm3CvUkNzZMToIm+9cQFBENA0DdEe89rZDDf2h5SaI5YyYfKpCHfKFZq9KQsL8wQkg/WXV/HKMtVGj9IAVDXA9bf/b1yWxWpOJV5YRJfm6BxUyEYVOlMTlxJhPSHQru5zrVPn3KJEbWhTb/awNAnBlnB5XJzPSvzs+i1iOYN2u4sUX6VUPHxqCW3Lsrh96yaVnQOyoTlQfayl8qyvLFJrDSj3Gpy5/Bra4CXCAZtM8lgCTdd1Nu/cIOwxuHJmDtnqoXrdtDeL3Nja4Y2rl/j2lTXqtRrt0uZxdU9A1JqcW0igRPIMgHjIiyAIJ+tIlmUcxyGfL+AqzJ3QakrFQyqVu8cJz0+JKj+gR1VLx9HnuXyWtk9ltxTg8pUrnDv/qBrXs0RQH3dmLZcHfyzLmTNnf6Vr/1Tr+RQPcOpUn+IU31C8yI3geRRY+aLkylAoRFNSiUT9+AtzjygE9NrHm/2vQ6YKwHEcdF1nOmgQD6sE/ceZ9UFFYjHpY7+8R/Vgj28tR8nGwtzYbdOd2nj0FpV2l3anRzQSYrOucr/aZymqkvcVCKzmmWKyfecmC0kfmfnjqOQDB2K7uo9uGHhmE0J+CTuZwbBdZBZT+KItwutxet0eH97d5LBYxR9MoLr9jEdDyjs36fYXGfd69JwZgiByZqlAX+uiKC5kwYWNxdbuAWffvPpIFb2V1TWCoTAHBzusL2eJy1Hc5pjJeEy1ozNwFcjlC3TaLV6+sIg556NZuktQNOn2BjiBef7B33mFW3e32NyvsVfX6RxVaPUNLsZEzi9GmKlQA8xpj/v7DQJqk3PzIRRJZDIRUOJRvOnvEIvFsW2bm7/8n1RL+7SOHCaGRbN2xIXFBCG/hBDMs98ZYuo6Bw0N2R9mZbFAu7iB6g3h8YhkkxE2iluIRp+gW8ctCxSiIpP2AZaSIpufYykpsX3Ux7BAtAaY5ozReMRRy01ImiFI0NUcRLcPNaBwr+YgYBFWZly8cI5YPMnBwXWGwyHnzl84OfAKgnDiLOqDNq6ZSTAxx8Wzq6jq8bv0QPYMIJFboVe5i0fs4xFFGs0mxVKJVy8uc2Z9hWajwaDTwG1OwLTxJRZZX19H8vqo7t1mf3cDn1cmprroaw7xVJZBFwqpMM1PDsEPj+nxQ/izRpUXl5bZMAzK7Sq17vHfpdde+1wK2udFUB+3Yc3uiGp9m/3H1H9eJF5EhdZTPD/8qsuvnzrVpzjFNxAveiN4HmojX5RcGQqFTv6/kHoy7/LznOoXaWwP9vfoF2+yGndxaXke3bDYrZSotDXm4wmmoyEzY0I8FGOi6fgDfnyxAP3GDK1hsFsbIbd1GlOV82/9E7717Tfw+XzIskyj0WBmjbm4lsHv/1SD2e9TaRzdxBw2WZtP0jYnTMd76I0if320yVLKx8XXz6BbLhxR5tuvvsSV9SWu7fdoTj3s16fYrUMcQWQuFSOb0FhOqxwcubldajCczgimPGguP5Fo7DPPLEkS7plJMqSwPpfDNE0My8Tf6DIpuo8VKvbukVAgurJMUDQpJBR0y+ZoIOI4cOn8OiNLYWxYvP7yOd77+f8kIxwSVWDgHBeEKB9V2dzc4fKZea5dv8F4arKwuATjCsUtk/U//ifs7x2Xak8nAsSjAT6+doPi7Y/YvytgKykuvuLlzW9dpd3tM1YdJEnEnjkgeJhoGiGPn85gwHAwwG17GQwmCFhs7wwJRyLMDBHcHiZTE58vhDGc0u0NODxqsJLwsJD202h2MG0BxyUymXm4cPkSY23GGdFFNLNMOp1mOOgzbe2yfesOg2aZ3NJZFpeWH3EWPak00riI0S1yUFQo5DPIkvRJOW4Zr9dLYW6etw/2uffeTVzWmL42ozLykE3EENwC6XQGRVVpNFskEcnljw9ii/N5DNPi3Y9vIcwGnFnOEU/liMZT7HVbKIoX+gM0TaPZqH/uITxfmCMYCgM8tUS4IAgnGtOCIHyttfckG/ZAY732K3RmX1SF1lN8PTyNkiPJLzbJ9dSpPsUpvoF40RvB81Ib+aII2FdJvnwW/uPXcbhPNvt8nF51gGU/pHLQrXFnr87MLeIIMgeVFh5Jxh/JkU2n+EW7T5sZc/55TNnH2fPLrD92lR0MBvEHYwzHExwc5E+4nu1uj+Ggz5X1HAe7W/RKt4j6Rc7nPHy4N2HrYIiAje2CUCjKaxcy6JZDOBTm3Nks200T3ZMimF7C7u6zdX+Pfn2KJDi0uxNGQgyvYSHMLA42rzMeDR+ZM5fLheoPMtH79IcjVK8Xy5qhGw5eReVv/+ZHVO/8mOXoDNvlwXJ5yMbOEQ0GOOr20XQD27ZxeWSiiodMMoAsedAnJs1WH0/omKLQ7jSZjMeoIvjsFqoaJOT3EvLD/sZ9bt28gWc2YW15EcNocuf2baTxAS8v+rhVHDGXkpiUbvC3msHSyjrpuVUAGq1t3IKPUq1Ktz+m1BxSqvWZqi0unFklHFRp1w7pt44YMkWO5tnfL7J27hKRZJQPfvoRzVqD19ZSJP0OLttiYApEvR6KTRPNltGMEYVsDtkfpNmoU929gWhP8BpTBuWbDFolJpM3MUetR5zFdH6BjWu/YL/4Y8ary1i4qY48hAoX0HWdRr1GXJpw/o3LeESB0WTKX/91l7dv7vJ3VS9+1cvUsDnq24hqglDg+H0UBIF0Ms7yuVcxDYP5+QCZVILe2ABgOtVAPHZCnnYIf3A7ovVqJ+upGUqRyeZODoKPQ5Kkr61B/DQbpipe6PZ/Zc7sb7tc6e8qnnYT2/ZmXmi/p071KU7xDcSvYiN4HmojX8Sr/CqZ659He1lYXPraiiUPNvtYJIalpylXNplMpyheL36vSFPzoQQTDET4yZ37vHxunguhIKVqk97UxcU3/5gLL7+CLMtEo9HPtC+KIr2JzcGd98iGJVSfH7c3RE93ofpDjAZ9hke3uFDwkYiE6A0nNHoaA2GRnWqFVFAiqFrcu7/BCD/ZxXP4FC+DXgM5PcfFS5d5950B46nGyOwxl47g9ytY3RL2SOfVl9885nA/RhWSZZl4KodjylR6oxOOu+PL0NwvoxgbxOUJKa+N4Bjc2mvzV4MWb77+KmNNoNZoMZjYxHNn0fp1RpMJPtmD4ETpTHRs24DCsSJF0C/TG084P5ek2Jrw9jvvks+lGYxFNm99yMpinnNrKxwcuNncfYelmIdAIkJYm1LIZhmNh7y7s8fCy3+HQmEOgB1No3iwwaTvxdA0Gh2NWrNJYs6PbWtYjo9kdpGtnR1+eXubpXWFGVE29pv4giG6nhWaWglRkqgMTEamm44mMO7qlLs2KXcQU5KZ2m4C/ijF3XuE6RMJKbjFKPPzEXaO2tz++JcszWfw+z7d/C3TxJ7N0HSDZn/C/uERrZFGolKmfP89jJnAP/q9l0klj5MFY9EI33r1Km+/d40Pd3uEVA9T02EkLxCLxxlPprhcrpODbn7pPACNyl1kqY/tOj7A1NojonPnj5OZex08qfQj7+LDtyPnlrN45RC7u7ts3HmbbX+GwsLy566fr3N4fZoNm3xyEPgyNuzrjOOrBBAe7u8Uzx+fdxN7/aD+Qvs+dapPcYpvIH4VutXPU6rpizLTnzVz/YtoL5uGcVz17xl45oZhPPLvw2NBlOn1B9izGY2+RrFUYjzRqJgxfu+P/y+WV1YZj8d89OH7HJTuU/ywwkz0k1r9PV791uuMx+OnPsPB/h4RYUhofhFLG9DtD6gXuwTnXyaWClMt3SQR8JCIhvCIAoIoEA8HcXSLFm7GtkjX9NLudFFVjWqtxs7OPttHQ+bUOTbu38Nljvm7f+cP0SZDhp06enuXuVQEW42RzeVRPnEGHlCFHnDIRTXKuNUhns7jUxVGkylb+1UGnSZrcxL9mRvD0DlTCCMLDv/tg302qzrh9DyFroYSyXGmIOLxx9nZ+YCJOcNt2cyn0uz3JTyAW/SiiNBsdmhng4x6TczegCYTfJE8xa0PmE7HLGf8hCNR4rEIZ9Zi2I4LXZqRW8hjWTaH5rE6h2maXPvoA1oHt7C1IQYeDCnG2oJKTu5xNjkjrJo0W0dM1BiO4COTtHnr25dYKGRpd3vc263w2nf/kNuqzG7rQ+aDM/L5PAkxQrk5pmqNsKUYaiRCjzEx3Iw6NQpZ6ZjDnEySSUZwu13sXm8w1hKMxhOCbh+HBwfs3n4XhQleRaVY75NRJ7yxnsFwSYgei3c/vMnOpkIq+d2T92R9bY1S28Dtj6G7Z3ijAd68snD8u7UrTzzoPjgEG9pxwRYpOo9t2+ze+4hqaZuPBocUFpZZnD+mjzy4HXnl/DzRSIhS8RDZaHJ1MUBtYpANWDSesH5s236mJOnPc3afZMP6/RHV1pBw4dls2POQ/YRnDyA8qT8pkHjmfk7xbPjcm1i780L7PnWqT3GKbyh+VbrVX+Tw6rqOYRh4PJ4Xfl37ecZWL1cYjUZcnP98nvmDjbFZ2Qdg9/51Bv3Fk434wWb/8cd/Q8zV5sJSAk2PsHFQx+1OoSgKqqqiqip/7+//QwaD79Hr9fD7/VQrR1x/9ye43TMk2Ucss/AZWkq/UWQxGyUaWUTXDTTdYDKdUhl6sASVSm+E3+9iMJ7gcgmUmhOi8RhHG/ucW1sinVti2CoSEtLs7u1zdPs2iXSWq1evEoyI3P3Ff6LZHRF7dY1oKk84egHNMLk4H6LaMU7Ks/t9Klalzr27dzCGLarlAybjIRPNZO9ghmXZeCWJsWFRLW5xe2BzPu+nOYadD49AH7BXquPympxdznFxfY5YPMn1Gz9mMvNi6wb71QHmYMJe00MoKJMEYj6Bv/9qlve3evz1x0VezsJyUsElu5FcdY46HT4q1pj1S1y5dAHbLVNr9WkNNXB7GTfLlFtDOsMggUCAjz54j/HB+7y+GCARXeDgqM7/56/+CjmfIh2WafSmjHWQPCJbxSaix8v5M+ukE1HGkzHdXh+31qZerxIJxzgo+xA9BiFnhi0a6G4fV187RyiW4cyVbzMZjzjcv892bYKqSMzP5VnMpwBwu8ErewjE8pTqNdzlEnprD59rgkdRmPcFuH/vFrGFBLlkmP3akEwmSSEVZG/zBucuXCASiQAw1XSycysnKi0PO6a6vvTEg+6DQ3Cz2aTx8cfHyin1Dc5kQqTkFdqlTap7tzFMi3Qyzn65hSipiILIYDBk1KmRjflRZC/twz6qolCQpM/kaZTLpc89vD6rs/u4DbNcEv7U6jPbsOeVrP2sAYQn9bdztAe4n7mvU3wxPvcmVvC80L5PnepTnOIbil+36P+DjbNdPQDLoCJ7n5uk39Pweca2M5hiTSfM8r5HvvM4z/zBxpgL+Wn0IBdy031sI85kc9z5WGXsTCm2bRBkFs+9SigYYLu8QzAUPknmCgaDqKrKz37yv+jtvUs2LOFRw7idAIPy8JF2Hz8UyLKELEsoXplKt01h8SzVgzMcNu9TvdsiHA4SicTQDY1ad8qF15ZYWlqkpCr0m2Umsyr+WJb1V36fQCCA0T7g1dUw798Z4mXKtLmHFswjeBSK1Ta6S8E0DAzDYDSeUq42iA07yMKMvLdHIKYw0V0cNqaMtS5nVs8zcwlMdyYk3H3y4QDZkJsbvQ4jU2c1F+SlMxkiYY324W06rQzytIlbDPLGd98gEXTz9k9+RDjg5rUra+wDkugiHAgyn5Wo3ysRj0SIhEL0Oi0CgsgfXEkRLovgmFy7vcHE9HBrs8hqUuK7L8WY6DqlRh9ZTbK/t0u7dJ+X5qMs5I+pNoZpU/DrpMQuK/MvoferTA0bpACix6Q/tginJI727nFYLGONW8znU4TTAcRQjJ3bAn3dTTIRQw0nyHh8VJttNm+9hyK78AdjxLNLpFZfQ5abJKIBZrMZo8mE/aMOSuSYgrO/5+fmO/+DuNfNyPCxGI8yFw/RKUK302Fje5+RNmPUb9NstzmqtfjlL37C0uo5FNVHa2AQnr/yiErLw+vg8bXe6/UYDAaEw+ETvvOoW2P9k1udUNCP5PFQPtzjxp1tknMeehORybDL3RvvI0hexr02i4kVRhMNBAmvLOFyPVpaXNd1OrUD5sIift9nqzzqc/OUiofP5Ow+bsMe6FQ/i/14EcnanxdAeFp/ac2mOpp85sbrFF8dn3cT64+ccqpfGB4UvXiemEwmz7W9X0XbL3LMD4Ttp9Mpovh8X7ffxrl+0W1/1fkWBAHTND9XLePhcT+ILsuy/JWLLRweHjCtbxMP+VC8ARzbpFq6y4ZhMD+/8Lnffdb+nzTX3nCavco2U2OGqnjp9ob8+N2PmU4mOFqH/1q8RSK/zOtXL6H6fPT7IybWsdMxmUxoVw/IRwK4PTIwwSN7iUdclKuHRGPHOsHD4ZBMMsFCaoEZDrLkQXC7OaocUdo5RBuP8AXD+GNZCoU5dnd3aO99zOX5KKl4mO7EojcY4ADth9q1LAvL5aHZHZ0oHQD0+yMsl4TX62X14qt0iyrmtMuwW6N52KTamTIgQm8wpD/SCEWi4HITaXdIJ6Iks/PUDreJ+HyIghtfaEptBPGgwO7GNr3RlEZ5B9Xnp9oY4A8GKDbGDEY6vozCfqPBUjZMKp3C5TGYlRtcOVtgYhmMdYu1c5fQKnfZb0yJBmXSsQC3j7xEU1Hyc3MEwlE+3GzR3jliIR+n1ze4v1viyqWLVBo9Du9/SG/qgASaOs/huIUrnEKO2EzlKIKlM5MjRPM5ZEUlMjU4d/485f4MTUxSOkoxsVv8YtdhJvpIrJ/jjeUF7hS3MXSNmRCjM7ZxHIfR2CBXmANLQ/JHcHsDNPZ22N7bo+tE0WyRWPsIb3yBgCKQiMcYj8d0UFhdiLI6lySiwNr6Ko4g0xtMCHQrZIISK9kIuKDaKhLLLjMYeLhV0lE8BlPTYUiSpbMvMZvNiMbiFBbWmE+qDIc9nGGVqe1i6qhM+13CCQ+RqIrX7qKFPFSnBRrDGXs//hkeX5z0wjpycspgMMDtfnokVNd1rn30Ae3SfVyWhiN6CefOAGAZBi7Bx0g7vp2IJHOISojSaINao4JstPG6dNodg4VcjPZ0xDu3DwmFoyjRAqbjpt8bYrkkbNum3++zubFB9XAHZeSm16ighhOkUmlMG/r9NsVikc4na0xSfBgzkBQf8cjskTX2OARBQNf1k5uUL8JwOMTSNVxC+OT5AFyChKX36HQ6BAKfrrEHtuSr2r6n9fcgcjoYDFBV9Znbexb8tu5jz6PtZCpNyTDYblTBaoEo44+vEpVebODod96p/uEPf8gPf/jDRz6bzWa89dZbXLhw4SnfOsUpTvEk2LbN4eEBo3YFYzLGdNxE0nMsLy9/7sb9OHRdZ9SukI8H8Hg/0d31H/N0y+0qRib7xA3Ltm3K5RKjdgUsA0TpxDF9Uv+GYWCaJqIonrRXKMxR+qQfWj1u3t1A0lv8/qU5Bm2HRnmb6u1D/ttRkUuXL9PsTjAFFcl1m7FuM+o3WUmtYcw+7eeBZrCu6yeV1xAlLNs+cX6rlSN61T3iQYXziwks26Za32bXMOjWSsQCHpKxMKIo4FOOTXO7P8JwjU7alWUZfyxLtb590u9kqlFtDfGnVpEk6dPEu7vXmGqghLJkgh7UTp2bH77D1s4+sVgMxW1xWK7hVYNYpkmnVUNQLCaTKTPDjeGKcfewS6d+SDSWoJBNElYF+sMWR40uumGCM+OoZNOoHjJpuCnXu+Rzc8zMKT7Zw85hiUG/y9m8n0Mlyt1ijYDiJqyApIbxBYLM3F76QxP0Lhm/w0JMojkRmY1qVGoKb7z2EtVqg651PI9qfBGXFiTpV6gMRZAsJkaHeMSP6j929r2+CMlYiL4xwrYdLpxdZTXzKpphEPCr+P0+tKlGv7tNp91mZ7fPIKjg8ngRhBmSLFPq6azOXDj2DFl0Iyl+Xll/iW7riMmgSrnawjZ0UNxopoXh2IxGGl6vj163TPlgD9Hrp1RrEpU0YtEEokfE5zu+CTHaFmL0JXrNEppt4I2EyUTTRGNxDMM4fo8UFUFwU8jnqddFuq0arbGL0WDGgtuL2zXD4wbTBtUXZDkXwbcYwcBLZj5Jq7VH6RMZu6fh2kcfMD54n5fmo0TDaTq9Efcrt3HFzoAgMplqhKRPr8yrlQrWpEM65CUWcqNPTPZKTW5vDHELbvabdV55ZZ7FZJx+f/jIu3l4eIA9OCLiE0kERSTJTaN5wJ1GA9vUqLdNTMvNdNRjJfUo/eLxNfZ18WCNPv58D6QKH48427ZNrVbDGDafyfY87nw/rT9d0wHweF4sLeGbBrfbfSLfqOv6ye9Qr58mKn4t/OAHP+AHP/jBI58NBgN+8pOf4PV6v7asz9Pwotp9kW2/iHYfRA0URfmtGvdva9sver4PDw/QahsI5hjPtI89GbK1f51O63W+//t/+My0Ddu2ER2TRCSGMTsuKu73ikhuP7Vu+7gy2xPGv7O9hdXaZjUVwu8LfnKlt03jsWIPj1NLOo9RS86fv4Cur1Kr1di8f5PvXS7gFW1UZURqMUZIrvOLrbv0R2P8kSR/8v/4HqFggFanxy/2y1RKHgpLx/0pssjMmCLKCtFoFMdxsG0bfyxLq7WNIrnxiAKto11sU2d+aY1U/PhKXpHc3D4s4UbDq8g45gS/75Pnthz221VmiQSqqmLbNl6vl4WFRbZ0nWK7geTWQfQSLpx/hDazvLzCoFEkUQiyvbeHVtlgISBwp9qjX+4QcaWZBZNEo3Eqh7vokwHCuIQddmPoLgqJJKo8pjXtszhfIB4JMheTEAQ39XaPW1tHKEGBH7/9ERfTM84FTQKiRb2lU9K6dCcu7tz8iFq5jCxLOMEA8zGJbi/A0HQRQsMrS4TCUfrjCcN2g7hko9suhoMeC3NryIqXd+/fwivLiAJMdBMVWD93gX6rytbuAUIgR3ncQNRFLGvM1LDQXX7OrGbwYGCaBv5wGNkr4lNECtlPufQb9w/wml3WFtI43W3EaYNB181OZUTMD4HUGs3hjNrBLpLbIZKY5+KZBZoHU3o9m/dvbWNNu8xFBCaWgGaXcWGyu7uNS++wnvcz1WdYow4uv4mbGZGAgiSJuGdert29SzCqE5BFJoabkWYjD5vUBtUTDnE4WaBV30CR3Mzns5RwCKfy+NOLNMYWB6USMRUCsQwpl8ZcxEMuFWHnqE8spBJUZfbbdTwrq484iQ8SADVNo3Vwi9cXAyf0l0Qwik2PbR1cHh+H5SJLLptoOES722N/f5dcJo1rUCRgDVnJ+lmMprhTniCrfqYNDzNvjIPa8JF30zRNtF6NpVyUnl+k192jEPfjaF3qhzcJp+a5fPYCkbCfX757h/19D6+89GngqzMdn6yxL6JlPIvt8/v9dDMLtCp3UST3CUWg1R0Sy57/jPLO4eEBdveA1eyz2Z4n8cFjT+ivO5gAbkKh0Oke+Stou9/vP/c2H8bvvFN9ilOc4vngQXRZMMd4jCZLKT9+NUel0ebjvffYzOY+U2r4aXiY2ywpn3KYP0/S78twIB/wnvORAKoSxrGNJ0rAuVwuJAxCgQi9epF4xE9AVYlGo+z2SwTiYRKJEMGAn9lshk9VSKZS3LpzH4/vOCFsMBjR7Y/wJdcpFQ9PNlPbJTI0VPSGxXTc5KhhcOXCWRbn8yfP5PepeFx9TLf3+Fq91cSa2bT6U8qlI+4fVHG3RMajEcl4iEarj+M4xEIBNNshGM9z8dLlz1wb67qO5HYYjkZMahtcyUmoqozWlxlrNkPDRWl3n1g4QKPR5JfXbpGIhokpNnOpCHlpyE6tTaXSZmXt9xm0itQ0E9HlMNQMWvU6oiCQkKfMBQXEmY41HSAD+6Up2y0XxY0OLy3HiQQktnYPmGoGMzmJ4Fb4qOwQD9tksyZ39nqUjqpcWEyhxubozTwkHRe1epNeZYvC3ALffe0i5eYQgJ9/cJd0rsDSa3/M9/IFmo0692+8R3Hjl4SGJmfX5gn4FO7u1xkR4+zyMZXhYX5lq9Njd2+fteV5vKqPu/0Gd/c3GI+n3Gl6uHLlCv/ozTexZzajXhufIpOcP0s4FKQjyfhlgUxYxFdY4ehwF1mvEJNc2C0RyeogKyL7bYeAX8R03BxUBwhajZenUyRJYnd3l0m3xivn5/GrCnfv36e7v0Ni7SIXz6+fcIi9qTP4sudPEvH0mUIwf4nz82H6oym1UoSXFv1YNtQH28TCfibaMZ9ZliRk6VE+8+MOX73To14pEb1y6ZH3J+hXQId2vYyjjzkoVQgEQ/gjSQR/hrMr81z7xV3UsEhAVZE9FmGfhcfnIzCROffyG0iS9Eiexmg0AktHVUIE/CoNETaqJfb369iWwGJujfWVBQRBYG15kXtbB+SyKWKR8HNXJnqAZ03W1jTt5GbtWW3Pk/jgT+pPSSzB6OC5PdMpfr04dapPcYpTPBMMw8CYHEeol1L+k4ImuVSMalenebSL/lhE7Gl4OJEkHjnmNnem48/dOJ+1YM0D5zsbUXCLbsA52Qgf3wCDwSCOqFJtdlBsC690/Ey9wRS37CcXD+K4Z9zb3MWYdGnUqnQ6Xe4VewxmPrLLlyh1bVL589i2/dnNtN7HE1tlfv0yjltGVdxYln0SUR6NJ8i+IOFwCq2+gQn84vYOk14dQRSJpBdZiM/wUsTsBknaXSqNLrV2gERY5aB4l9Fw8JlbAlmW0W0Xrf1tZvqYXn9KpaZxb/sQ3aXgcrWJimPOrZ7jzeUs/+1vjzDFKZnsCmByb2ufZm/C0dBFbncfn1VlcT5ELhnjoNZiOOgxGI1YDElILhNFtJmpMrrlwWqP6dbaWKEgqtdDvVbn9mEHxasQCPSoDUfYokI4EmE0NvEpEkhRZuE1kour1Eq7/PL6BpVyGV3w4w6Y7O7/L3TdoPDGIj/98f8gn8ly/uXXURWF9TNnWVhc4t7dSxxs3mS/32Cj0UUMJLj4ync+IxdHvc1Is1AjGXw+L6NWkctn5gheytPq9VG3eoRXXqU8ENGnY5qGn0gmdSIjJ/lj3L3xHiGfSjQSZOf+iGTAQzQSpDOdko740VwqtUqJ6PoyAdXLdGLQr97nv/3lX7By5jzlcoWF+QUsfcJeaZN+cZOwYHNU2ufc+vLJ+7pROWDlwlWSqTSO4wCw81/+E//tv/4X4mEfE33Gwc6U1eU8HjVCuzfAsBz8iSUkSaLT7aPPXOi6jq7rxzJ2xZssFRJEwzHiPpvdjwZcu7fL97918eT9OSwdgRpnNetjpbBEu9tjt9TCl5wjGAgwNabIaoDeeIhvOEEzZgwmNrJ4XABIkiRCoU8TgR+8k4jyMf0hFGBlaZ5gMECn3SIVj3Bu7dOblpWVFQ6aGltVHX/3xSkTPWuy9rHtMVCV8COfP832PO3gb83Nf6a/6XTK3v7Bc32uU/z6cOpUn+IUp3gmSJKE6bixJ0P8au7k84mmofoCIMy+VBWzB1GbcvUQWj1EWTnZOJ+kT/usBWvG4zGV4i5iQAeXAG6RUTxBPJECq/fIGMPhMMmlK9y7/zek5CGq7DDVbG4cdEnPX8btsdktNTkjzFDRSXvamLMmKc8Yv/tYS7o3MbmSzbFx410yYQVBEHCcTx357XoFgH6vx4c728SjYVK5eRKxCJXWiFD2PJlsji1dZ9Q4YmyIpPLLhONJxt0Wq1kvoggf3dommwhRCBqMrTFXVxdo9wZPvCXwer0o4RQ7BxVyQodwysd0MMBvdxCkKKpH4Oq8j5hkMNWm5GIysk/CEkwyIYnX1laYTif8f3++x+bNd8jHfGxbfWrtPoIUIJXOsPXuh3hNmzkfZKMCMwRcYhyx3SUdErmwGufcYorb2xpvLstEI36GToTk2IXqlenPbCLpBezelJQmcO2jjyhuXWM5lyToF2m5TaaWTr94nYspG4IqPeBMqMe0VWNwv8f73SPgn7J+5iyvvPoai0vLvP/eu0x6NZKxIOawyf7eLotLyyfOTK93zMu9d/0d3n/3XdIRCXMsM8DGEb3kcml8IeVTKbroPJPqfRqtDrFIGMEj0zNVXL4wO4dV8skQr57L4Q/4qXY0Ku0h1VqDswspIpEocb9Iw9Wjf1Bjb+sue8UanmCGC+dkps09kj4BJS4TUNy8vVFkc2efi+fWqDVaHG5sY+oD/MEYoeQce7u7+MebnL2URRQEuv0BH90p895uggtnV/l4v8Ha8gKFRIpypcYHN+5ji0GEmcXhUY1aaZuryyG6lQGmliafy3Pm7Hlu3r5OJhEln45x1Ghxf69C4sJlsukkkuQhk0ogSxL77R5KOE2jchdJDWEgcO9oSKU1QAjOkQ/nyaqZR26aHl7LoeQc1dLxjYHk9mNZNmNTwBuIPcKT/jw5wBeBZ9HBf8CHjgSVk88ftz3PevB/uL8HyeWn+N3AqVN9ilOc4pkgyzKRdIGt/etUGm1yqRgTTaPeHuH2JpC8wS9VIexBlCgai6PrOtFoFEEQ2N/bfSIf8VkL1tSqFSbdKqFYgHA0zFTXGTb32OkPQcl/Zozffev3+AVw/YO/5ePdQwLBCNnFl3jp4hnev7FBbzhB9YQ5OjykVS1h6z3OJkK4FQMN0Gr3uXE9TPNwF1PV8bgdEDyEYmlymRTV8jb2uMEbF3IM+gqNSon7d26xFV3hzOXXsG2bjRvvgqVj2Tp4fUQSaUaDDo3SNqoZQlJVjOkAfeywmApS7NpMdZ2QXyHpmzzxlmBufgG3N8h4DD/9YBN9OsArgqVNmJgCsXiKgFegXG4RjETRJlNKxUPWv3WGaFBms9lkMSZhOgqOW6Spubl5u4YvKhKNp+loIq56m4jbIa4e80FLrTHd8Yy5bAxV9XLYGDLsDbiYdegOm9SmDl5fmOW4yFZziNdtk1OHiL4+ltLjYi5Ge1Sm0hPA0DH7dYIJD0lfmIF9nBl6Puen2jTJhWb0hvvc+fgd8oU5SsVDfvqjv8Rq3CYV8jIYJXElC5ijFnBcLbNUPKRd2adaPuDtt3+B0r9L5lvnCQRSCI7GjZ1D1PxVIu4ZpmnS7bSxRi26gzE/fbeC4g8RS2UJzr1MISHTqsoECRIIeRGYoX0SET4ql5CEGaLsQxVtRLfJ6y+t0zcVlGCMd27ucffGB3zn8gKKLNEDpoZBPBxEG3XZ3DmgU95gIenj4loGw7S4u/k+Gzdv8Y9eTbOQT9Gb2ORti8JcgXf3ba5+9+/R7bRp1A7Z/vl1yqVDXMaQ5YU8pb02stEm7lRJB4LEw27qzT0qwBtvvEGxrfOLHR3/YYmxJUBo6TPr9YFjmM5k6UgSdztTKq0BwWCK/PnL5DJJ2gMDX2bhiVQTRBl/LIccX6Lca1D7JAIdX30dUxjR6fY/s6afJAf4JDxw3B9I6j1veL3ekwThh/nQj9ue05Llpzh1qk9xilM8M5aXV+i0XufjvfeodnVUXwC3N4Ep+AklC18pmvQgM95xHG7fuond2WUpH3+iPu0XcSA1TaPfLJLOpGkNe3gUHdUro4surm9ss/DKZws6SJLEH/zR3+XlV17j9q1bOFofv1fgaOghd/YNEGR2ynv0jw5Q3DZXz+WIhQJ8dNQFIBEQ2bt/DY/eJJ2IkE3GGE00Ss09rjXbTEd9li4tkIhHScSjFApzZBstKkMRezZ7pAhGuyuw8fEhJbPJy+fmidkhQh6TYuuIo/aUZFjGmMk0OkNE4QBTn9AbuDCdKOPx+JH5F0UR1R/A6U4Iey0k2UXC7/DL8oy+BsXakMW5IJI/zHikUWx1qHU07m+XqHZiuB2HpaU5fF6R2zt1QuEY4VCIO6Uhrd6QxWwIyTTYbA+p39DwqS4mooruyMTCKo7oozWxqXUnZP0u6kOIZ5PY0x62DoIQZDIeci4bZNA8IqJAJCAiM6CjKwihIK3mEfoASjULyX9cgjsbVZkMu4huN4mQSLFxyJ3bt6htvU9gvMGrlyP0hzp7xdtUDzaQInOUGkOm0ymz7h7CdEDC3eSNZYlJI8BkPGVzdx/L0AgFwtTKm+hCCEfdRWtssVyIc2XxMp1enztbRerdCYLgYmfzHtNhh7HqwbFGzKZDvLJAJqzyPkH6moBZLCPLMhcXsiTiEYpdN8tLed67vceNax8TMCp4PQ6tocZorJHMreGaDtnb6ZHyu8jML+H3H+cchHx1rGGNcHDp5PcVRRE1EUPYPqR4eIBPtOi3q3RrB4Rlk5WFGMNeldLWLsl4DFFw0202mcvnScWg0qnj8fq48sp3mFu7RLfbxe12UznYpDt+VJqu1ekx0ixEUWRldY1sLs/mxn20fgPRPaM+8eKNzZ0ckp+oNV3fQIyvsnrh6kmhJFEU2d/b/UpFqB533C2XB38sy5kzZ5+71v0D1aD9dv2p4/xVVKo9xW82Tp3qU5ziG47PKwX8ONxuN9///T9kM5ujebQLwgzJGySULHxlvuMDmbx+vcjhxnUWkhLjkEgo6H8iF/ppHEjLsrh/7y7FzRusJSUa/SmNYZNgwEen3aXaHpFoHHLnozGh5ByZbA7Lsk7aiEQifO+tt05UEbxeL47jYIyaaLMWgfwCLrPPQibG1DDx+xQ0AJeAy+gyV8hhWGOmukbA5yU0GnPt9h6hZJ5o+NOolSRJZJIJjroVWuXdRyo4RkJBUhEvjjFEEFwEwjG69X0Ex0JWQxzURhTLDYJ+HwnVx8Qt4HhUttpVtrc2ufLSyyclwzVNYzjokhQsVgsp+v0BIZ/DvOPn9pFJue8i6aiMtDHN1hC37OfS+QJn54PUulMOa2NevbpCrV6n3+vw2tkEEV+E+xsbeC2NlxZTrOfn+PjGHd6+VQZhytnlIL2Jzt9e7/Gtb72MPRkwcQXZbI7J53O8efUMH318kzsHHYhEybpB1w26/QEuLNz2hIsLMe6UNRqdDs3eGGNi0x5M8Ma9LJ4Hjyig2QKiIDDzeLF1aFX3EPU2Yb+HyXSG2xySDrqg3UXraNzd32Nne5N/8g+/S284Jhfz4bUjhLJrbJU6BCU3Hr+PfC5B5VaD/e17VA63OJP3szOp04qlkSSJ2uEWvdYRFy+cR8xnaNRnVIp7lNoBfIJAOuzhqDXCE1lEDc6YjKc4zhS/P0ulrRGK5alU6+RCLg4OXeyUGiykg8xmAjM5QavT4ahik8tmOXf2DNncp0mt6UQM2xGpNNqEg5/qJzc7feo9jaXJEdlcDDFi4wmFef+D69RthZfXkgRtH4JgcdgXuL1zRGpukWgwQK/XoGs3iS6+TL/XZdg8dk67nQ7IQbrdAZLLx73NXXb39lEjGbZvf3Bye/TSy1ePE5hHI+q1KtNejf12Ed120Wwe3848zi3eblQhk32Ec/1Vi1A9nhTY7I6o1rfZf0yR43nggUSbZ2X1c8f5q6pUe4rfTJw61ac4xTcUz1oK+HEIgsC58xfQv2BzgWdz2MvlEtP6NtmAgDvlZTkl0/3karowN/8ZPiI8mQN5sL/HuHqPgDwjGfawnMuwVxvTnjhEVTeB9TyvnMsy1XTe/+B/clf0k08nPvPcj7ethNJU7+vMR1Mc7XXYqbTA5UH2flKBzxFxuzycO3OG4aBLpVMHu48xkwjGc0QSmSdeB5szAcntHD/fJ9ANk1w6wXikUu2a+ESJnjuD5bXxBh0qA+jX7vD7FzwMDQ+mJ0hvOEFy6Wx9+DcUt29/4rRH6Y81jipVEmGZeDKF7IvQ73cJBFT8AZt7DZvNn5eZuUXOrl3kQiGPNW5T7ZQYjSc02n3297Y4qHTxh1K4BR+bxQaGZfHdy0v0xg6SV6GnuVmMzAgrUEh4CHhd3Okf8dO3PyIX82LjATHBQmSew7bB0PFR1m0KgTzlnoZumowMAZ8SotkzkEWRSnOAx+rj9R4nm3rFMdjH3NOf3uvimgkMLRF96sETTNKuVxE6Faxxi1pxQFQVyYRm5HwarUGfiDHj4M4h/8vdIpfNsHRpnnbTg6wEcLv7SIrCsD9kt2FgSzHWgi5a1T3CsxRas8S713+JSw4yF1dYWw5RyKoMJxbJyy+TmVvm1lYF0dHpu2akszZ/cnGJTn/ItXt73Lu/wdTe49WXruB2zfj5ezdptLtMB216soeOKhEK+HCsKUPLg+kICP4EwVD0kXUoiiL+9Br3D9uo3jq+YIROb8TNzSqBcIz1xQwej0DP7ZCORogoNh4mRPxeBj4Vx9K4MB/mx/dEDlozdqt1KiOJKxeu4HK5HnFOo36RW2WNmzsNsCbYoxrn1hZZWVlhqumP3B7JskypeIj50I1Lpdbg6P42g75CIv6pNJ3fp4LVOuYeP4Yv4jU/jiclBSqKTPATOlThK1REfBZ80TifNfnxgW08raT4u4VTp/oUp/iG4vOkn54lyvN5m8uzOuwPS1XFQirtehnB7SYV81Pp1DHSGUbj6RfyEUejEXev/ZKk0ESwpty4VWJ5IUfAF2F7f49EJEBheYlAwEe92SJMG1HQWM8vMRhN2Nv6AN0wOP8EScC19TMcbi3Ttxu0XWmqm2UW0l4CieNiDYIaQo2qzByHwtw8RjqDbhiMJxpWREQJpyh9UqzFIwp0+gOa3Snx7Fm0fv0Rh1uWPOiWC28gyuLaBRRZYE2S6PQGbFY1vrN2mQ9/9t+ZSRO6bjf1Zg9HM3jt3DwfbNQJG/uEJIWQKGPoTVSzxk5NIyA7BPx+BkaQSt+h0R4wsUANh/DKCiurZ3j16kUM0+T9936JUL6H4jep923CAZXlXICOKWEpSRKZMauLBd6+ccD2zh7ybMj3X44wNlwMPDJLgQBZ75C3dzQWol6s2YyWK8rEU2DkCWEGJMI5k7fe+i7Fco27H79LszkiKFvc6w8ZjA0M06AQ95NJZZA9YE77CMKxMsu9mo3fHyYgzBGIFoiG5xgXPyQbE5FiQQ53awz7GpLlBnOEVxD4/ksLvLfVwz3cp14aUUt6CUVj7OzdZ+aSiURTaI4PwZ8k4YaYV2PnXoN6xSAaUHFP67SadcJiloW1BeKRMKqiU+n1uHDuPLoYodPTUM0Kr65EiIb9pJNhJMXHbkPnsFYiuLnN/WKLZnmbQmjGhYSIoooclo4wZxBLpHntW6+z7lZoaBPeu7HJd66ee4RC8Nbf+WOqlSN+uXcLwakxE1XU+Te4GDjm+TrODAQPU00jEg7S73QZTKYgyJTrXZJuk/m5DMncAs3elMtXrrC0vMLdj99+xDmNRIJQ1lBUBW1q8+orLzOXzwKgKMfr8MHtkeM4n3Fu08k48WiYRqVEoTB3wnM+5hZ/Oef5aXg4KdCyLKqVIzqtJqahc1gd4g0muXT5ynOngXweHg8iPOk5H7eNxidu2Gw2+8zfnuK3D6dO9SlO8Q3El9F8/ip4Vof9Yakqr1cmFEtTau6RDnsxNJ1qo0VvZH0hH3F7axOjtc3K5QyBpRj3dyU29ypYsk6lozG/dplMKkG90aZZK7FWiNHoG+wcFLGnA6x+l1tvV3AB64/xMX0+HxeufofuwQ3eWl6j0+3RqB1RHjt4QxDMnCEwm7FbOgCOo3GmaVPvTPDGVghHoux34/zk403MYZ3ZDNRolrN5EX8sR6m+cfK9yVRjNFMQbBHTmhEOHDtU9c6E3OL5Y7WSdIF82KHV6qAN94goNh/dvEexPuGNv/8t/KrM9a1NVHHGai5GrdFEViR8ksPM5aI7GOJ22VyYCxD3jSmWd/np/12h3vo7vPWd10iFfWQD6wRyIpFIjNrudWbWmHJ9wPrFVxjbEvf3DmBmYjkio9EITRMY2wqqX8SNwXxWoTYWuXxhDbc14lpRZzidcmXuFeToAnEnyO39Brv37jNqt3BwsE2dmALG1MCwTDySG9nj8ObFPMHYK4wJcAC8+d3v0Z9C4cLrxHOLjDsVFHWVQcVEMC1EbwB72GezOCYRkrl6vkAmk6I48NIdTLBnM+5tHXD+3BrDmZ/ycER7t48aSpAIZAm6WhT3Ngl7HdIBF9mYC7cmcutgwK2dCmfW1/F4PKi4MPQmxaMKkhIiG5mj+PEW9iyAaVpMNI3dcourZ/MMh2G6ExNnuslqROPqSpRERKXRMzB0E8vlJRkLMpeN0RyLJOez3N7vsVnVkdzTRygE585fYDB4nXq9TiAQIBwOc/fjt48PZ5EQ/miaTmUTw5HRxRC1rkl3YDP2LlCxfAxnfjqGSnrtIotLyyf60Q8UK3RdZzgcAdAobmNOe3TVHK6ZSTZ3LCv48O0RAJaOR/QzHI2QJQmvVyaVm+f+nVtkGy0yycTJwcAfX30uyYQPJwWOh71jJZVQCMOQGE5lrPYu+3uB504DeRK+zK3f47ax1h7S6MFRufSZgjOn+O3Db7xTPRwO+Rf/4l/wF3/xFzQaDV566SX+zb/5N7z66qu/7qGd4hS/tXhW6aevgi/jsD8uVbU4n2cfuHe4R72nMx8SSeTWP5ePqGka016deDSM4BbxeiVeOr9CLh3jw90BgbjvWGHj3m1GwwGVchG3FqM1dpGKGCxlwsjpFLd2G9S3P0DXdc6dv/DI8z/ov9co4VYlogtpwlKAVquNMWojzHSqnQlH7SLZZBRHlOlNZMaVDzH6VVrNJrpucOXSea5ePsfMcSjVNz5T3APRy9rVP8AwjEcUEnzJdWzbZvfuR9QrJT742S2SPguVETgzuo0e47bOwWGac2vLVA42KSRDZBMBdstNPi4JOHqPjZ0SohpgLSmTEVqcz+co+ILc2zng2o//gnG3RlB2kUwmKMwvsbI0z15ApVO8R0AXSKYyjDSLa+8V0bsaS9EZM0Fh7IiszKdpT20m4zETLBAkAoEgo4GFpXW4feMGYniJ19/6IyJAa6+DZzHBue8UuPnhz5k09khEU6xn/bx/r4Qz6bLddvi737vKYiHNXus4cW5x7TydkcXZl76NLMvstIusrKxQD/jYvX+DjtWhOxWZ2l4uZPMkkmmafYNCJoEuzpiasNN109s1SSbPEwtBs1YmpnqxRi1++vb76K1t/v5rOSSPQLU7ZTS1Cfi9eJ0A7Qk0On2a9Rqbe3UcuY2cXGfpbAYhusxOrYPS0hhqNtrMw1ohgm6lKTW6BMYRsrJDSHERUBTK9SGd/hDBPaVcafKjn98gk8sTHg2Ydi3cy+dZXFvH5/M98j4Gg8GT0tgPkuN2D64zHI8Jh6P0+ln2+hVMUyTtzZHKZziXSFFtDhGiy4+8347jMNIsjipVdG2MMWrT6AwheBGPMyGfTxCSTKYPUbIeVrMwTZNyrYnRvEdYlUDw4I+miYaDCNEVKkOR1uhTbnEylf5KduVxPPzcVr/ISlrBmEFzoFOYXyIaCT+XAMGz4FmDCE+yjcGgH5gw6tZPymmf4rcXv/FO9T//5/+cO3fu8O/+3b8jm83y7//9v+cP//APuXfvHrlc7osbOMUpTvEZvEjppy/jsD9JqioaCdMdzRFeW/6Mc/u0/mTBIZybp9QqHvelenEcF5o+YybHaZR2uLKSYHE+iNmx2d3aYOpJ8fq5LNGwn3a3T39s4DbrbH7w12iDOoncykmk6Uk8ya3NDVqtNrmQm3QsyUrGz165hRDOIckyncrPyLvb5NYDHMkW/cGESeeQVifDytI8APvtChdeeZPCJ/rJLpeLUCiEaZoYRoHhcIhhGIxGQ2adPbRxD5/TYTaps11q4JppvHU5zxsXF9k9atEobdLp9XHrXVazWWb46U2h0hyx3+1QiHlIZiJcyHrIejpMulWiXg/L2QjtksHBwQGOW+GKL8XVTyo/zi8sMp5oNHcb7FRGWJ4EwfU/ZPejv8HyOchJif1+mfk5D4Y9o9gYsTkeYspxxo0dAoEA51byhMcSinvK3t4eHmdCyi8iBBV8iodEQEKSo5SrTbJhiVTMjzAzKQ01SvUuksfDj280Sb/2Cts336PS1UGJ8503vweizHA0RnC7SSQSKPIVPrRlirv7lPsi/pqO5A0wtgUK+RSay086sMKVb711XN1wZ5uA7ODRGtQrVTBGmKaBIsB8OkClMeTIHcQX8lIIBhFDc/zs+jb10j6BVIHV+UXiMR+D5ha+cJpSuY1g9bBNnVqzg9uMMb92AVXu4w76CMo2zDRKvRnWzEERQZIEgn4XWq/MWJ7hnwXQuzZHG+8RDoeJnjn71PffsiwmkwlbpTb3NzeQRBElkuNbf//PsCwTc9zGdM2ojSTC81fIZHNomnZCmWhX9rl35wY/37vGfHjGykKGiSZB8CIRn4jokelrOiGvi079CI/XR70zObk9KhUPcVsjLGtCNKngds/Y37tD24lx4eofUXiMWzwajb6ybXkci0vLDIdDtrd3cLncuCQJyZ8mGgnjEUWwhl8rQPAs+DJBhKfZRgAs44WP9RQvHr/RTvV0OuU//+f/zF/+5V/yve99D4A///M/57/+1//Kv/23/5Z/9a/+1a95hKc4xW8nXqT005d12J8kVRVZuPKFCZOP95cIS/Q94nE7zT6t/oSxO0ouESEquBiYBr3GhKkQQVBnzCZjwKE/HHHt3iGi28XFuTi1rk44YNM4uM5wOGRpeeVkzh7wJDVNY9StAceRJknynDzrRrVO3zAIixPWC0lE0Y0R9DKf9HHvSKdZK1PIZfD7VPRilaOjI7TphGmvBpZOSZSxRD9H5RKj6hZYEyrVKi4XLEZdxH1uViIzmtYMfWLQ7PbJxPz4VS97xQ6j2g7rSxl0y6Y3djh/9gyxUAmXNSCs+JlYHrwem2TYS7HaZWzJmMiIHhFJkRHUCOWjI2rNNolohNF4wswT5MK3L2PbNtqgTj4qUQsEmeDif//ji3x44z4/ur9NvTel1nJIqhLfyYFgdtnaaVDR/NhCiFHvf/K3//0/IUsir15ewyN5sXoy2lTHbWsEFYFAKMKl8xlGwxHvFg/5Lz/ewBeqkIsfK174XQPmAzDY+jEfejzMLyzy8cd/Q9CqkUsEiCRDWBfP0LVD7Iza1DZGxAIGiuxBP+oyCy3z/X94nkQicfw7durM9DGNWomD7Tsojk5Jc/M3Hx3QnkAkEsHr9zPGT2/ix/IEGc2CROfOEvFaDMs3GZRggsrdioWPEdNOEWvSxXJ50XtVBrqbTCKCJSjUBl1kFyheD6lkgt2uhP1JVH8tCD19gtsV5PJalqk14OYHbxOJxgiFQp9Zl7Zt87Of/C96e++yFJYQIwHGloAp2HgkD1deeulECUYURaqVoxNN9HKtiTXpEvZJrMZsxI4X0TWkVO3SNWUyc3B2KctgbOD2F6h1GhwctehJc+QWPy3S1G8U+faVdfqDIeV2HX06pj12oXkksrn8l05AfIBnSXIWBIGz586j9evEvTqjqYk+7rK/WWMwMei7Epx91fOl+/4y+DJBhKfZRgBE6VTH+ncAv9FOtWVZ2Lb9mRdNURTefvvtJ37nQTnWz8NgMMA0TcbjMb1e73kNF4DJZAIcj/1540W1/SLHPBwOH/n3eeK3ca6ftW3DMDAM40TD+VnxZeY7GosznS6xWa+D1QJRwh9ZIhqLP3FdfJk5kQIJdo72SGs2iuJlOtWotUcoiSWm0+kjVcQmkwmRSBQxkXzkmb/MOyMFEuzX9kjHAiTyAbZ3D2mOhxj2mMPNMkZYxiUIzByIRtOYbh+15iHvbXWJRaMYnijnFqOYbjem6GE4mjJolbj30TVuhmKEIzFC0QRqKMH8wiKWZWHqx1n7w6kJHP9m06nJaNDHME1Uj4Lp8jHSDJqGQkR0ISoSE31GrT3kqNqgWG1TaTRw6T3m8zmyuSyVowofX7uJNhqwlg8SiIaZ9mDUKRPLFzi7tsAtfYypjfCn47iUGJpbwZiN6Qp5dNXD0Jvj+pFBJh0nFAxj1xuowRjpwjzFWov7nTYTXWc09tGbOIwtEJUo6XSas2sr/PJOmZ9eOyCdHOLx+ogklpjNZpjdIrmYHzEWh4srtJpN7lYd5s5cxRXMY5UqOOEhjOps9Rxsr5+xbGJPR8RDXlbzUcIBlYlmYAybjAQ/vaYGxgjvzMYlRen1Q/j9PnSvj0tXU2wcGZhui4WFBQBEJYzXM6BnDLn90c+JJ9MctXXq0ynl1hRHlImmCvwf//sr/O2797CHVQRnAC4Tj0vGYsb+3h7BUJh+v8/W1n1CVgXBGDIfkwjIEm63QGMM220PCVFFVCII0WXeePNb+ANBOp0eIbtCWLRI5FI4M7i1XUZrV4mnUywtJclFcvR0D/2xRq18n3orQ1iSGY9CuEQZaarjYoY7tUgyM8+0W8aUBUa2SDyyyFwhxebeEdXdu9x4108gHMUfSZPLF3C73UwmE0qlIu2DG1yYjxML+Tk4qtOvV7AEhXZ3hK7pLCwu4na72dvdYdrcIx3zY1kutuv3GfY7VG03C6kwiXSWswUfraGDz5CxAdMlYzoWqWgcSQkwludYOf8KPp+P4XDIaDTC0DQQQ0RiCoOJxXRi4/eJjAcDbt+6yera+glV5VnsiG3bVI7Kx4dWywTR88hzPwn+WI57d9/D55qQjQfwil403cDjGOzubFOYm39mW/I0PG3chmFgIFJrDz+hchxjMBhh4EHX9Ufs6eO2sd07btejhj9jG1/UmL/JbY/H4+fe5sNwOY7jvNAevibeeOMNJEniP/yH/0AqleI//sf/yD/7Z/+M1dVVNjc3P/P3f/7nf86//Jf/8gvb/dM//VP+6T/9py9iyKc4xSlOcYpTnOIUp/gNxD/+x/+Yfr//zBU7vwx+453q3d1d/uzP/oyf//znCILAyy+/zNraGteuXePevXuf+ftnjVS/9957XLp0iWQy+VzH++CEparqF/zlb07bL3LMw+GQa9eu8fLLLxMIBL74C18Cv41z/UVtl4qHJ9GkxyO8zxJt+U2b72eJuD+t3ce/+0Vt2bbNzvYWG9d/QVyx0adDUok4LmDrzsekwl7Wl3O0RzMENY4pR6kNXPj9QZpHOyQCLtq9MdX9u4RcAwzTYiYHWJ3PUamUcQSZxUKWSh80MYrlCRFPF6Czid89Jh4N0RmZCP4Ug5HGh9dvk3A1mU+piIJIsTGkPXETzJ0jHFAppEPkMlma1UMWUwqHpSrb2zskI166vQFuj8rl1SSaMePt6/uEPRpRr8XC2lmGvRalco29Sg9TDDKXz+IPJ9BdKnL6ApmAi3TMjygK9IcjtveP6HR7zIdhPJ1gT7q88/4tvK4RQdkh5PdiI+J2i2y23SwVcvhDIQqFeTrdPqVaC8fl5uql80QTaVLJGNVak4O9LQ6KR7R7Y5IByCTCeGdjfK4Rdw67NEc2+aiC6oyRPVDtTlFVLzN7hmU7tEYzljIBEDxUuxpepngF0NwBUrEwnXabYntCRDYJR5Mkvv1nhGt/RVQc0OiOuV93M5nJBCWHZCrN+bMrJOJRRiONGwc9Wt0pubhMPiqTjEfwiCKH5Qp/+85NFF8QySOzt7tJUtFZj4wJytAeaDQmAkNb5sKZJepjL670Vf7oH/wJkiQxGo34xd/+Jcpgi0tLMQKqRGcw4c7mARuVIaIx5PuX4/hlDxNHpdEe4hJEGnqIq2/+AalElGq9xa3dOvOpMAu5OKLg5sP338Hs10hl86RiEfaLh3iZYilZLr3yOh6Ph8FgRLFjoYSSdGplmuUtnGmbxXQQw5iSCriI+L2UGgN0JcPME6LS6BOJJ+g1q6TDCuaoit05ICzpKBK8s9khE48SCkc46mgs5LMEUgsc6GnGtW1Er490fo5IIv/EaHGpeMigssm0V2MpKSNJAu3+FG84h+ILcNR3WD575WTNfp4dMQyD3fvXyYXcn4n6Pt7OwxiNRpQ2b5CKeJnNbPRxH2PSxzR09ps6Cxfe+EzE/Mvi88Y9m82O6VrdOljGJ7d+qc+Nrj+wZ4ZhcPv27S9ls5/1JvN3cY/8umg0Gqyvr78wp/o3mv4BsLy8zM9+9jPG4zGDwYBMJsOf/umfsri4+MS/f1b+lsfjwefzEQ6Hn+t4RfF4Sv1+/xf85W9O2y9yzA/wQPrpeeK3ca4/r21N0zCGTVZynya8EFbxewX22y0U5cwXFll58P+/CfOtadpJ4t3nrcnH2x2NRmxvbaIN6kguBwuRkQEBGQTHeqpc1c72FnZnl7WoxXLWz+FOkdpRm77uYtKvUhvoWMYEwRumcHaJQibFrD5h+eLrHKXzfPDj/4y3f49FocpaWmb3qEW5J7HRr/CteYHq2M1yNM2oU8M93MeJXwQKVI/KzHo7HPhj5HIF8iEfnUETs7tHek7Fa3YoH/Xpj2bI4Tl6jSKDjshiZIlGeUyz3UExwTOqknZXWU8t8EGtQvVIo2xHyCaDuPU2Q92iXh3hj8Ro1SpYwwb6xCIUFvEaNY4O2sySr/H/+oM/ol6r0myUwJqC6GP95e9jGAY//h9/QefgNgHJxpq2ObMSRWFE1tdlZur0NIFbtTFVs0lI9aB1G6wXAswXbO7s1pDGCjPPhI9LB0TECecyHvxigu2tDheyXrqmhT0osZgyWFgX+X+/3eD+pkWz02Et4WK9EOZyzsd2qUdrNGZQd1NYXScUDfDts2l++eFdRuMhjV6LYVvCK4lkFReqa0SnoZEAptX71I0mWzUdQQ6hIJIJxpm2hvSKEzyzFRRFYXPjPo3uiIGnQyfqQ/GHWVyY46fv3UDvVEmko2hD8BptIvKUXrVNJCGS9ji0hibDqY9Bx084fRk1EULTNEKhEF6vl3y+QO3+AaV6B78sYNguZjMwRkNazQPci1OWFmLsdgZ0601kXwwpGGE+HSEY9BH2Sei2iCecoznugaVhKRm29uqMtD32tnTqzSaLc1muvrlAInxcqlz1BPjo1seorRKLcykiMx/9eoNfvPNzMMZ8/2KKljWjMvIQW04QdurM+23m5le5OziguX0dRbRYjNhEVReddouwa8ygOSYiTej33Ox6wni1Bt50GskfJRpQ8LhdKIpCKBT6TJ5DIBDglmVROtgmoZhIXpVoMkc2l8e2ZzT7bWRZPqmg+Hl2pN/vI2GRjsWQpE+50Kon8Jl2HobX66V+6MXlmEwGHcRRiaVUGE2H8dTBPSzRace+lrzeF9m/aDT6SDXWZ+WRP6CGPIvN/rIFu37X9sjngRdN//iNd6ofwOfz4fP56Ha7/OhHP+Jf/+t//ese0ilO8VzxVWTufhMLCXzVSo0Pvnfn43ewO7tkkyHC2TlavQnDg02Sa2dZX19/olzVSQZ+Pk6vOsDlsjFNC79rjCh7iWcieEUblyRSHFrEBk02mmVKQy/B9Cq5fAFNM0iHAowbTbq6h2w6RTxq8JObddT1HKLuYTwxcOFwcSXBOwct5Cy4ZhMikomqzvjW+RzVapXm9nv4rAF+X4TRxCQXk1mfU9jvTAENzXajDf2cW56jejTkgxtlXlrwYbkkqo0eU0vEJ7vRtRG2KTEYjZi5ZBJL32asJNmol9D7JivLS3z3pUVGYw2KXToeN9InJZr1xxRF9vd2ifgkZtEoEcVh2K0xHI44dyaCMLUZ4yLscZMN63hljVRIZvfgJsosy9mFBLig1agTMCzu3d3jpaUo47aE5V8gEQ2RirgZ1KZEkhmG+gEze0ok7MOfiLPfGBILS6zmIgxGY9pDg1JHozew2T8sEh1NCcdnoEbpt8dU2kNS8Rj+oI9cCKb9MYPh8btzfX8Akx7BaJL5pJ+NwzZMLTpjH/7emI52SM9SwDa4uuTH6VSJuif0mjX+/Yc3sKZD/rc3FognQmwdNulLMyzLZDDQsGcC5zISHgEESWHqCqObMp2DfRTFS7MUIJScI/n/Z+/PmiTLzvRc7Nmj7+2+fZ495innrKwJKEzdQDf7kDwSeSgTpTZdyCSjSWa6gG55wR/An4B/oBuZUeIhJdkh2GSjBzSqgJqycs6MOTzC59m373nQRVQmsqqyBhSqUEAj3pswcwtfezBf33rXt77vfZd3MAdNpKBLrpQ+z4D3LXxBobS0wzvHQ0aLAXEiT6SkOe7PuH5pnURCYW6aLCwHKZHi2odmQ47joOaPSEoeBjMi3yaWFAzDQPxwzgRBwN1799l7eJuXLy8z6ceMZh57+23s2RjXmrF36CCpKZT8Gq41oVTMYccZysU8lcYq3f33iewFfjaNEwp0nSS5osHZwOTtAwsKV7h680fM3fMD7G9fX6FWTH+mMdSzZsFZl1w6pF4pPcueTmfmb6Qm9GVViWRZZmKF7N99B8HqsVmMaUUudqyzsrb9O5PX+7JNmV8Uv61h1wW+fvzek+qf/vSnxHHM5cuX2dvb49/+23/L5cuX+Tf/5t9807d2gQt8pfgyC8rvo5HAlw38R4cHjA7fJxsPuHajhpaQOWkfMBo6vLxdxg4tIH6WxX9+kXy6ISnmiwRujW7rMQvbIZcQcS0P05cwXZicNlk4AQvDZ+ZJZIs7uL3HPBoMqeZTfOfG69z7QESRphQNkfGgi2nZPGiaJLN1JpZPUteZmx6BdZ7xqBoSW9UUvdmcB48eU0j4VDMSvWGI6g2QY5v1So6krnD/yQGeWqGQz/DB7Q+IfAsxFLl30GM8lBEkCfveGRtbm6xUq7x35xG3z2JCvYGbqPPy1e/i2jMcpURjo0guE/Nw94RYTpDOlbBjl+l0SqFQYG/3CYOzA+LAZWo5/Pznv+BqYcZqXidy5xSTMJ9P2W1CJSlgugK2FyHIKqOZTzk1p6HNiCc+k/YU2VV4cBRTL7v49hxVX6FQrODFEZ2WwGl3jGtFVNY3ccY+7907oG8rVNIahWyWEUVutwJsW+SDIyglFKp5mYSqUcsI/PKD9/GFJLqqUsxoLOUFpv0T9kcCIytiIpxnrbpTl/nUI28PaHfazFyJ4VgkZWRZrpcZeQ7TQGBzpcylRpqjcITgDkglIgLbJCU5xGGAF8QUNB/qGRZTH0cImbsSP9/3WYQJBm7A5GDMivmA+uomWcWnnIs5OnofIbfB8rUfcPDwfU6PzogijzB7jY3rFW6tGtx/+Ig7vTMyuRxxQmMuz9FVmUd33sFamLQmHrnN7yLLMpIkEccx3rzPGy9fxUjpuJ5Hea3DsPmIdvOIUqnC4eEhew/vsFE1eONKjYcnQx7ff8yw+ZBXVhN0p2ki2aBYKKEXyzQ7ZwxSIka9CsClzTUOH2/y5P5tfCkiJYesNZYoZJNY0gRZLHH1B/9brly9xoPbb9GbOJ9Qtvk0YqppGuWlbSat+6RTNrLjMZpM6U8c8usvf2Gi+WVViY4OD8hLcyhXaR+NmVgWzWGL4toNbq2dZ8y/iP7+F1Ec+abwdRt2XeCrwe89qZ5Op/y7f/fvOD09pVAo8K//9b/m3//7f4+ifL0yORe4wO8av+mC8k0bCbxoAfqygd91Xaa9Eyp5naGtks8YqKpM1rTZO2ySy9SwRx7uh3WEH8/eP78haSwts7AsAumEkedzOHZQFINup8e830OWFY6HHjevbpNKigShiWNGTO2ImeVw9do1Tvbu07NcjoYyB2OV+Czk9XIeo7jMotvhzpM9aivn2sFGMsnEgiiO6TaPSK9XmfsqkSATBDHmzKQXzwlQuXvQpZyzWCluEwcu9x/u0xmMCWYT1nYukSuW6R3bLCY9ftUO6c4k1nausLK6iueHRL7N3PZxAri2kubKWh5ZkgjCkCfNCQ87E4Ig4G9/9t/pPvoHAnvCdDyg3TpjcHrAeL3E2kvXcCOIAp++GdDfn7O+XCUhenixjKhYmIMms6mELMSkkypS6FJKqczdMfnCOoGcZ3V9m0a1wJO9IwJ7zv3uiKnp4NgmjjVjNA95+dp1tjcaeIsxK/UC9ZUtdFVCTr9DUZxx0rfp+hq9fYfhPEBNeFxa3yZSx7iTY5RgzMQUUWSZq5Xz05diRiPj2Qg41NMKl7Y1/mHfZrcjoeinPBj02NneZinlMOpN+c6tLQbdJIdHR+SSEVEQ8+TojEtxQFIOCTzozcFI16kVDe6eWnRdnVQmxXJJ5k++dZnG0hIn3UMe9bvIscPh7h4bV19h58br5Av/DEmSzo1o7r1NLeWRKdUY98+wnRAvgnE45OS0A5UkWirD2loGUZpzeLB/fqrw3CmVqiqoqsrl7Q0eI3D73i6Leyf0Ol3Wd26SkRwOmm0iy6RhBKysJnnlcomDjoOXXEeUJXZPh+yeDHACiUuBiDsbUqitsLF9hZPenFxVp5xWWThz7t/vMgyL3Pj+X/D6t759ruhhW4CI5/mQOs86f54x1MbmFrtBwN/d/hX26AxBBCVdRshNsCzrU+tjPx5HNja3OPwwXjyV2HzqJvlp35/2TthoFFhbrqKKPispj6QuM7RkFguL0WSGFymfmun+sqdrv0t8nYZdF/jq8HtPqv/yL/+Sv/zLv/ymb+MCF/id4DdZUL4qI4HfNDvzWQvQlw38nudB4FKoZBl2FUzLoaAa5NMGcQyt3hAhUSTx4bHyx7P3H9+QLC2t0G+vYDk+S/ks2XhIXTMJsincUCYhzfBdm/Jyhfef7HE2hsF4wU//5hHfurlBcXmL5vEpR4sF1Zv/hFQmSZTOMnAS7I8VTiYiL327QgtIGgkeHXvYjkdvMGLoSExcHS8QuX/Ux560OJEjTswEmhSykbWR3R5FNWZiz1EEuLlVp5BWkBdNyukYww8ZTj3qWRnsDq2Hx6SLDarLKTRhwi8Hx7z3IMXltSJJLYFpeyxsnxCZ5skxk4M3aRgufjhiuzzhNDCR51AUB6hen521Za5Wd/h///0uRyOROL3OYXOXiu6gxXOWMhEl2eVwEvOoL/CvvltEiWNUSWA0sahvvkJv6tDuPUJxh6zkBe4tMkwCeHAyxbem3NyuEJunPHowIZkuMOp1OO3OWVsuM+61mOEhJKvUa2XOzppImkExm6SyvIHtR6QSOoN+gpHpUtRcGplz6cJyTiObSGFZFkEYkJBibi3J9J9YiJHDcrnExmoDwTnFGg0Y6i65RMTWao27JxZZNUHgBeyeDVnJKwymMu+deKQTsCMoTKIildV1fnCjzqDXYqlepZTPMugP2H/8hBtXt1guyNSNgOlgl8WH5TYA2coqd979K4rCkO2lApYvs3c6IK14bG9f5fqVHbSESiKhMhpPP7rR/NgplSRJ1ColNq6mKa/skEre47UrNY6Pj3h8/z2WywZpTWA2cXlyPCKhG2j+AEktcnB0xllvTkaco7ptEsks4u4uWnmHq9/5l9jTLgfjMzxPQ1q6xp+9/n2uX79BHMecNk9onx2jlzbY333MrFRkY235c0swJElClmWWS0mKG9dwHItJv8Xx2/+Z0/373Hjt+8/i2FNBgU6njfOhPvvzceTjRkuf1UvS6/XwLBNjtYYXCRRKdabjAxRZZO/giIPWAMtyUEs7NE+Ov5B1+DdRVuF5HtPp9FOf9+s07LrAV4ffe1J9gQv8MeFFzn2ftqD8tkYCXzY781kL0PLK6kfuyXFcXM/Hsu3PDPyqqoKcIAhDssUazf4BAGEUECoGD48nXLq6AgjnahTPZe+fbgoaS8u0+HBDEpiMhAaBMCcj+SRjD8+fECsKV1er5LI6d0722QsdTp8csZAKvHHlEh88mPL//fkTytUavmggVl/m9UqRYbfFSWfCyAxJFHdoaFUs4bx5rDUVyKcSXN+o8Og4xZW1Am896tGfueRzLrVihqnlkdIkdBbEgY0SzLjSKBGHIT+9PSSVqiGpaQQhYm+/Qy6bZq2e4cZyind3+wiRS2QKrJVfRa7VMVt13nnc5qfvnLKzWsEJYny1yPLKCsP2AcWkgOx75HSPcipF6Gg8kiCng0yIa5mUMgnWanl27RQnC4X95oyh2KGe9FgpJdGSCjtJgcFhyHvHLrKuMYsy1KUMtVKO5tEuuw/ugjfFDBQkWeXmSoa5m2HSj0jIMf1um1R+if/Vn/2IX7z5Nvffe0h/5nJ85nKjFvBSySGZssivpHhy4nAyE6mPx4y6LTxZYO7GCIpC2pApZg0mQBRJVDIyC1nGDlUkScJQXCLf5bA9JVvOEzomx10TZzwksEZc31mlOw2JFY18MUNv6uHaYywPAmR26gmWsgJGsUQhTnByesSjOycEfsDd90XWti5xdHSMORlweCAyC3VK9XUapQK7p3tksjmy2Sz1xhL33k2yiG1OhiGBqJKpbfCyDGJoPyPU8NGNZjab/dRTqvLydZaXl5l2j5hMZ9iuy2i2wJxNaHV6LMYDduopbl3SiTA5PDqjuXfA2lKVb19eIqlAZzSkNV4gC0v8n//1D5Ekiel0CvCRRuK93ScEwz22l0ucOZBVXCatXd6fzlH0DFpxG8dxfh1/nsPTjPHmconFfIK0aLNd06ilYbffZXx0+9x7Ioowhy16Z4dY4zZbmxtcv7KN7bgfIbKfVZ/8fOxy7RnHB7so4ZRLl3ZYWarRk+Fnb73FpH/KrZducuXyS2SyBVpf0Dr8d1lWEYYhAPsP30fl0xuxv07Drgt8dbgg1Re4wO8hvkjDy4uC7Gx2bgFs5Kuf+/0vk515WqbxaQvQyuoa2coqhyd3ODhqEthTHGtOd+pT2vnus67uFz3v02dplNJ4/iofnJwwGI6RSlfIlpawEwJ3D36dvV9ZXWNv98knNgVXX/kuvu9zVVG4d/cuj371V4znbcRQp5jPI6ugKTIJKeK9997HCiW+971bvH5jiVe3ivzy/jHvNiP+5JWrpFQBFh1KqzUmcxtHLSHrBabxDko0Awfq9QZqLqLbH6Nk6vQXPlpCZqems5YK2agXGTsKb947YjS0KGs6czskodlUy0WyGQfbC6kVM2T0DEfNFo1GDS+SCMMAz/WoFZNEUoznuujZNNtbGyx8EVtI4itFcoUMBT1L388g4YGtcnp0ypLSx5949PrnteHdeYJ47ODFJv2pTNdOUMnrVIyI+rUySd8jI8wRReiaoGg6mzWRqeOwkMrklraZ2R7d44eslQyaqkRSFtjOJQk9m43VJAMz5K9PI8YTi2paZDA+4e7tX5GUPG5c28EUy4jA5dKMnZrOwrNwPZP+xGJiuyxGZyQFk8BeMPNk9LRBvZ4klc4yAWJRZObJ+JGK6UZEMfiiRlIHXfUoGR6NTEgyUPjFoc3/48mAlzsijaUV1pcbBJFIKM8JxIDW3KNQyvLKloDgTnhz/wg1VaSquxQ0keraMp7Z5x9+3iPyLJaqJaoFhXoiw/jsEc3TFOO5i2+ZGLkCop6nUSlydXWLKI4JOZdTa7pDxtMZjus9I9UfzzB+1imVJElkK6u8++5fYfgdEopCPhEjVdL0Qp1qIcNpq0dv6jBxVDbqOX5wLcdGUSSRrrCxpvK4Y9N0PQaDwTmJ/5gqz/PkEqnC2YMBbqzhBzP2DzoU1woUhRZ7w5MXEr+np1SKbDDpt9CCBeZggOe4LPoORjrL/fffYqlkUC2m0dIu2WKaqdPnrJ1me3PtWRz5PCL70djVIM2c/ScPCWKRy9sbJJNJBCnB69/9U159+dazxklJkr6wdfjvqqyidXYKwFJWpFb87Dj8m5bGXOB3jwtSfYEL/AHj40HW47zXYGl55TO/92WzM0/LND5rAdrY3OJvjg6ZHN+nkVPIZzMUqxl8yXxWQ/pZz3LSa0KcQqteZ/tShctXrpJMJj8hV7W3++SFm4IW54tREAQoqoIXgRh4lLMFBDEgkDUet6bcP13w5HjCd7/zBm/cuoQkiRRUg2vrFe7u3aGceRnbHLNRz1LIGUznJq1JTL6aJRoLyKlNOD3ldLBgrbLM5sqrlPJZ3nznPaZ7TRR/Tt+SEMci7bHJcGKSUiChxmiqfK477ESo6QIeKhMrIAo8glAEWadWrDOddJl4EonhAC+Ee7ffZnNtlbHpIeoZqoU6S9s30XWN7siiWtvGmXbptHeZTcZUjDnLhQjXkNEkcKMEXVNgGIkk0zliXaSeDKhlJQIlS9KZsJJNMZ0vcGOf4cwmFBOogkitVmARTtk7NYkWA962TE7OOvzzW0UkIea03aaYT9EZeJizCVFaoW7EJMUIc9LjoGtTrdQYzHp86/oq9ZTLybjHeLpg6usE8YL1aopyJoHsKCzGAev1LOMwQ3Pi0bIXlNfAl9LcPTq3HY98m72OzfEE2pOI1apKztDpHdxhfanMtY0CR/0FvamF6Z/hRSLXNyoUMxqJbIlKMcN0ZuMLIgldJQibpCObcinHcObx0lKd+dzk3b0HKHjkKyvEcoqM7NE/3eX2bo/a5k1ubX+PKI7Zb+7RGlpsNwwK+Symc+4IJ2pZuidjLNtG1xIvzDB+2imV4ziYpkmhWMIliRgnGVsh6YTE1uYGRD5Tz2UyjZlFRSrLFTbiHrmkRBhGnLY6bG6soxLS73d4/MEvKWSSnyDGz5NLyz9X/1jevIQYrdN+5zFppmxXGhip7AuJ39OTs9F0xrjfoqHNKZUMLEWlsIgRFh3a+1Nubv05ST2BI8YsVYtkFg6Hwy7uUv0LEdkXxa5r1877G+4dDfHFNBECmfIyt27e+IiO829iHf67KKtwHOfcORK+UFPob3KSeYFvBhek+gIX+APGx4Os67r03nzzc00Ovmx25mmZxmctQL7vk0tKXP/ed0glNRIfGhR8oob0c57l4wvG89n7L7IpaJ4cE46PubzRYLh7SCMvMZz6HPRcnDBJkMqSrCb54RvXkaRfv68gDJCF4DyrHvoYyfNxk5qG5/ZxXZvQj2lUr9E8PaW0cpVqSaCQy3La6lBPCwTrS8SmwEolzbv39nAXE769k6XZE1GUGNt2aJsyc9+lvPEygZrnbmvOfNRl6uQp+QlEc4E5HlLP6Zj9NtWiQU6xGQw6jE2wxQqOm2CvM8fIqJSXzjNWjx6C5Xqki0vsnvSwFy6ikiBbrDG2XfKCRqzkSdd2aD1+hOAviJUI25xyeDYmu6ni+hFzJ2Luy3iRiJLUycYiadljuxDzxqUCipTjTdnmwcmQvLQg9B2aZz3Gi5grVZGhGfL2vo0fxiz8Uw57DovZlL6rUs3d4MZqlUIhj9CzWMlVGMz+lnKxQGNpDUXP0Ff2yekC7aMIN1llMJX5IdBbSNxuJzFkj4ahYEcSPrBVjQgEBd8asbOaQcajnnR4dVVDlENKaY+pp/D+gz1iz+LGSoZ6MYkVyiwVa5TSMuVOQOhM0RMJzEjmVw96iJKMqOUwCgVUo4DoT5jbAYtRi8CaMe40uXvvHt/77htsrUBrdMJ+cwCAIKmMp3NGtkBm7VVac4XW+LMzjE9/56Zp8uD+PZxpF1WMzwl66HHl2g0SUkTBkHEtk4SeQQgXLK9WyBdLIKrsPRnzt3e6VPMjHNvjvQfHnMxFSmu3uLGWppjPfYIYP08uRVUHzv0cbNPCsRZs3dr6zA3405Oz091f0e31Wd3Q8QPojB2WGstYjotrTUlp2rnQgKRgOQ5GUoP+FMf1zkshPofIvih2SZLE5cuXmcRtauvXqVQq7N17G9tx0fVfj/UiovxNllWcP4v/ic8/Lw5/3dJ9F/jyuCDVF7jAPwI8DbJPjQS+yP9/mezM82Ua8OIFaDqdnjcd5j5q4PBFj1O/yILxeZuCyWTCtHdCvZQmvV7lA3/B/vE9FDHByFNY2rpOTc/y5PiM9sAkYyRJahqW43B4NsJX8sSiBNJ502RG0jk6PqZ1OmQwmnE0VRCNOgChqPKrt39JPiXQ7fRoFHUmZkCv4xL7NvZ8SkKwEaMkI1tk4Uvk9YCz+Yww2eDgfhNJ6ZJPG0z8HKlslo4j0hwM2MzppBIefSHN2Uxksd9hGCzY2LzEbDIhk15FlVT40BjXcRwSmk7PBCOSabspeguJtJGksZrn7x9OiKMC4chh/+xXWOaEy3WNk47L5VJAX9H45YFFVpc4GfqkM2lubSyRXb5KKiEjeHP++uwMQoPVRpm7mkzvbExjSUAALCIWlosQR4xnDkrCQdcErlU0MrLEwlsQWiYPHz2iefCErOZjpNKEwiGHrSnbl2+weuk6q8Cjh3ke33uX4+4EORmzvnQuDbe5sc73b63y9z9/E50Fl2sanu9z0jfR1ATtwZxaIYPgWGQzaWqFACEOqJc08r7MbL4gVDX6c4e1hYOs5mmPbfabE47aA3KMGakRr+9cYnOtyu3dHq1Jhq2da8Shx9mwiWAPiKOQa9urXNtpsNu8y+Nyhe2NNeqVAnJ2id3ukOPjx1jzCZlMhuW1KnquSq3eIJVKfW698P33foE32KVUyJFdWqNaSfHLozanLYl0Nk8xq5BcquH5Pp1Oh5QhgaSSSOX45b5JITLZzEnk9JCJY+OMQ+blq1RKBSRJ+gQxfp5cvgYmfAABAABJREFU5rPndb6zmclpa0DSyFLM5144156fzxubW8znc1rvvMtbuxOqRZFqtUbWSNGduMh6loXjkM1lMQo1uv0DVHmBH6tYtk1vbH8ukU0kErgRtHv9j2himwsLxPMN/G9KlL+psorzOKwA4Uc+v2g+/MPFBam+wAX+CPHbZGc+bwH6zEXvK1ooPm9TIAgCBC5JPYsoSXzvu29wWKvQOT1m1J6SyK+ytHmV8o7P8Z2/4UHTRBVnHJwNGExtCvkSt2/fAVFiMgjQMJmP2kRSiklvhhonOf7gr0lUr2MIJvVLGyzGHYbehL//xR1cx2GpqPH27pizsxnVlIfpilxfK2MHAabl4zpz5nYbYoHG6gbfvbaJoqVojVyGyhr5fBXPa+FM5vzFn7xGs2tydHxMu3fCSXuIh8b/uFJhOV9FUkPe+fv/zPtKhjjw8EaH1FYyVDI3WMqJeF7IuwdT1qsh2ZzC3FywmZOpZKq0B1Nu77VYDGM2qioPTkSOZzILOyRbMli98jrbW1ucHD7mrNNn1Dvjwd0Buw9k7h9NyMlz8qk82XyZTlDkbNTm4HQOoYsuiqSTMse9Be25gKwkkPDxrSF2kKCoJ5Aih7EjIidzDDqn3L+vU0hrWNMBp905sSBytZHixk6JGZAWTYJAo1rM0OvZ7LZMNhsZdpYTRIHDQcfjUS9iOeszMy2shUWjnMLIF1G9mO++nGVtuc7//A8H9MIcmUyWNx+eYY/biK6JkpAJI4FENGbUF8moYKHTXYiU1IhsxiBT1Dg4VVht1NhcLmO5fYbdU/K5LJKa4tLlK/zd3/6MYNZlPa+Tz4aIXgenZzJS1U/VkHcch4cP7mN3HlKR+mzfqiOJMs3BCY6yyaWtDR48OWJleYlmb0Y+JWMYGcR8inePm4iRhaIEuG6AoMTsn80wUjrZYpkrazETp82d+0945aWrz+b988T46dw+ax0BcDaNya7eQjZaDMcTjJT+7OTpRfP5qRHMYvTnBNNTEqKPTczJVCCRX2F5q8Fo6pDS55TKVfamc+7uHyEZNZS5Qrax+ZlENggCTpsn9Lo92g/PDaIqjVVS6Rzv39/DFQxU4S6D012M4hJa9QqHw9bnEuVvqqxC0zSMfI3e5IjZzCSppC+aD//AcUGqL3CBP1J82ezMZy1An7boZbIFWgPzK1soXrQpGI4nHJ4OyK29TCaTATmBZTtkVeX8nre3MTI5wrzDK9/5MzKZDGEYEkcR7ePH7DaPSIgJfvCd66yurvLzX/ySR4/uc3/hYZszUskEy3mPWj7JtYbCyWyAA8S+yc3XX2JurnP3wWOq8oT1nSybK2XeU02ckQ+ILOVkcgkLLfSQpIDVgoAsh1zbrNJ3fFKiTUqRoKARuCHF6hbS2KecgmZvSGANWc4FxJbLwnfQU0W8wSHv/LyPG6vI/oRZkCCVKVIyVPZ3n6BrCRYTmeHMZdBv88r1TSRZILVSwRp1yebznI1dshp4nkN35KOpInGmDnGWta0ctaUVZEXh/uNj5r1T1ksq1xsa48kcxZ/ghDEnQwdrOGV1s8717SXGwx5lXaKYlmjPY2opiXpWxI1i0tkK989c0kmZ165uEAgqdTHHtzMV/vYf3sb/4AFXd9Zo92eYvsJSKYUoxOi6zgxwbQt/dsb1tSzLKZuMGnPcGTK3I1Q5oj91WUxasF7h5lqWjDBlv9vHDFQ0OcYTUuRyDi9dWae+/RoHh0dI8RHXtpfQ1VUu1xM8eXLIncdnOPQxiuuoeplFpHF4/zGS0+H6zhrZ+g6ibHF01kWQFRxrwX5zQO3St3n86CGdhz/n9UsVVuolhNCiO+yDCtOPlUA5jsNisaDbaTPpnnD86H2q6QghtEmnCmgf/t/hsMvWzhWO+g6zKM1o6uB1LFzXx0gmWN68zv2Hj+kfPEYJ52zXBVbKZTK5HIlknv7Y5BeHJq3TY65d3iKR+CQx9n2fcqWKnkzRe+cdtq6+TKFQ4G9/1uIXb75FI6eSTBmIWhZfMsgu33yhEUxt7TKLVkAlryNLMkEY0Bvb3HjtCkEYcjpsc9zr4kc5Nr/9L1lbW//M7P1TPG1Q/P7NZfrDFN3WCe+9f4dJmKZWNHj1Wo20kSIOPZrdR6Qa17nx+g8+Eac+TUb0myirWFpe4eDwiLNpTH960Xz4h44/alL9tAHkq4RlWV/peL+Lsb/Oe7Zt+9nfT1N++LL4Q3zXX/fYv+n7rtUb5w1QHxrFqKr6bIyP40X3LUkSvu/j++d1gcfHR9jdXV693GA0STHstXnvzmPUwjrb11+lUq19Ys592fdRqdZoeh4P202G3QMW5hw9mQa9yT6gpss0ewc4foSfSWLZDu2BRWlpB1EUmU6nnJ42MUdthDgiCn3WNzdZ29yhedahmtdZ/9NX6IxdbNvm9GifpC5y6+oa6aSOowacAINum/FsG8cNiGORSrWCE0Nv6lKvlHj9Bhy051iCiu+oxIKPL0fIaZWsGqMbWdQQDtomNy4XCFyQCIjkFLYvM3MS9HpjrlVEvIXAWjVDZxKQLJWIIogXPcQYblzZoD0J2D9rUc0bbFzfZjZzMH04HZ8gKVnUdA1BTlJfynPm2RwPbJxA4ta1TZJSgK4lsEMYuxr3O+AmVzieJdjtzjiYSFQyy1S0EEeOkDMGmbJyrr6hKvhehCApeKGII2ZQ8jo+EX3X4dpmipWizsMzi1ylzqoSIAgSlY2bpA2ds6FLKl8lU10lJqYX1mh7Lo1Vhe/u5Djumagfkh07UigmNEIpgxnNqKYE1pdETmcSxAH1YMbYFRk4Os2ZzHRikNJUFFFg5kpksiq94ZxFcpObtWXuPNhFN3JsrRSZzOeM7ZDt7TXiWMSRC/hCAqs55upKkeurP+T22/9ADCCqnE1MJqMRLjqWnuVbV3aYTqfc/eV/Q/QmjKYGgThjq54jnZWYjSzseMZoNCKZTJ7//oYt2qcnhFaPSrnEcjlJoyBzsDfk0VGP7Y1VBCVJEM45600JRR1D06hUKwxGMzLRglvXdzCnE9TZI9ziCu8/CMiWHIysAoKEE8Y4ooEnBnieT3c4JwhDmp0RmaVrOI7D3t4u5rAFgYfHuaKH7/s8fvwIQ5iTWt0icE0GM5PhWYv8+stsv2A+Pz83T4ZtCByQExilHeqNJRaLBYuFhbOwUMQYc9hmz/PZ3Np6FkdeBNd1GbaPWM6n0Y00q0aGWr3OaavHnYeH3Ly6hZYy8GNI6ilK+YjT9jGF4vlpme/7OI7z7J0TeCCrGMUGKyurn9uH8nXFbdd1AWisX0ZV1c+Nw78J/lDXsa9z7KeSkF8X/tGT6p/85Cf85Cc/+chnURTxwx/+kBs3bnxDd3WBC/z+QP3wOPfz4Hkevu8jy/IL/991Xcxhi+VSmmw2TaGQY3W5Tn8womcp1OuNz124vghc18XzPBKJBGtr63iejz3psdFYpVIsEIQh7e4uidImieI6nUmPwXRyvrBXd1hZWQXg9LSJ3d1luZQmTOdgJqN6I5rNJuZswnIhSUpPYHoD+v0+odnBChIcNVMU8lnkD8tOXHOGZVnMTQvHnDD0TAYjk0JGRdcSXNus0x57dE1YeD4ZFbKGRi0tkJJDclrMcB5x0mnh+x5WJBNkrvHyn2xxu9+id3JM4EacDW00Ymr5FC4B4NA8a7FZkPAXE072XKaRgRaHKEhcWtuhN7aJtRzjmcVkNMD1fEbjIe3OGZIz5N7RGNuDyqU0YeyRSyZISwbS1MKfDTk6y7K1fQWjkGGpWkQXXIbjKRPLJqmozAINDRtR1kjFC8bDPs2Bh+sGrORVTNsjmQBJVohFFTe0WDgxgpKEOMZ1PWRFAlHGcb1znfJ8DlmV8VyPYkakkNEYmQFjK4A0zE2TVCpkNpxzOgpRhYhiWsPzbYoZjfxyTHfu4QkRzZGPbetcqugsAhEpoRP7Lrao4Tge//k//ycG7TMkReLh3owwhnDRZ6mcQU9mkXPgeg6X1uoM+x0K+TSZbJ57+49JHJ7xxitXKVWvMzZjLLnEdDJCC0as5QSSuQLJRMBiOqApBCxVCtj2FF8RSSQSz35/5YyGr3uUCwYLZ0bH9NBqZRq1Ks12j0IhRxwJmE7A2WETLaFwqdHAD1PEZo+UYONaJs58wGopRVLL8v6jE9ojl3oWNEVgtLBojwR8qcjQVfnlnQNC3yZppFEmHX71VoeMtGC5kiOp5xhMFozm53MEd8ZyJUc2u4Lnebiej+O49BYyQRB8JBY8nZsAhUKRYrFEHMfPiKLruhweHBDOztiqZRlPpgy7R3T23qV9fL7x/jSCe6485JHUc88+U1WVXCaNgof8MW39pK7BYILrus/u8fk5n9Rz5xvt7i5NYG1t/beOTV8GT98XQDqd/kbu4QJfHf7Rk+of//jH/PjHP/7IZ7PZjJ/97Gfn9UyG8bVc9+sa9+sc++sYNwjOJaV0Xf+Duu8/1LG/jvf9tHFq2D6CwGOU0D4ixfX0KDUMQ+TYp5wvoqofhhZNxtAUzIPhuUnHZ9zT593vi8xq5FSRgwfvURBHeOMJp7Mu2WKNtWqak8mAjauvwNoakiR94vjXmXTYbJyrhziOSz+TIq/a9IZnxHFEOV3CXMw5OTjAGR4jm8e4CxU3B/1FgpmyAqvXGU3nOJbJyf5jpt3HIC3Iyh5LqszZwObeokfg+OxUU5zNBMLIR3JnJJQIxxW582CCHwlUZJlg1GdsyqirZQ7294gin+bJAcK8iVGWCQSHmaSxU8nyiwdnnPUsvlfKMohtYitGjEz8hcMkSDPqG4iSzp2Hjzjae0gxJXDwaIbrQyHhkpUtkoBn23RPBKrVBrNFgCp0KCgSm9UEuXqS48MnzOIU+4cjbtRFDNXDnE5YrpRZTAQO2haBC5PpDM0JKKkigjEn4QtIUsRsPOPuE5OjlM7AS5Isati+QK/TQfUmJPQkanGDsdVhMuhyuapSTMTMlR6j0xH/uXfGt2+u0JxZKFWwZmP0Qp7NxgquNWFqmuQUEcGZk80keNwaE0cRccIlEZ43rW2vrTK3A6qlAq3+jOP+gpP+XfJawEurRcLAZ9J6TDWt46gR4WzGvZMuiaUM28tFNClk1HvC2votbv3gMv/V63DcbHEyjrhSqbC1cq4L//O37/K9169iyRliyyXyHfIqjPtndCOX3tjh6vUtksnks9+fJEmMz3w2alls16E36tDuDWkUk3QGKnsnA8Zzl9BYI5FQ+NaNJcqlPO3BlIwmsFk0OBk2kUKPtCaQwKKoekSCyIPDEZbjEifyJAt1MimNfGObetJjc2WDQi7LcDzhF2++RX5tg6XqBgCCJEHLwRx3SUox5XztfE5r5/Pa83xGz83pIAjOS16Odxn1WwTuAiOTo7q0TqG+QaFQoHlyTO90l+beA0pphb15l7xi88pqhnBZZq/Tw24/oPecQ+XzkGWZVkIjDj0MTX/2ec93MB2fMHBJJs43uoYmM7IXyAmdQqFAHMdMp1NmvRMuN36tGJTP6OiqyOGwi7K984VKP77quNpvHQLQOnqE7218Ldbof2jr2Nc59lPTo68L/+hJ9QUucIHfDk/rGJfz59mdOPRotu6zG5zLzj0luW4EvW6P1ZJKufTrRqyvokHxaQPXovWQ5WqGYjXHfGHxX/7m/4M7bvKDP79FPmNgWg57Z48ZjutESg7XdUmn058Izh9XD9G0c8m5QWsXy3KIJI1Wb8j+8RmS0+dHr6zy4O6Eg9M+g8EIEnkogA7IhW0OhhF3H+5iiXlSgs96UWW7DIHv8fPdASZ5Lq1pJF2fv3/kkZZdbi0rWH7MxBXZynnkkiKducdKrQbqmPd+9h9YWV2loAsooY8aWPhxyFk/xEWnMxcwnZi7ZzYzGwoZk4zu0R/ZWJMIOT1hr9sinDYpGhJTKyDlTqhkDfSExGDqk8+U8AQDlwX5Uo1UWiMp+7THHvWlEnpKxxdjjo9OySVF5uM+m8UYRZjywf0hB8OYKytl1ioKthcSCzI3twp0MwLHYx/LF/CFBIOFiFpa5sbr32M0GnPSus/MV5mcRkiSi945w1Hy3LhyDV0YUM9opK806HcF/vudPv/1zoRkWmR7B9AKNLtTJqMPcMdt9ltTbns+mqqSM0pkkiKaGHMwcQjDBeZU5MGuxPLmJTQ9Rb0ccX/vFFFM8qevbpPP5zjY32N5rcBwZtOe+CR1nUvXb+CqBaazCc29Eyp5ndBzQNDZaORZquSw9QY7l6+RyRj0B2OEYIGR1BELNUx/ToDKwp7z8KgDA5nVl37E5StXz0smPvz9RVH0TGUmndKo5HUcKce90zFdW6dU3GZ5Z53VtXVaT94jmznPZqqKAqJMFPnIQkQgqQiiQas9IJZUbuyUiJwJ+2dj8tV1xFSZRVCnYMhcWS89I5ZGSqeRUwmcGe5z5jQAshDiRdJnqgQFQcDf/uy/M9h9k9iZEnlzGtUi+USI6GksWhY/PzqkpFosZWTUSoKsLnDn7l2yyw0KuQa+H5CbhSTzOoNPkd38eB+FllB58Hif/YNDEETe+uW7rG1ssbO5hmcvaHanpCqXaZ4cM+2dYM6GtA73yEo7ZDPGM+L6uzJ5+TiextWlrEFvcm7+Mv4dW6Nf4KvHBam+wAUu8KmNO8/rQav6uS330yzR393+FculJJvLpWfmK9OuxVu3H/P91659JXqvT7M57eNHfPDmX6OzoJMvIkgKRBH+4ARrNuS4VSOXTtEZjBh2mpwOH5MoXUIvrZFKpT7xnABuKNDq9KhXy8RxTCGfozco0hqMUTSd/pMuUhiyVsui6wZ6aYNSnCalxAwsgcgX0IFvff9HJFMGB3ff4uaqTmT26bZOefNwjKJkCVQFIZRpTSIiJcefv5KjPxxCQiQUZOyFhVZcIZPTiTMC3339FiedCQvbpHd4j5W8SK1aRo59hrMF3bHFT2+PSBhZclmB5iTgWzt5riynmc7m3D4cszcaYokDsgypJ2ZkDY3A9RhPF0zCJI1cAj9Ks5TLICg+T04WtN85oZpPUc/JRLGI5TcRhWOuXlpDc/psLBUxxzJDVyCWMsztHr1ZxKYgU6itshmr9BfQtxQmgc6pKZPWJb5zyeBgriFmlrl7+33a/QHLlQyvr5fwA49ma4IdQCrhkDcUlqobRLGHFZsoyRw7OxmaizSGcU72vnW1zuh0yqR3hiRERGGIafukVZ/HRz5/dsXg3VMRzwtIqTGkDGaWgz884mSh4sxHtFpddE2nfSZRKRWJBBXTCbFcD8eHUNWoJnRcs0vOSOHgslEp4UxaHJoW3YlLtVxE0KTz+mrADwJiOYUfhJTKFRaWRTifYVsiUU7j1T/9F7z00i0kSfqoek0+S7ZY47C9S2Qf0h6aZLI2T466+GqFDV1FDheMhgNCQX5GcBMJFSNX5snJXeREily5xqC9S2uhoxhlHrfGTKY2klZFU6sYuTUuVy+jKcI5kfwQqqKQTBmfcHwEUDWDTKlBs7t7PvdfMKfv37vL5OBNXlnTsGcLsorB1HGIQh01tNBzBR48+oDr37tFSk/QaUIchTRyCoGzOC8ncV2QVIq5LIPT+acS3Oebq5tH9wnNDtcubbC5ucnBwQFPjk7pjF1W1jbINq4ThuEzgyilWkNdnDBsPuRQkZ85OH4T8nXPx9VzTXCLTMbA0D7p+HiBPyxckOoLXOCPGC8qqfg0lzUv+vX3ZEnCHp1R3nnpWcYrFWtc3Vzi3d0Bj9suqmj/1p3sT7M5it1lOz1hu5Hm4fEppu1TLyYxCkA+w+nRLg8fH1JOmOS1kIHjktU2cEcH7BOzurpGp9PGmXQI3AWd/ph2u80RE1zXQ1FkyvkkE1sgv/Yar3/7Oxzs7/Ho7Z+y3zcZWBOQC2RLCvZ0yNlgSiKpUwJWVtcQRRFBNWifHXCtIRDlNdqBztR2yCUVokSBZHUVe9JhNetT0lN0px6rtTWKJQc9JeAisbO9RDaTJGoNCMIIZ9Yjn5UJY4H5bIrrQzabJx4LhEoBRdIpZ0WMXIpJIHNm+oRKmvVSgDdrUi365HXwHJuEGLCRc5nLMVslkRTQc2aMRjaGHPHorEOzrfB/+LMtysUsg1aTbDaDGMXkdJGCNGFju07HFDDNHEuSzt7whDfvNkkqAsWsgZFSmPs+oppmtSbwrZ0MpwOL9UqD7bUG9+5OmA4cljQI+x2MhMCfrhvcPp1y1NFppWwuNV5neWWdQm2Z23fuMzg+odM6Qozq1IBqTsOYh1zO5RjPXYqZDLtnA9LxlP2BxdtnGbJGgpxu0xxLVGppelObDw77iIFDNpuhUl9hNeMx7Z/w12/GTGcmlbgFgkg6XWXryjUOjg5xxQwbl28y8yTQRFzf59HhEbJmcHRyyjSYoGfrLNUr9Cc2hdUbvH9/j5xskVRE5k7MKND49p/9c26+dOvZ7/rjWdelepXHj5+w9/CYarWOb4UUDZn1hkBWtUiqCv32Q+ZkaXbPj68FSSVtpDigSBQaSFGanrBOWG4Qzp8wHbvceOUSW6tL+FHE7umcQEigavpHMs+JROITjo+z2XnzoZGvcuXKVQ4P1BeqBDmOw+DsgEZOpZzP0DEHLFVyZGyX3e4CnymeksVdjOl12yihhTkbM2oNie0xsubTHU5w3BCjvInnB59JcJ8qD00rVUzT5PJL69Qq543W6xvraOk8zXHMzs1voaoq99/9+UcMopbXtmgf3KN5fEC1XMIPgm9Evu5F7pXwzWXNL/DV4YJUX+ACf8R4Slo/bvX9Ipe1p5lqx3E5Om0RRgHFXJYgCGi3zjBHHTzHxp87iPp1Ni5d/kIyWZ+Gp9mcRl6nZ7oky1nyaZWSHmKoIttLOd65f8TyUh1pEXL3wW3WbpXR9CSlSp5aVuDs7Ajz8ITDeyr+vM/W5gb5lIrACZm8zzuPJyjmASnJpzdvUNu6RV6zmU7GbG3v8OjOr3AXfVqtFiXd59JGDalSxyGJvr4MgCiKGIZBbx5z/PYd2nmfrBqS0WMIYxQpjen77D28S0ac4UoJND1JECew/ZjO1OW4NWazmmWtNufO/QmPmnPO+gHyYoTgyVxdK7LIlznomAw9jUhwibQ8TiQgCj7bywV6IxNin51aikJW5+5BHyH2SEoChYTIxHS4tqxzu+ty1Au5XlPQ4xmyZ3Fja5Xlashhb8aD5oztQGCtUqRcyvHu4RTdyJFS5yzmE6Y9k5WKgWroSFGJD05MjocBrijQm7rEsYcWzjHtiIU1JaFnSectxu1D9KBPUXPYzMskAouZHRA4EfZ0zqgT8TiYIUY+r3/ru4hxwGA4BTFJIW2TVM+b157cew9lfkBGEwgEje31dSzPp55OMw1HzG0BL4pYzijc2MqztrHGvUcH9PpjTmyR1Y0qy5rMaafD8emcRrlHJqUguqAnFFQVvEhES5coFJe4+cq3KS9tMWk9IXDGpBMmaxsNzvopYk9k/8lDjgY+OzdeI5cwOes8QdMFBAFCFGQl8axR7vkToeezrq7dZeqKfOv7f8H62hJPHj1geS3LcDLh0Z23aSyvYnsxk7hI5cZrHA4HBO4E5ARXv/1PaSwtY9s2qU6b/uke4/YBCyfHUXuKtXARVJ1EtkEuJaPnap/IPPuSQWnnO7TmMq3xEI9z06al5ZXPlNA0TRNFCkmmDIIwBEnGclw0RWbv+ATUObmZxd7eHsloxl987zqV/CrNM5W3f3lCezojUdhkeW0DLZl+RnCf1kB/ll60oclkjBTNk2PMUQdCn0WoYC5UgiAgjuNPGEQ1lpbxfJ+DO3u897iDkSt+I/J1L3KvhAvTl38MuCDVF7jAHym+iNX38xm1XMZnPJky7hzT6g4YLSIODw9Jp1N4wyMaRQPHTTCyY8R5k9Gw+KkmFx/H00bH5xfRp9kcVUmgCmCUa/T6JwixhyoqhFGE6ca0Jj6GElKv5iiWl5FkhRubqwwmC4LJMcV8BYkJ6WKIPThk0Ir57vU6e4enCItT/oc3tikYKp1pSCIT4wYm9979BWHos2g/RPZnOG7IVkmidXrGNMqw/dKfUF7e4c6pg+d53L93F2G+SzWjEHgjJDliMEsQKykmpkdSXlBIxsiiiITDeLhgYmYpL+skTQ8rrODKGu88ajOZzvCSDTbKGgtRpdkZU8snqRRzZOwE9x72MPQsl+oyEzPJk7Mz/su7HdJqRFLPorpzZpMxgWuSzQiUUyKppM6j1pzTEcSCjBXo7HbnCN4cK0rgxwmWShH5XJqWpdNZ+Ei6hjMCPVOkWq/TPrzDfHQGkoaCylmrQ1GX+SfXSzwYJTmeKlSzCsQhulLAOT1iOjMppkqowZyj/Tb+vM9s6tFtTcjpYLkBtx9PkSWBl2o6ZmQz6vd58+13aY5D0nKAElnguaSEc6Lheg5jM2Bi+qT0CHHUZziZ4VsBPjKyrGIGEvWKQSqTR0tlqC6tYc+nlCKJH10vUM3p/NW7Du/cPyWTh5yWIdZ1tFyWlCDw8KhLZfkS9VKOGNhYW+ax5/HW3z/BdSEbJNl+6TpL9Qqt7oD3dvsMzg5oH96jmlWp1FepV8u4QcxsbtI73SMIQ5xJ5yMnQvXGEplsjtlshhCL3Nou8XjviPbJPqNogWNNSekptmuXCEP4+b0DguAWN17/AaPRiEQi8WyOtc5OCQa7bJRkwmJMtqhgejLJXIP15RK90YLD9gmXX3qDkfqxzPPyTW5tbhEEwTPi33vzzY+ocLxIwzmRSJDQM4hkGc/7xJLO2WDAcWvAbNTn5Vt1dENhq5EhsIccNHtsbW5SLpXYvHKDWUtCKF1j4ktMJiKpymXCMOT+uz9/4cnZ8+VbyAn29/dJeH0aRYOkluWgPcOZTmm3W2xtbX/CIEqSJPKFMmtXMmxde41sNvuNZIQ/zb1yPP3qtPwv8M3gglRf4AJ/pPg8q++Pu6y9/95bhJNjGkWd73z7VQYTi0f375JQJb57c4UwhM7EYWVtk0I+94VqA4Mg4Pj4CHPYQo79jyyiT7M5nh+ApGAYGeJ4hcdHHRbOgok3QFTTSIrO3ScPaI0CtrckdrZWKRRytNo9UnJA66xNPD1kKacwsUMOhnB1+UdMxz1yiYhKPoOhy0ysKYYusn9wwMJyqJeyfPv7Ozw5OuXOnT5WXCFdyJCWi9x8+RVMJwLOte7vvP131IQu3/2LHe4/ijEkj4EZ8Wgg0poseHVJRMVFVTTGtoiqSJQNON27zzgwKK9c47DXYdQZcKWmoyoagSSh6Qad7oJfHXo0HNg/GnPanbG1miAXnmBkisRuiuOZzJV6Es/tc3jcRJNCiGA8C5kkBExPICDB8VwiVVshpyWwhk0UwWO1mmGnKtHrTVhYAuXyJUQ5Sa2WQ/JNRCHF1c1VDo9PeXN3j2IWEnKM74aoYkS75zDuNhkvFK5UrxOrGTKFBkkFSokFE0fg8PiIYN7G9EQG8wjbFdlrmahiTEbVubWRJZNOcTDweOJo6EqB2HpMfSXHeqnIyckJ88UIAD2hYskGk+mIMLToTpqMRg7dMMQMFBZjkUiQqaVltjUNOUoRRWOGkzl+rNHszyGOSKcSXF3LkyuVqK1u8+qaTjGXYTi1WDwckaou0Z3NWFgOkigxm02YzhbUa3UyukxChiiKGQzHRKN9yqtpcnWNWj7B6fCI97s9DF3FtkzevbdPrbHCP/3T18lminR6Q37xN/8JWc/RqBUZzywG/SGB1UXzRyzlBGTHJlcUOR3Z9IczGtUCjUoOZ9YDPiq/9vwGWZFFfNeiVNEoSwqtmUU2bWDZHvPODFmWPzXz/LTeezKZfG78eEpw9VwNx5uCCkGgsNcd8MHDAdvrS6RrG8h6ltcUncCd8ag5xpYmqAmN+uZLpFc11m98h0QigaZpNE+OX3hy9vGmaOQEvYnN/GSfb29l0RMa84XD3I1ZXV3GmXQRhJ1PdY0tL12nUqn8BtHyq8eL3CvLF6Yvf/C4INUXuMAfKT7P6vvpEaQkSSyvrNI+2aW6nmO9UUZVVdbDENt2ePudX1EoFBAVDT1do1GrnBvPfIHawKPDg2e6seX8J8tPspVVeq37iFKKs34bQ09AZo3OtE3S9bl19TKZXIHpZEig+Ex9jVQqjWX5DEYjzgYzckmZtYbGZjXJaL7g3qP7/D//Z4eVvMx4tuDhkz0qGZmRGeEGAif7Z6xs7oA3Z9IbkREc8ikV14944/p1etOQIAiw7XN9Wc/zcKdt6jkNIQooJGISIkxjj+l4Bp7P8UBCiEK+fckgQGFs+hwOFqiyS7FR5vsvrTBsh5wZE4q5LGbgcTp0yCbTbGzqTBcBHVOmO5ywWU/yr98osQgk7FhCIcV/uTOj0xtwJbcglc1hmhbXqw6tccDRWCGSYeQnEVSdV65co9W3aD9+SCVhs15O0jBCJF9lvFiwd9zjpVdeR1ISdGchkWpw+2BAkFpCX/s+vrmHF/i4fsDMChADDy02UUKBlDDDcy3OHh6wUiuQyhZ50DxkarrErkg1I1LPKbTmAX4QE0sRsixRLRiIkkLeENC9iHqtShKTbMKnlokxVgw6CxkfaE0jziYJOsMUOCMUMWS9JFNNK1huzO5wTqykaU4iVDOBOJ5iZIskS0vMOl3+/t2HZLN51ITG8cAhXRCQxZh7T45YrpVRVBUnkinoGQJjjcNBxODefWa9U3LlBq9fqWGk4O7tt7BChUGvRUZXCF0LL4iQJIg9m+HJHvmNNQJrhLbYh+GMe/eTlMtl7t+/w6J7iOlE9Pdy6JLPYbPHe5bD//4vXiebK3LyaJ+CprPSKNLr93C8kFRuhUXo4DjOR2TXPlKjay2Y2x4P97rkkhIHgxg3ktBTWZLGubzc0/n/2zQP90538R0TSU0yd1Q0KYOk6iTXy9zMbfPn37pCNpshjmMOHs6oFzVcKUNpeZNiIQuhz+EwfpYt/qyTsxc1RVuTMUeWRMdSGR5PQVLRCyvUKiWOOufNjl/WNfZ3gadlNZlsjt6bb7J19eVvnOhf4LfHBam+wAW+JnyaosbvC15k9f1pah2u66IKMeVC4Vl9qCRJvPrSNQ6P20x9lYIKkTXk4f0ZsZwiStY/szbw6SJa/9AsRlVlCmoW1/N4cviQSrX2bFEcdY7o9h3mnRmCvglJkSAtsxDzOLbGypXvsOr0OOm73DuzcMwZt48WpBMCr15dRcei0z5kOupRUFx6nUOUuIqeSPD4yS79fIZrV68ztRZ0uj2UVAl3dsZSFqp5A4mA2w/2MHJ5KstXWVgOnaEFiKiqipJIYC1kRsMOMydGDhbk1QBddCnqMQQhcxdOBi43liVC32e6cLi5lqNY1DBnI66t5amnVjhujakVC9TrFVqtLkvFFLPdU9qtGYQB2yUd3/eplMuoiSSjxZBCJkGpsk5JbHNpOcN/++UTJl7EIogY+QlWa1m+v93g3TOR3V6I58VMIoOcBJIQ0GwPEI0KCUOnfWaxLpYR1QpSDaq5NG4kUM6rvGIccf8fjvnlkzZL6ZCVTEA16xHHKpbrEnsWN7fXOG3OmM+6HM+TaJpOPp1ATKRQWJBKqjxoBzgmFA0YTzz4YMTL6wYeOq49p98+o15bYXJ6nzjS0TWNfCzSAwoZA3PhkFBEBiMRIbTYqCfIKgGhZ1FORexPHUauiyK4pPNrLDVqPGkOQdLYzAWYTownKiS0BFPbp5hWERNp3r63x8EQpMrLZAOJekHG9jzGc48rm6uM+mc8evSYMAwQQhtZS2HIHrWcTm/3LUa2wODUx7JdNNFnMTrFj2K2Vyps1jP8p5//lGwqQTkZUTMsHg76aHGOK5d2eGWlwf/y83s0D/fJNzYxxTJdT6Rk6Bw0e+QtCWPm0LKTZGo7HzFJeX6DPB4OyGkRlVwW13EII5tOr0+ilGNp51yH+vPqlZ/CNE10Xf/I/+3tPuHwg5+RYooUeefyhouA8vIO5foa9bUtgmIRSVaexQqjUOPw4B5OnCRjpLBtl8F4/pE447ou7mJOmEt/RNrvRU3RBTXL9opH87RDbXmNfDaLllDxY5HpdP4sKfBZ9eC/L3j6jr6IAdcFfv9xQaovcIGvGJ+nqPFN4uNE/4tmcs4XbRXLdshnft1YE4QhjqDjjM+oV+qUC1n6oym3905IrBWYTCYIgvDC2sWn2bWkfr5QPm14HHVPaR8PIYalzatsbG6xsrqG89IbCILAZDLhbPddbqwVieIYLaEiyxJHR4eczvdwlSqJxhYrwhqLw79DEBUIQoYzm4OWRblcYhD4nEwEEuGIdCKmu7DpOiecjAKG84Dx2z+jlvJJL0QMN00GlcCe8//6r+/yyvdLvJK9jF7eBPMIwzDQcw1GZ7dRJZWJKyDaIScjH0mUKGegkAhJyOBhcdJd0J9FzGwZScsz6I2wrLuUr5QYD6ecNM+4lilTSUs8mS/47ydD2gMT33VIywJzy6HVn5FMlzDtmMP2CCdUqVfSLLpD/uPf79LrDXDSEbqmIWopPLVE282jlUpk65dYKycR7CEr2oyBNeZsZmN3ZxRqG6xfyXL923/O6uoqmqYRxzFnp038wS7Xbq0x2K8zae9iLjw+mAbU0xLJhMJKVWbqgqAkiOOIyXTG7aMz1usFNnMxtZTM3Enys0cOQuSzXlYoJmNKgYzrutw701gphwjEHBzuEskJcpkGx+MRKnAydMluQzapsF3TOG3PCXVwQ5WtioYWzclrCY5GEbmsyn+463JwNkfQRphikYmf4sZGg0urRR41Jxw1u1yvqxyYIf/xb+4jBXPUZIauY/CnKwVubeQoFXMMJ1N2377PIEzxnVtb7B7FvPX225RVG0+NCbU8huxTrRj0FhKmJ/Dg8a8IXIvLl1UymTRi7NDvLpDdHuVigZwqwqJDwp+ynFJYzAdsXNlmtVGmkE+SK5VYv/Iy0bTJoNfCdRzUcMqwN0RUyxzc/hui8E+ezdOnG+T9o/cJpic0ajWCeR9HUrh+8wrptM47+xZD02Pv3tufGZeCIKB5cgxA8/Ftuse/NnvyfZ+H77+JNnlMLivQ7U9JmgNyqoIUZbjcuEx3dMLYSz5TKTFSSbRkmmFcxCXFUXcBcoLic3EmCAJOmyccHz7B6weks3myxRoba8uMJlMEEYq5LM+jmM+RzmQ57c7IGAaCIDCdzGkP5uRWPpoUeFFW/neR9Ph9T6xc4KvHBam+wAW+YnyeosY3gc8i+l8kk6NpGkaxQbu7i66Kz7Laeyd96rUKW+UGdmhx0lsQCAn0VIaH7/0tg4P3kCUZvdDg6svfYXvn0rMF/Gl2zbIdsqpCu3WG3T8gqwqsL5VYqyfofUyJ5Fk5iZTADwJSSQ3P9xAElXyhTG1TY3nzOplMhsrqkP98dJ/bRxM0p4+m5FhZ0cinZYaxx5Kq0joaUs0bLAIJSZIoJV0iJ0L25/zZlQKu59Ab9HDRWGsskRVK1CtlUoUGS0vLHBweoaoq1ZXLfPCL/8IwEJgPQ2IHLE9gtagR+w7pVILZwmWysBAkjZV6gZmooCgiYzPCGoxoNj28MKYzDanMLUJRxIpViC02igKmnaSYL5EwfDqjBe8d3CaWNI5HEaMgx6h7Rk4OuVHySdUNxDjgdOzTno55HGbZTOqoxSqNcgldC1AVkXJW5dL1y8xMi/cenzE1Z9iBzoO3fkp7t0R1aZ1UocGofcRKTmKxsFipZEjvFLm5JLN3NuWwazGY+LyymePAVPj5/QG9kzGO7zFzImpJD9P1+dvmiIwmkxAcEhpUCkkKmkAygN5CYr9r4cUqmeo6SqDQP75PWK6SXaoQxgFn9pAscLZQ6fdixnONcDGjNzW5vTfhagnCQAVRpT+HlBrhWyOe7Mk8OOyh2i0OZj7v3vboThzqRsi1jTKkc+RSMrIXkK6ts9scIw/vc/jAwq4vQyJNRg3wnRkHp13uP95jPhmgaQED38Mo64wXKo2yihB7lCt1HHTiyOLm5RWK2TTNY4933n4X34sx1JjJeIgaeixV0tQycDof0OnlyBYqmI6PYppsXi5xYjn83e23UMUAPWlQXyqSMZIcdbvsP/yApeWVZ3N0Y3OL+XzO7u4e6+U000hCUKGQzDLzIvrzgLrXY6O4/plx6ejwALt/AIhsL2eRYv/Z/6UzWVoH9/jekk29kMOeh1ypZFgsbO60D1HlH7FSzeL2ApTiDofD7rPN+s5r/wONpWWm0+lHGiyfXjMY7nFjq4awaGOoNoPWLu9P50Sihp5fOu+teA7mwqK6vEGq0Hh2nUBQMao7n1ne8btIevw+J1Yu8PXiglRf4AJfIb6IosYXGeOrzm48T/QV2WA0ndE/vv0Rwvp511pZWaUJH1koldI2DeWMy9sVIMb1PHrdDon2ERWhzRs7VYykzpPmCU/eXTw7joVfZ9fazft4vs+se0pWFZg6MaXqEvVqmYQ65bDXZNFYot06e7ZInZ112L1zzFYthZGQmTk+T1oWucoKk/4ZJ0eHRIGP79jcftBhJePyZ9/aotNq8/5uD03LU8+CZ0i4lom5CDEXHulkgmoqwhfTIOkEcYigipSzWdRMgbFQ4crWEvNJF698Xv/YPDmmffQIKfLJGklm8wwJMULXHFaLCpoQsZaXaM1EOmOFtpVA1rOksknOxh5bZQlBymLFCkldopo3CUKY+ir1YpprBZf1osZbBzamK3I4jIm8AHNuU60a3LxUZdOLcKwJp/aM/+lmAd91eHTUhTigWkzyoNXmgTkjkB5wfHCZyxtVXrt+mUn/mONRwGhoMrUCBoHPzpbBS0sxQdhHsBXuv3mHdvuMaKdGq3XGdj2DbG/Qmx7QGtkksJCECEN02KknuHPQoTuasVZNM1QDenOfOApBSGCoAVomQhBlJBEGnoYmhhBDMWtQXrvB65frLJWS/P2dMx60Ld57dIovZchmSgBMHJGx6SFHC+JwhuA7vH8Y059IXKnD6VwgllSuL+uY7pz5ZEg+KaOnMyylPBR7QCR7FI0chibiDk0ay0tcqer89L0DBF/ile1LOIJPKRVy2j0ijCMePGny6MEDtGiG6MxZeAGhJzCx5uyxQ2scICZ0lmQJLbeCILiYtk8hA5l0mkWcorMwOWhNqRbzOA4U1JCpFeDHAoPBkMbqTfZ6PqcLHb1rYYYZxHSdH90qoyoyobNgMpwQ2S4nrYdMv/0nz8ipJElcvXYdZ9qlbgS8Vi0TRSHHx0dMjvdxp21kx2Axz5HNGM/i0/MNxY7j0DvdJZ+UaJsxiiKT+9Ao5rDXJIrBXkzIpg1UWUUWYqo5g14c4thzPM+jUCgixUOWllfQtnc+sVmPoucE7/lozMxmlmidpTFHXfxgzOFxj1s/+B+5sirR7D4CPlqmVmhcP08KuOfXCcMQVVU/k7j+LpIev4+JlQv8bnBBqi9wga8QX0RR49MC/teV3Xi6aK0UUyzmk2earr7lcX9o0VhaJplMfu4Yi8WCer1B6rmFMo5j7r87fuYMF8cx5riD5M9ZqpdZrpVIqAqKLPPBiUn/dJ+V5xRBNja3eOR5HDb36R0PWV8qUaousbG2/JH39uTxI8T5ybNFKjB7vLfboSXkWGlUOW6NiM0xRlEjEYwoFwZ4kUjXy7FnCbx555jD9hQhWUTC4H/zUo2/e/cBemxxpZYgl8lxNjQ56Iw46Au8dmUZRY1IRxaKEJGQbJ40mwSVGpVinnnHwvPOGxVnrcdUE3Mu/ZNXmXSPOG738QUJd+ESWAuSRYNFIBJGEZmMwf2JiLyQKReyPDps0h+YLBWThLJBLKvInsTp4YTNzQI/vFLh+HGPo65DQhZREkl+2Rxi2S4FXURN5ylXG+R8D891uPtwhhUlEBMa/cDGDWa49gLR84gjB5EJ0xObD7oag6UGr7+0yWG3y2HTplJZIxx65PUQfzHGdAP2n3RpVFKgW1SMiNiI0JkTq2kmnoKu62yt5bh3NOS9Q5tI75OIptQ1Ez2GzWqSUi7Fg+MhW2UNW9ToT/pUkhHJhIYV6FzeKjB92EYyGrxybY3Nqk5ERNpI0ajo9EdzZsMulcImAPWkjawOyOk2Vy/neHQ2Y69lcTSK6TkSqipxuZGgmtM46JislhNklIBfHXexdZ9rDRlNkPEJ2W2OUAydKPYwHZhNxyTLm2SMNMEiREskWK7k+MWvJgwnMzKKy1YZBoICnsP1DQMn9HEZEIsJtPJ1rt54icCz2DuUeXDmMTBHqKJAqbHBNOzgSAovv3SFbrfLu3fu0xstWN8oIRk6UyvAKK9x7eYPqdXq3L93lwQOx/uP0SWPtVqB5VqRtByx3xvSOjtlY2Pj2TzVNI3y8jbT1n0yls141GfWOcB3HbZXq1xZzjDuH9Di3LTo43Hp4YP7nDy+jVzPAit0223SG8sosoQ565DIVpESWU76C7SEhh8JtIYmg5mHqBqoqvqRRucvsll/PmZKksTK6hperc7cXEBrzvLyCoZhcChJn1qm9vQ6pml+oVj4WUmP3zaR8bu4xgV+f/FHTaodx/ncSfibwrKsr3S838XYX+c927b97K8sf7U/t9/Hdx0EAYGg0B+bZLO/lryaTk0CQSUMw1/rrH4Mx8dH2N1d6qU0ST2LZTu0m/d55Hmsra1/oeu/6H3P53MC12EwtohmbYq5JHrCILWwOH14wr27d7l2/foLxwvDkNPTJuawReC5ICnkKsusrKzi+z4AWq7GQWsX24uI44j+aI5py2xsLOOj4nsgKEliFgz7fTqdDsXirzcd5XKFZDIFMVQrKuVSAduPwQ+YTk2sALxuk+WcCJLC3PYh8vjz79xg7slkq6v4okZeqXLQbJNPw9rKOmedKZ32gh+8fIn1cgrLF8iXGgxmLgezkLNpxI8ubVJbLROHAdPBKWgqsh7j6yXuj03SoYsgCshxCieZo1EucnB8SqDVcBwHgFQygewmWauXzi2Sqy0CT+fAUzlyLaazBLl0EtVIMHYECiWP1VoO1SgjeUOESGZlbZ3lcobbT9o8PrEJVJnBzOZhS6Fj5cgJU7bWClRKRXozH2thcnm9zp9+/w1cP+S9+wd4gkamvklcrFMspMl238WSu5Qlj2w2opGTMFSJUy/L2IHh6SP+w3GTSiFJhMJk7qHENkvFFGuNIt3hlAe7u0SlHTKFCv1pSKSmCQgIgwlyYYuYEb4OpbUG++0JEjElQyeXTrFSTGG7HmMvQaWq4Cky5WKWfDZNXo+o5HTunHo8nqQYxxXyqRKhoLIIFR4dDXBD2FwqsrNUYLHIMxfOM9WFbIZkrYgm+pSX0uSWFDKHA/Z6Dp2FzswLmKPiTWNcMY0ZxqiaQCatEsgSTUdk7Fq4scal7TW8WKc5ERgtIrzUKjcvv8TDzhRJ0SiGMlPbZWxLGMU69aTHzoZKfmIRegtiUcG1BU6nMZdWGmQyKdqDGafjkJsvv46cTDMbDUAM8GY6iVKOXEHjyUgEuU5UUol1ETelsLdQWFq6zKVrr52fCjVPkO0e9Xodf7rHak7GnA24P5vjRhLp3BrWbMDx8fGzJrdEIkGlWqPpedw/O6Z1cEIpk6W2eZnpqMfIjNGSKUaDAUaujGW7z+LS48ePsHv7lHMp0imN9gKmoxa/HPQIfYfW0CcggV5o0HL7hD2ZkZVhvz9GTRgUV3aY2QGDiYle3cH3/Wcx4nl8PLa+OGaKOD6IikEYhti2Ta3eoFA8d09MJM4NdZ7Gu08b++N4GgsFKYfp/LqcRJBUAnfCaDRCVVU8z3t2jS869m9yjeflEP/Y1shveuyncfvrwj96Uv2Tn/yEn/zkJx/5LIoifvjDH3Ljxo1v6K4u8I8ViUTiWe0xQFLXzsnxYI5R3UFVz92+Pg7XdTGHLZY/VMIAyKrnrmanwzZevfGlu8NVVcWLYdhtsV1Pkf7wOFcSJQr5LK45xPO8F45/etp8JnknSBlsx2Xc3aUJz4j+07KQg/YJi8WI1lQinShQKpw/RxhGPD485fikh5rxONm7h2mufUS9IJVKUV3dYtjdRVXmz97baXfCaCFid/dJWAkmgw6CmiIMXAplA2doI4igipBO6uBbyOjEIXS6PaZjj8g1MacjXNEgGYTYboCfzVMsNShVU2TzGY7aYyQ1yUpFIRA8ynpEq+9zPFNQJYF0PsvWpeusL1d4eHLK1mu/jh3pVBJ3KjOdO6STCvVyFtlxKaRyTGcymiZxNgVPVPBCqGQSBHKa0LXQVZFKNoskxEyGAwzBIqcHCElIigv6fZtINjBSMYKcpDt2iGKB5bJBqZhFVWQ81yJyxhzsD5lFSX51z2Wlmqc7GJMWPfREjKQL3KyJCPhMBjaRqlIohXQXHrdW0vztwwHdtsVaQeaDd22aJ3WKOQ3FG3Hy+A7JYp18aYnBxKEVTBkPhhRzBmLss3AFMimDJc0mkBLIooCeELm1brCwff7uyYLBPESRBTbXDBQdVCHguDdhMPFouzKxsUFFM9g9m+F5IRMnppxJ4cUx036TdFKlkIIFMHVCRD9E0wQCVBolg94sYOhYtO0I4pCVgspy1eBJx8OdtNGBtSysV3VMT2BsJdDjkJWSTmuR4ri/QGOBomcw52M6M8gXUxx2bfpji2RpDUMTMM/uMbVivFBgZ6XCad9CCASSSQlzYXPv3Q+o1KYIkkaz1WFpNcHa+gYnzSainKBYX8a0Ftw9nVCvFHnlO7eolAsctYZopU2uXbuOqqrP4sFao4AYX+Wdv92lnrAwNJGJ5RInCshCwMGDD+i3zxBjj6SRoVRdIltZYWVlFcNI49sLrqwWGE9nTOdz+qdtMikNlyRqtsLCiTGqO7iuS/dkn41KGiu1ynjUBSD2HE4Pd0nla+xsXqZeNXDGadoDDy+hY5Sz9KQcc8dHTdTomjJG9VyZ5Ivii8TM52PZb6OSoarqs4brp/EVwLIdAkGi0+ngzfsQeCCrGMXGR+LUb3sN5C8nY3iBPxz8oyfVP/7xj/nxj3/8kc9msxk/+9nPzpuvDONrue7XNe7XOfbXMe5TAqnr+h/Uff82Y1+5cpVDVaXTa8J4CrJGbuX6J8o4nh87DEPk2KecL6Kqv56WqmjQGQ+RJOkL3cuL3rdhGBj5OgeP3+JSRUZFwbQcBmOTen0VO45fOL7jODiTDpuN82NM0wnIGBpJJeLJ2T4rK6tkMhmCICChqsgy6KpCNl9i0mtyctpme6XE/nGXg4NdyvkyV1/aJF/QaXZ36akqyyurhGFIIpF44XszSVNNjoiLsF0VkcSYvVaT/tihkfJR5SSVnMG0K+DaMwQBhMihdTZi0HxANpXj5WqeuW5zugBR9JgaWdKFOsVihyBwOTzt8XC/yVajgCinac5NRpbAbDZn5OiUa2vkG8uoepLdsylunGV1be3Zu1YkKJbKHD/5gNngDHPUJhP1KehpUhmJjOLgmQ62miYKZCwvRvFCAmtCShaRCHnw6DFCYLNiBIRzkBUDXQ9oHxwyjgu8/M++j6LC4ekASU1hpGKs6ZDWyRPmgxa6O0QmZrVUYjSecG+vw7DfYStrYdQgnxSoqSq94RxpYRHZMorfYzHReXMxIeHNWE2IfHfJwHanTPf3aIuF8wZLZ0o8A1n3qcgC7xyNabUGvLzhk9QU5uMeRrzHoj9ASNaYBwHpeMzhkUktrxOaMyZWFj0hsL5U5PRoymTcZG46JJUMy7pCrp5gpq5AscT91hNCa4rkCajBgHl/RHGpRLpQYMG54cp8bqLGIPkC/faYXnfBaBIyGnnokoBrx2SSJSRvBIsOZyOHpCoQajlm8wjPVCmWsjx4fMzuNMnMk1nKK9R02D84plBdYWVljWIhiy/N2NKrlHSfN9t7HHWGpOSYo+MRnm1Sy1dYamwy82OEsx7X1l/l1ks32dvb48lRkwd7TYoJj1tX1tnY2ODh48f88pddWp0hoNCbR1x9+Y2PNPE+Hw90tc77v9AIBB9kmZAIw0ij+Cbt/phrNVippDHtAXGoEAycZ3NrcFqg1TpD8fp873KW2VTg8OiYk9Mz3OQyN1/7PoIg8OTOr+gdvEfSKZIv10lly/Sn8PDJPt3TI7ZVA80fEbkar9/c5K0HOslcAQKHSytpMpWV89KwVOoLk8bn480XjZlfFJ8WKw3DYFxfZ9C6/5GG68F4jhMkMWZH7FSzGKnMh3Xb53Hq+Troz4vDn3WNYuP6J1xm/xjXyG9y7Ol0+pWP+Tz+0ZPqC1zgd40vo436RY1YviwuXb7C8ZMtHrSGZMYhSCrZ8ibZTJqTifjC8T9eHx4GAb1eF2v4Ucm7MAxxuo+4XMtipApMZ3Pevu3wQddkdzCgeXTERqPGzq03WF/fQJIkgiDkF+/+gv7ZHmIUgaxSrK+zsblF8OF7A9i79zYbxSqLeYJx/4CskSCflLl/aPKOveDytZvntd1yigcHJ6TyawwWbU6fHDAYzblRLCKIEel0iptLyzzp+aSSKZavfZfT3oy7p++xVEqSK69SX87TGjq8+qd/xvrGJv/wN/+NdL/P+tY2R6c9zk6PyaVEZoHBL9/6BS/degWAo7MhCWxaY4f7Hxyi2C0ur5YplJcQbJ9Hp0PO5jKjkU0gp7hViSglAjxBJiN77LbG9Mc222WBbFqj7EcUyxLFUgFDdPi7xyYno4Br166SEZdoKMeoQZ+91pi99gGK4BDEKrGcIJ0AIZOgM4+IEhlcYhaBx3TgUdN9/CDAi2JkCYqaStsK8fw5b+yk6VkKYSwQC5BQJQ66M8TUJiM/4uVMTEVzSRg5jpsO0dIyDi436ykGcZ/jM4GH3ZB6LUSVRHI6tIcm+8OQJ2ONnVf+nEBQuHM6pn0yJR2LrK9skM+nedg0cUfHmIrC5pVb2I7D7u4e4+YZW0slVtY3MVSPxXwKaQhI8HikcDyYM7V8RjOH7kJEMSrUlvNcKTgEwYSfvXvMdDYlp8h0FzK5WOLOqYsVyZixRtlY4mAY4SVK/F/+1ctc36gwHE85aLaZuTKP90/YUF+ldvnb5F2XR2//NyaOwFlneG4rHtjc2imzk0sSmy7HrTarhSzOtAPCTW7evEEinecf3nnA66+/ytpyg+bJMVmm/IvvX6Y5FagurzNbBEiS9Iw8Os65uYsXC5gLC0VR2FhdIS1OSCagqMssHJe5AwkpZr2RZaVWZjo3aU0s8tUaZ70mK6traNkq9z74OW9sp8kZKVRZwvEFjJUccXqZMIoIBrtcquvk/CJZ1Wc6OkbMndevy2LES1e3+JM3rhBGId3+AV5uheVamZWr33rmhPjbZl9/l3rSL5IR1YrbpEctVipfvsH8867x+2I6c4GvFxek+gIX+JrwmziW/SZGLF8GqVSKG699n/HRbYo5jWI+hx8Enzn+x4l+r9fFHTXJqsEzybvm4fu0xzZ/cmv12WJULhX4zmvXyZxZzF0B13GpVlJ0Wi2CSOTKzgaD0ZhwtEdjp0gmk8eyHVpH7zOfz7l2/QbZbPY8o/AhqU8lNX51csa93V3s+ZSTgUdh41ssK1XuHgyJknXSOzU0MeC9X024s2+jeQHp3AJfSvHKlVXURIrxXhc/I7K0tMz/8f/6f+ev//tf0Tu+y6S3h33o01i/zq2XX2U8GpDWwDdUvGmXir9PriihGgX0Qo577/4nzo52KS9t8viwyaS1y2tXGrhXbnL40GS5VmBtuQ6KTqFik+06PDzug6RSyky5vKzz8GDGvf0u7cEYy43ZCxXGM8hqAqI75WB/Rhx4JJI5Jq6Mi04j4yDYBqcnA4xMgVGvSWdmk5RiyjmPl6sK7aGJM+yTzIKhZVCTEUNzwF89XpBWQ1xNRFVgbxKDoJBPuKTUmKycYuKHJGWZjZLK426fuRvhiUliKcXJ0EcLRBLJHD+81uCvfnGHd+51ycs2ViiRzyTZKKlEgkh/LDPoODwaBaj11/gn3/tnIIqcvPdTRDXJaj2P5UX0jgaUy1XWliv89b0xJ+/+RwqFIknZxx6bLGZgGjozMcE0DMg0oO2lyTSukQhGNK0xC3+BlM6QalxmswA1zSQrZfjVvQNs1+dq2SCVSrNUSrPwRZq9Ge0hPGy7DBcCP3jFQIocxpMJy40KuazBXttiIlbZuv4alUqFx48espiPeWUjhb5+ldPTJnf32jw4c+m7fa7sZCiUyvzgWok7h4c8vH+fGzdvktQ0klJEUtPPSzpGHRpFAz2hMbSnVEtFSvnwhQo33U6PScfipSsbVCoVZqOQJ0c9OlOf0J5QLReJ/ICFaRJGBZKaBuEURZYgOCfm9cYSB/k6U8/DPjt3Hcw0LtHI5Hj70RnmfMFrOwUK+SyBa51LWmoCh90WqCsEsUQ+X8BI/Vqb/kGzCaXrL9Se/23xm7o8fhmlpBcReMdx2BueYKQ+qoX9RRrMv+g1Lso+/jhwQaovcIHfE3yV2Q3P8z7hmvZ0nGGvyfBs/rnjP0/0Xc9jOuiQVj4qeee6HgcHe6jK5ke+a6SSjHu76KpETgvA6hBbMfdOHnPSvIIi+DQqOeqVErYXMZ2MmHeecPrwEc60S6a8Qr5QxIvOs3Wj8YSkaNEoZRgKNusxKOKY8SLgje9879mx850PbpPNpLl+9TKZMIOqpRi7Eg+aJm644GzkUMs47D94h/LSNv/iX/4rptMf8V/+l/8fQe8BYuzx/rtv0+l2KGVzFIxlju6/yc2KhigrTEOZQiLBUnJBe34CbKL7HSRlTn/mcOvV15gtXN473uVkesL61iWiRI5e/z5JRUQTFkSCyj88mjEbT+nOPcJYoJZyOR7Y7NoB39+UWakVECKRs+EMWdRojV2iu4ekxTmD8YSjwwHBok/ozgl8n82KQknxySbSkI7JbGm8exozcVXkXAEDg795+4A4dGnUJbJJAdmNqBk2e70AWZpTqWeYeAkGpsXYdumYCteXYgxhRGSHiMk6a2sr9IYzRHvIRi2PGoikRQFtOuON7SxdL8V4ZmFOXOahRrmxwb/5v/2f6AyPEYSYje0d7vQOcIkYzMdUq6v8xfevM5gssKb77KwJjCYeN2oCdipNfzSjM95FSxfR69fJAPV6g3/6v/vnGEmNJ7t73HnnH6hn4LQ7JaVkaE8C3usOGPcXLNyAXx76GOksoiJQSIYYukaloJFJeZTVkMg18RdDTKa0gFqljOeOkPMG2WwWx3EYtg/YaaTZqb/BfDpmrZFnc7nE45MBxVKJnaUMAyumOxgRODPOnryLHNvYQoZQTBCEAZ7vQ+iT1LLMFw5IKlpCRRAE6A65e+cDgtEBWyslivkiqyWVt24/5p3HPeJA5bRpYZoxpYRLFLkkpQAjn2Q2OKOla2QyaZBU/CB8droVxzGN1S2qmZBUUiMIAo5P2zx8/JjWwEIUZTrZq2QzBo2lZVpAv33Cg70jlq+tEAo63W6Hh08U1teWcdyAVm/C5mblGyWJn6aUVKnWvnD98/MEPo7jzz0pfFHT5W9yjQv8ceCCVF/gAr8n+CqyG2EYArD/8H1Ugk/I8v2m4z8l+k8OH9I5m7BUy1OrLj+TvCvkssQRDCdTDCP17HvD8YT5bEqxUYCkSEkKWK5lWJ7Z/M29t5mHaf6n//U/QRRF7t/7gFn7EVnZBjPk4F6MJLxJqrhMJCZoHY3Jqh4GJpHdZzkjcfPyFSJB5d3Dd+msrXPt+g0cx+Hg4fts5HxeqW0z7cSIxIwtn0dHA9KGzvbaMi9/6xr5gvZMNxbgSiOJUr1C5MwYDnt0zs4wCt/m0vYaT+6+Rc8MiP0ZT5qH/Or9u1xaytGcWxSv/IjldMzqUpGT8YzWwT0SCRlXSbPXXeAbAV5o4nkuP3r9KtNek7Ui/Pz2Eb6z4HIpwnUlljI6Nxoh7x7OcbyYw2HEIlZIp5KMFjFu95AEAYtwzEZRor6jkxczzE2R+/s9qkmPcvL/z96fxliWpne96G/Nw157nnfMQ0aOVZU191Ru3Ng+4GMbA7r3CkugK1kCpAZZCIQlJITgg4XMBz6A7wGhc3x1dBFG9zBcGozBQ7d7rrlyzow5YkfEnudhzWvdD9FVXdVd1a6x7W7H70tmrp37iXet2PtZz3rf//t/JO7t1JGFkIwpkVRkxm6A4wskMiWQTihaMWslnbEDgSMy9WMOhwJ9N+YaU7IZiUhQ+NbuAN1KsZTwubU/oN9rYaYGPNxvMA9igqlAIFj4Qor53OfOiYtAxPJalpQOAyGJJxfoqyWsRILwaBdDFXnmU5/DGTYJertU8yGltEJ3ZPN7L+0zHI1QIovj/UNyukdRtcnLU+aCyrXVZdqcWxjajoeh6dy7/5D7b3yL0dkDxIHCwBb5wpOLfOlrTcbDAZW0iFUwaUwibEHhdlflckXHFnwsHZ55fIOEGHC3Be1ODznU8WKd4cxhpzHn8a0lNE3j6OiIRv2QRd3F0NJMvBnLtQKyKLBXb2PIMrmMyb2DI45nA65uLmMmNSR/QqM1INJXaA/OHR68SOC01WPkxKSL62iaSrvTZ+/4FGf8BssZOIvHzGbn3QQ/+/Q1HjVcYjVJ4MyYNB6REmWGLgyHfWJdIHZchnZEqbyMlFmi1Z+/Y/UpXVrm9OQ2atjkcG+befcQVZVYXXoMRYzo1R9woMhsrq+wtLxCuzcgYZxrWX/i6UtMB00e7Z9x1HXRrBxSbpPLV65+oLz0cfNePtD1D+CU9Hbez0rhhymqL/jTx0VRfcEFHyMfR+OWjzK7cXZ6AsBCWqSSf/emAx8kviRJLC4to2o6juOxsGCxtlh66/UgDDFyC3QGNsnE6K2b0cFJF1k1EYM5T1xZJnTnjMd9olgmoSsMHR3NsDg6PGTWfMhW1SQhaew1mmizPWq1GomkR2FpmRdf6/L6wxOWUx5bFYPywgLFUon53COljjjYvk2hWMJxHOz+GVs38hRySeqWzvFJA3vU5MF+k6ef/wxPf+oFlpZX3lrKfVjfQxBjLlez5LKreJ7HZDJB0QwCAk7PWsyGLXIpHysp01NnTKYORwcdpuL5g0X9YJvAnHM0iEmnU2wWl0hvXGf3uMPQ9ehOBW5cu8HW5jJ3ZiO297eJ7QFaNCOfkPEUAUWWyCYkHlvQmLghXQfyeZOFhEJnb0oyFZNJ+JSUiHwi4Gg05Okn8gR+gmbPZu5P8OZTun0fQTbQFINyxkDSFArLVW7f2yOhRnx6w2CxpuH6AYM2dG2NcilPobaErtl0B11k3cQNZQTH52uPRsxmDr7nYgwb1HJDVrMpEHJUixl6ozknkxQkSrQnfTKjLhnVo1TRGYYxZ2dN/v1/+M8I8ybVpEjk2cw9md7QY9ofcmu/j/RwSkYNeHozS053qWgTsnoEUcDNlQTbTZvt3T3qoc9z12F4tsP/61/dYdHyeKImk1xc4uiowWGzzbfuHGHIDqurWRw5yazfZbkUEMgJXtqdk0qVcUYutVqW5x+7TKfX5WDQJZQM7h71ORv18AWT/MImjeNtvv3NbyC6HdpHjzihz6y7wlLBQlczJJMpXClNYwypjs/UCchXL+NKOiftgJVkispyFl/NoxSWORu2OJtozAcDNtZXWaiW6Q9GvHjrEXLgcKkg8PhGCdcLqHf2OQCWF2vE/gjf83jm8cu8PO9Q1kU+8/gC/YnH/umQo6bPGyddbj5/nYVsnkSySi5feGulam19g68cHnB2/w280RmXF7LkckUEJWISJiB2qR/tUy4WmM7nHB7V2drapOPDaXfK5UqeYj7Ng/oUwcizsvTYH0tXwDdzK/CePtA77XOnpA/DhQ76go+Di6L6ggs+Bv4ktKV1HIfpoAlAKmWhqspHajrwvefkODZ3HvWwdJl0KvnWTM7Vm88jfW9jhuUncNjBGTwgnVhAzabx8wW6gyFb2hLaRGPnqE08OSGli0iSwlF7RNJSeWIpwSSMiEOPlGXy5I0tjk9bSLrB1tVLaKrKQb1N/fiYw5MOffeAYadNrlSh3+9CbCGJEqtLC6TzFQ4O6yy0Qn7qp36G1dVFRqMxk/kcQ9Xw7QmIMVbifEe+qqrk83lKC2v8zv/8A+LAxpJ9jht9RjOftaKOkIjYPp2x+h2r7el8RqNfZzKPycgF9icRjz3xFNnFLbxWC2V0gq6m+NqLt5j0W5zunzAeT/A8G8c1uLFkkEho3N9vc9wNiYmQMgHicI498UgldIqVBXQrg2KPSWoiznyG45hoikSxkOHwxGXsBaRTJqGksdeaE8gzrFQWf9zFnk5ZqGRYXspg++AFHroi0elKGIbOz37+KZKmzje+8W1uXq6yebRLszclY0oYcpJmT6AxcBFjB1lOEsRw5dImRsLia3ea9AZj2o0G5alNrEb0nSFDZ8J8oCEEAZWcgo7K8c4dLFPh5uUVxgOdh/t1/MhmYWkLkxF7+w9IGTJbCxp3j8eMnQhJFOkP56SK5534LlUMHt2+TSJhEfp5AllmFohYusrvffsuhipzc8WgnIV8XkGSTcazOdPBKf/pKyM2a0nmswn//esi+VyKvgNZ0efhwRkdW+Vzz61imR7f/K//b2bDBssLVQqGybw/5s4r3+QkX0Z45hqNYUCisEY2k8JMG6QzEy6tVpm4Apc3Nrh2eZO5G7JdH77VXXDt6pM0Gmc4wxb3j4a4oYiHymNbZZzhGUEYkMuczxIf9Fr0EiZ+LKLKEaaRIPBsFqsm1Xwaw5JATrCwvMwrJxLVzZvE7piTR6/w8OXfw7Ay1JbO28wnNXjumSdpHlvcvJTHMg1Gkyn1foic2WD/wSGvPWqCooFRQlNl8GE8c/jKq8eIskpr6JNfymMmT7n7yuCHlt++Nw9NnYBBt8m1hXda4loJE4Lue/YB+KO40EFf8HFwUVRfcMHHwJ+EtrTnbh3fv0T59s02H+Qm8b3nVEzJ3N0+4Bt3TlmqFt8xkyNJ0rvejO4e3uas3WOhnGfuuEzmIapVZDFfJVaSPKwfYUYRs8gjmypTlYYUswkah20cP0l8WMce9xH9KY/2BxQsgUImxbh3DM6Q9UxATTJImUNEMUEc+bx2b4/PPK1h6jqO6zNzwcwtMhyN+G///R6z3gkEDoN5yExf4dlnnqHbH5IwDXRNBWJ6vT5uEJOSQ9ZXCpy1RE7qR1hKTBwGIEjI4nmRF/ouCV1B1yCfgLu7bXp3TljPipR06IVThr0G894pgjfkSkXmlRmc9ALEeMZ9KSKh2uw0HbJGxJWSjJiRsf2Q/cYIW63x7NbjyJLA4Z06aq/HYDznte0Gq7UC5axBe1bhtUaLUJDJJ1VGNriBz+OFFGNPJJG0yLguB2dD9FSW/iiCaUC95xNJAqc7d8lmkmSzOSZzl9loQFqJCewAX/R4/nKR1tBnZvvUikmaU59Op8ljlcfJpnRGM5eCpbFZTZ07kMxnfOvRkBQzUrKCJWfxgpAo7GElkphKjLl2FQpXGZzsMJ47hFaJsdgiJQ45G3q0Bj5JTSFhpVBGDlsLqfMPpiiSz6UxFbi102Ahr7FUTrFSMmkMDmh1hzQ7Dp+5kiefTdMezGi1O1RSMlZS5ckVkel8zFe//RKZTJ6f/skX0DSRh9vbLFUssoZAQRujlSeE6ZCZ36SWW8TLb3JwesbX7jZ50NO4/tjjPPPpJxiNp/zOH36FbqPOYb2BmatwXckiCN/1Jn57d8FcLofrXmI6nbKzs40/eQ27O2EwntA5G7O1toCVMJmM+uzVkxRWnsAZtZjbcywrydSbMJrMmYcKjg+SphMTIk/rJNWQrDnAyit0J0OYNxlMOgzGM648c4XpoIXnhWCCqetI8QjDSrFy5Sk2rj2Npml8+b//R8adYzAv8+kbK4Rumj988Q6+J/OFZ9bJZzM/1Pz2vXmoNxjyzcMG9x7qPPPkdwvrc/3zR9cwX+igL/goXBTVF1zwEfmT0pb23K1DAcJ3HP8wtnzvek65DE9c3eS477N09env2/3/vTejK1ev0Wyc8er+t2kMXMxEElEv4ksWucoqi0vL2KMW3rBOUrapFQ1290e8eneHo/aEQPPpn+1TqxT43FNbtAYz7jy4heNHfPpygdncRcEnm01hxAOaXXjsxnUePriPdTAgZagMXYGjfszEifn//J//B0WxQ62YJJ9JEngh7XaT/9ob8+RaimJSYea4TGczuq0GxVwVXc9jGkM+s7pKb+yS0AcspA3Gs5B95/wBZjq3UcoJHDdmTppsViSYn/DUzUvkMyaRP6N+Usd35qznZY7aGkGkUCuYSIJHZ+DQjQOmTsxSwSAQJeZzCIC5B4nqCs8//zyvv3ELPwRH0lhcXmEWOry2N2QeiNSWL+PKeTTNJPKnLKaGpBIWTz1xmbkvM5rdRRFHDIcTKrrBVh58KWBWBEeC+ukxYVDGShcYTwMmvkQYehCE6ImItC5waLuEMchizNz2OTrt4sknHPYiJEkjbSWpFNPU8gYPH00w5BErmQg9LfDs9QX2ui7bR3368gy/NeXqU8+yWVK4Ozil3x+zsJTHrW6g2nVm8wk930MaycRRSBCr+JGAAjizEa4f05qEaIaJqUskVY+57bFeTpDQRLqDIUf1NvZ4xFGjw0ljzEatRKlcZu7MGUyG558fSabeGYOoUS6VeP7aAncPu+TyFr7soWgueDZJYcoQhb/wk08SqscE+cdYuvYkgSJx//iYUsbgc9eeJq85KLLIw8NX+W8zm6W1y1jlS2ia9n3SsPrxEUFvl6QWkTEgdHzu7x7QPDtF1ROc+Xm+8As/x5Wr1zjY12gfvI5ppfFkme3mmP5sipyskjaKWGaPhXKaebdOrZIhnbRIDacc9OcslBeon5wxdxzS+Qr1zj4AYRQwnPvMBjbFlZuUSucSKkEQUEUBAEEASQQVh2qxQi6T/sgrYB+Ed8tD1XKRrY017m8fslArf7fIb42wCpc+UnOYCy74qFwU1Rdc8BH5Xj/nN/mwM8QfFl3XsbIV2sNDxuMpppJ837Z833vDf69zMg0dVXDf12yOJEn8mS/8FI9qC3RO90CKUPXUece35RXqx0cMBwP8YQ9biBiOJ+zsdRm1jqlWqiQYkMfhZPcUY8ngf/nz/yvJVJo/+Oo3OR4E+KM5T11dZmu1xtR2OL53TKm6RHn1Bm4yz1AM6c5mhNh8ak3h3lgiJ6lE8x6TyOHK5SuksxGvPHqdxNU/SxR6+P0DbDtCVkw+d73Cg6MOe52I2Hex3YBIcfF8BWSFSur85u2EMvNA5GzkMYpjErqAKcUoUkyvP2FlZYXhaMLteov+RGQ6mWOpES9csxiObW6fzGmNY0xd52SqI5sWuWwOJ1QxCymqCwucNjsk5JC1zUvc3TlGiCGSJCaSzdgJWK1e55nNJN3D2xwfdBgOu8TelJ39BEuXHmMW6mhxAlEYkk3EWJrIoSuwWNARVZO7TZdEWmKhFNCPIkKjjBDMiL0xQzdi92yME8bMQgM/kiikdbpxxNlMYenKE/RPd1Edn50u9OY2vXFE2jIYOz7ZdJqNlRL5vE9z4BBJMuWlS+iGTjisU85nmM09RH9E5Aw46ztM5gFKooCoC9zfPaI/nqGlB2wCtWQM44Cdg1NcTOQoiT32qPds+lORpzaL/JcXXV7c6bGYUzhpj4jCiK1EwEmzz7WVDJV0hZnfIZnUcdyARGWNshShawpC7BAHCrYzQ8IlaRqUUxKNky5vPBTJ5kssPX6Vq09+Ctu2Me++wU989jpLtQKddht73KeU9vjW7j4Lj/0kuVye1197FWfUQhXPXSbkRJ69B69TVXrgzfi//us3Keg2S/kEPTvADpMs1KoYhoEkSaytb+C6LjsnPbq9AbVSmUJlAcNKc3zSwjAtLNNg/h13EQDL1KEzwjJNDCvNfr3DpZUynr/MreNjur0BauES11duvqUbdl2XaimHKZp0h1DvTIkCj0S2Sjmdx3E9NO38c//DyG/vlYc2Nzc57DhsN1yswXf1z6Vy5RMZxwUXvF8uiuoLLviIfNKNWz4IC4tL7B8ccjqK6Yz+6M0276UFr9YW3vWchuMJUzc4twF7H0iSxLXrN3A3L71DGrK7s83s7B6ffWyR03aCXrvB6ckxg8DAqD5BLE2Y2wNS5SxWVqFrNzk82CefyyFLAoPhkLKhoysSsiwhCBKqqnK4t0167Tmee+GnsW2bu699i5I6pqjC4MRA9U0UYuZOxIP9U2IpwVpBQormJNNZriw+SafX48XXH9A52yevqdR9iQc9idOBh++qDOIEkTsjkRHJAqHvMRj7rFYq1Mcxc0TmwZzbDw+IBQlNaYI7otkbE4YxS5kIz3M4bEwpmjEJNUARJYI4QhehVMjy/BOr7JxNsCMbTytzPIhpHnSoFYt8/s8+QblcYDq16Q/HfP3VbUI1zXjcxx622aokuD2zGLoi44M229NT1jevMunn+PqjY0zTx01L5NMm1ZyBj8aDUZKdvsBufY84BjdWiQIbXfBRJJX7TZuVSh4xVeFWS6A/dtFzIoY0pLTsMokMFkSQZZnu2KU99PEckUgwsRI6M9tDkWKmM49+IHNZTTHtt0irAnoyT2QptAYd0qkk3ZlAe9TH7R6AK7FSOu/imTPPP3PBrEs5EdFKp3hlewjugFqlwrUrj7Hp9mh1h2RMhc1Fi2pWJyU59Kceo1lASvVJyh6OH+MEEf48oigFOL1jAn/Oa/dbDO3zDZbEEruNKR4B46BPve8zC8ZYyyms0RzLsnAcBxWPYq6MJErk8nls00RLFdh3u8ymM1762u/idR5RyGVIL6xQzKh87aXf5/Rwlxd++gbHocHD0AZ/zshR8AIdI5OglLU43X9ALl+g3+vijFpUS1n27TnHcx09cPCPe6iqij2b8Gj3kJQknc9IKxbT+bltXxAG1JbWsPI1joctiBPo5etsbpW4fOUqpmm+9X2N4xjbi8nlLBj6JItL5JIanv8GTiB8Rx51zg8jv71XbrUdl9ryJpcee5Y4jt/KK9Pp9BMbywUXvB8uiuoLLviIfJKNWz6om8ibHq0bV2++r25n76UFb8A7zknXVLZ3Djg4riMZeXbuvPSBNirFcfyOcxq1j6llDXRdZWWxykKlhO0F1E9epZY1SJkJJhOJcrVIKWNxa7/N7sPbpA2VcqlEKupRScLBcZ3WcMp2fUJ/NGM4cVCOBvioPPPcpxBiD0MRKeQynA1cCuGA6wsaA3w6sy53jo9IJJLI5h6Trk5YyZGRHUopBRkPNZ4RD1vMtQq6VaCwXEY3FNqHd9GVcwvBtCFiyhGGKpI0VQ7HKhk1wXgypWL6lC2Ng2EPOZqzlo25WhQRo5g4injQiigkBNY2BI76HpKmETlDXnzYxItU9EyVfG2JVGGB3Qe36Pc6uJ7LS6/fYdip02scMJo4vPaSRWQPuLFs4RTLFJZvUEqEzKdjzkYtOmLMcDhESyQxrQSbZZFgBKPJnFA3iQWZWi5BIp1CjBwMOaI3Cqn3I0Rg4sKtpsiWEhGEAaJqcHNrgXyuTK4o87olc+vunHTaopIx6bZ1IilES2QYxDluHY5ptAccj0Ssxas8POzhTbs8cf0SmfwCa0GDnGZwUq+jx2ekmJOvyIhEfPrJSxw3+kzD889ZZy6AE/OTn34K2TyGeYd8UqFaStNpTGkNbMopgXI+Q7M3xHZgMIfWbMZmKWA+8nh0NufRmci19QwbBZnBbMZMVtg5sjnoRji9NksZkVls0ujN2W8doFhFHru2SWmthMeMs9MTCsUSsWzS7PRJaAL2uAdhwEl3wsFxQG31iJw44soTVSRRpt49phNHFHSPgRwxnXuMhj02yzoFQ6I7nJGyLGJsHtx+EdUqcnJ6SkYLWCgmyTPBKHi8eG+PZLbEn3nheZbKOR49esTe9gMGZgZ8GIxmdCcBJCq0Bza52vXzTXjupXfdhPf2h+tB95SdOycULz1P92SfTuSyczYhnSkwm9sIgvB9+e3teSqO44/sgPQmf1RuTaVSHyn+BRd83Hyoorper3N4eMh8PqdYLHL9+kfv+HbBBT/KfNx2TB/VTURVVdLp9Hu+7jgOo9GIzskul6vf1SsmYp2MNePsdI8nnvs8Z985p7Pje9jjPsvLSzxxdR3bcd/XRqV3O49ISXJ6uENozCH0EbUkU18kI01ZyYssp2OWyhbfuj/mtUcNHlsrEiEz6jSQyzWeePwJjvYeMhMnDIKQ//T7B5STAdWsQdpMUCo7bH/133J2esrGahV7HhFGAkkryfDUYTSaU0lrRDEkJZfYi4jmPYxY5f5Lt1FNi3SuxGA0ZtDpEEcyqqqwtH6JhDRBEuHJ6xtIksIUKBTKSOGIR2djYnOB7ixmPadCIBIj0hw4NPo2mWSCQirCcccktQA/inADgWJSIhYEJCkmiGXmts/d5oSFSzf5yc/+BG88ajJpHyBPDxmcnfBGa8h4OGCpkOALawbzQOek1aE9mFA2JSqWTX045WgCz22mGI5bHJ/MmXTPcG2bg7bKaC5QEcD2Yx612tTdNNcurZCWszRPjlgpCNSSBroqIEsCqhzhByPSosgk0nliJcWwfpf72wc8NhlRMxza2QKPJhnaXkzHLxLHadJiAldI8/phh/YQHn/+J/n5/+XzDMYzvvmtl5BVHc/3OT3apuM0mHVPMJQEa0WZp2oFHuyd0upOSZhJUmaSGbC8tEiKJIIsk9AlUlaeh4dNGpPbGFaaUEmjC1Pawzm66FKoJKnlfL62PeXbO2PaA5HjiUa1UuDaWoX6IGLqiQSiysLl5xmyz6PTCaeDIflUAcw5JSPGSiTwpCwLG4+hGxaN0z2Wllcord/kD1/6D1zOeWwu5Zl4HvtnfeJQwxADkoZCJplAUc5vt68fHiH4HlYyxaN6j3ajRT6aUzJFDEGk5UwZnp4wGipUVkIkyUeQXca+yRNX1xFLRfrNI+ywg2tPUdUy166d+0bf3m3ijhI4TRvTylArVklUV9/KQ+8l23r08AGj41usLxXRqxZB/3y/wEl7SD5jks4WMYobHPTid+S3peUVdne2GbWPCZw5jU4PQRColnJIqvmxOIRcWN1d8KPE+y6qj46O+Ff/6l/x7/7dv6Ner79j5klVVV544QX++l//6/zlv/yX33dHoz9uHMf52JeL5vP5xxrvhxH7kxyzbdtv/SnLH+/CyJ+0a12p1sjlC7juueZYVdW3zv+Dxj46OsRu7VAtJDGNNHPboVG/x8M/ornBH3W9wzDk5KTOtHfGbDqkXT9C8mqUbY/pZEwwG+B7LsdtF8nIceXqVRJWktF4yqX1JXLZNKEgoxoyhWzESeOIXL7wfZuDXNfF8zxazSbB4PAd5/HyGy9y59495GUTy1AYdoectgYsF00S+WWO+w28oEshpfLawZSj8YhEOkffTmAoFRKei2maTEY2em6RpUWPjZJGUg1ZWapSKxdZPuvx7b1bjMpl5CjBnYMzqtUap+6YU7dLfygz8SSShfNlckmMSVom3lSlOQ0wCim0eMo0VEhkS8imRSFdYdpvUG+cEOVMHM+nCjxxfRNLcvjmwwGRUaBg92nYCt5gQN8QaY1CpmGKjZpAwlQY9LuYekQcw1QOuD8VSRoakRWTSqVYWFnHHmfYvP4Mjx7tsHv7FpY4RZMjEqqCEEWUszo5SyZbWiQpGuQyCXb2G6QSBpVcEkkNGExDujOFcZziU49XCaYpdg7r+LFBx4k5nfkkDBlbCTEllaPGmMeXTfK5LMmUwNgJMBMqkqSykSjg2lMiQUSwR/T7MhEKvivQPj0gClyuLecIzTJqpsbCVkzz6CGjQZf79SGziYOiSHTPjnj529+iVq2QyWb55qv32ailMXWVeO6xsVRkGBic9GykhE6hZoBqomWX6E5CRGAwi+nNbDrjAe3eFKMgky2UEWUDQTWII4NQLBHLU7LpNLWswnZ9gpwYkk5LRBosFrJsLmZZKCU5GivoqSyKEGJmzjtzXr20zvVKSDZp0ugMSWkBe50IKVFgNhkxHfbf+o5cvf4Yew/vsD055WQ7JJITZNY/w6dFF0IfR5DoTn1MQ6I5mNJsNnBsG0HSEJNluo5KOpXnzA6Y+6DrsKgXGMQCS4s1+v0hshCiyBKRZDCc2Ch6Ek2WGPS6DMZVFFVlcWWDYZyisnqDZDJJHMc/MA+9mQ/29/d49OpXqCYCbrX3GHQa1CplBkAkaVy+dpMYOBnGLGxcf0fc3d2dt/JUx3PIRE1UWcCSTdJJ811z1h93bv2wDIdDfN/H87yPdTPkn6Z75J+E2I7jfGKx4X0W1b/yK7/Cb/7mb/IzP/Mz/JN/8k947rnnWFhYwDAM+v0+d+/e5Wtf+xr/8B/+Q/7xP/7H/OZv/ibPPvvsJzrw98tv/MZv8Bu/8RvvOBZFEZ///Oe5cePGe7zrggs+HKqqfuSE67ou094ZpbSOLItATDqdBOCkd97c4MP8DNd1eXD/Pl7/gPWlIlo2x6R+l51bX+e+YJDVIqrVEoVchpETEw6PqNcT5HJ5EppE6m0dE+F80yLdIa7rvjWeN4v25vEO42GPYa/DtfUKopgEYgxDQ7C7pKQpvu0RhBFHJzbNVofO/pxMZQ1RiEirAjlLpZLV8NUkcqKMgoceDVlIlbhcXebkTOVbbzyiPxyxVipRKeeplPIossRyJctec4YYOBRWHuN4R2LntE5aTKDnzu39VGlEzYrozpMEgspxa4TrmQiKRL01IKN6rC3kcYKQrt3DDW0eHY4Z9jrErkYomlSBQFDpzmwUM4WsRByfHnF9wWC5rJDSBbKaR7ProIkS6+UMd2cj+raPoSpEgCJKLJcs3Ehm4sTMfBFZTzDsHCOMjliwpqj+hOE8YL8VYDsuhUSMawcMhhOccI4RDtEkj15vyMwOSKZTjMc+d/ebJKw0GS1iaEsUEiqpjIWlxpw1fWIRUpZIexLhTduEQYVMysJMwMgeIxCjKzG2H+L6HkUTctkQVZwhKxrH3RlTxUGKfYyERS6Z4f7xXWzX5+ZqioaokdJA9eckDJmu3WXQkrDnU+azMY2TJkmlhu3HxH2XWqFATVO4fzLm/mlEPmVx0BiQsFXars7qBry606Wsz0nrMoVEzGlngqrqpJMJYtVgp+egY6ObEftduHsyIgoCysUka5UUJ505DgonPY/JbIiVU1kvmyiyhE3MfDLgyprFxvoS88kEUZgSRSEhMjnFIWdEiKL61nfkBHji+hVq2cdxPI+kZaIoCg/u3SHwfYxkkd6wQ6vdZdJvkpBjktkkcQyKMEM3M6jJBPPAxnanBLMJkSSTSOZZWVrEcRy8SROSSXaPGjjzKWeNBrJhkSKN47ooqsrcdlA1i3w+TxzHeJ73R+aEk5M649MHFM2QrAnjeQdZGpDUz4tq0Rtx0mhyaX0VukPiOCaZTL4jTy0Wkui6xmTQoVaw0DWZwXSIWalSLXy0nPV2Po7c+mF4M6cN2ycQ+rRVDStfY2lp+UdmAvGCHx7vq6hWVZW9vT2KxeL3vVYqlfjCF77AF77wBf7RP/pH/PZv/zZHR0d/YorqL37xi3zxi198x7HxeMyXv/zlc7cEy/pEfu4nFfeTjP1JxA2CAADDMH6kxv3HGdt1XdqnB+hJF0eMQVKwchUKxTLNwRBJkt7zve92vYMgYHdnm9svf53dW19jIRUT9FZJZkvkdJusN+Wke8bW4gLd/hH3ekOuPvEpctkMD8/qJJMpIkEkDn1MS8fSz9NG354RIiFJEoqioGkad+/c5sXf+79QnAaRO2P/oM54x2T02E2WllYIRJ1wXCcjzdHigP2DJok44HreQfV6GLpOJKn4whKRoqHqMbVamYdND3fcYR72GCl9xGKFas6knE3y7TdcBt0z5KJL/2SMkUhh+xGSBJYpUSgUIb5Ku3XG8d0jZOF8c9lgNGYym/LMRg5dC/G8gKksEcg63emcjZJJRp5y66jDysYVmt02qfk+OUuibPqI37m/v3LvkEpSQhMk1FjCigasaRMmw5D7/TmbuZCq6rPbFNAEl62iwqPDIft1l7ErgxsTuwMqOZPBNOal7QEUrnOpopERB5ztP0JnRtaIWZMjZkqEO4+YeRH1oMPIEVnNBOQ0FQSZYNzlxYc+U1+kmk+wVpXIhSc02mdMxzMMOcQRbOpHp5iaSDZpkpd1mt0Rp/s9hgkdtydQ7znnq3mazlF7TiUZk0poeEGMOxgyiWVkR0bzUkiRS9ZMspwoMlZ6PDppsOOmWSzoPLOSonc25mzgIYcyjVab7jymkDKpCi6bmQKNqcBXj/sEwzp5S+Ls1Gc6ypE0ZdrtNkulOWrqvFNeEIf0Jy7ddovFdMxKWiAKRki+SHNq447hytU1FPsU3BGnjR5OEPHEosVp00eQTZZMn+3WiPZsyg1dhaCEpKfxnYhcxmI8aDMZmSyVc4xmLmenJ7hTG2uhSOzbdGYzVpa3zr8jjR6CIJIwZJZq33Wp0I0ER70zltYzTPour7/yKs6ki2rlWV1aBFlmMJowGo8YJguoSoruZIg3mpBLSiQzJpI/opJP8a0Ht2gMHB7bmLOUVvGyMHZtnOEJ7dYKmizSHUxIly7T73Xfl2zMcRycYZNLS3kO97rM+vtcqRkMJJHxrAMqZAyRcN7HsQvImkEul3tLPhKGIXLsk02mebR7wOn+XVJVHVeS6TsKqxubFLMWzUHvXXPWj0re3t3ZJujusJpPYhoWcehRb+3QVtWPxaP74h75w409Go0+9phv530V1f/sn/2z9x3wZ3/2Zz/0YC644AJoNs6YDxqk88nvNE1xaHX22R1NwFj8wLvtDw/2efjy7zI5vk9BGrCQUOgdvMr2Pfjc88+gJJa5vf8ynVGAoplEgUmpkOOk0ebo4Q6+O2Y4tuk0HG5eXUMtpBmOJrx46xGRbKE9eJm6rKGny3z1d79E0d7huWtlnLmAZXu47oTOyR6PX6rx6u177Gw/RBYjltJVwsDj+esVojBgd2eKLnosL+Z5/WSIX36crac20WSBk+ZrLCwkuVwtMuq32HnpVTzBYB6qEM44OhxzOT3FVKA9cOj6CeLCNQYHddqdEfL0iLzk4OeTqPEAORiiijAZz2kPNT53c4PZeMCdwxETrcgsChgECR4d7hKiQjCjebqHEc+oForkcmns6Pz38HD/jFdsj5/59DXMRJ5yLk0m4eH5Af2pzXEUERGz35cYI3A6DNg5gc4oZqEgEkYxvYmPG9ro6RK5cgE1ncSKWxSkCV5OwIgjagmfeSgzcASOuxGtUYgXzZFlmZ12TNqMKSQjpqLGyHVJKDGlRIQzmxF4AlIwZzANCJiQkDzCKKCaSWAHHmYcQBTRHAXEU9iTYDiB0djnUkmgkJLJWBKaHDGcxRz1fYbzgHkoIyHwzLUlNpfLHPaniGKEEDnsH03IiSaTZI/DRp/Z3GN1sYCCS1oOUHSBYWBQycjcufs67vCEqSAihDr5pImm+Ly+O+DprSpPPHkDOVmlDXx6q8DDQ5HedMLVBY3lUpLDrkekJtHmEAoitUqeTOBgCiqXayqn3TlzJ+DBictPPV1ms5pAEk54eU/idAxxM+byVoFEMcNCbcr+wxZfe32fTLKBlSkwFMrcPt1hrgzZ7z8inavweDnE0DU00UZMVqi3joHvbqYT1QSJhce5s9elf7bHQWNAzlC4eWmJJ69u4voeB/Uup1ON2sYWkTOgc3SXXELCsR0MfUT76B6+UaEZlwg7U9ZrDhMrQWlxE8YRU1/k3qND5mKO4uJ1wjB8x8bjbn/I/vZLuJ7H9evvXJl9066ukMvTaufZ37vFerGIZmVoH48hC+lMhtl8wl69S2Xrue/zpUfWuP9oj2h6RjmlUkmrhKFHuz+m1+2QyRV/6A5IHydv98lWjfOVOks3gB9uD4ILfnT4wAKeL3zhC/zH//gfyWQy7zg+Ho/5xV/8Rf7gD/7g4xrbBRf8qcNxHJxRi431NUZOh9TMwTJ1VHnGnb1Drn7u6Q+UxB3HoV3fZdA4JK9MMAoy1xZMnILEV18/5Pbde2yulBFEFS+IKVbzSFGCvcMThmePKCdVHlvNE0YxL9/d47XtFkvjgHqjgyYJPHNj4a2W5a/e/RbH26/y535qgULK5HjQ5vJqhV6vy+3TUw6PGyjhCNuLKFgiKj7udIAU59EUGS1dpTkNkXoujX5EbivD40s1Htx+lWwmg66pZDImCU1C9KfMIp3DsyFfuJrizjH8z9db1KwQPxKYaSZrZZlp95CkkOGZS3l293dZ2UziiVWO9nfRgg5LyzUOBz7LA/Bcg3HkIyoa5dIG1bJGu92haoEUeWhCSDqrs1rQsCOfTL5AE7iylKE9mFO0RKa+j2mlmQsO2VTMYk6nlozwfJ+5H6NlVFbSIYaa4+hsjBC7PL0sYUc61XIB3crTo8S9+hhBmKLIExRJRotjElrMfiPA9mEeiGx3Q5xGSEIHL4BiKqCSEUgaEqWkRC0pIApweNLg6EwgZ4QoUYyhpHH9gMU0rKR9HjYjDnuwUbGwTA1PzlCuLtLqj/kPf3CPZUFjo2gxnru8fjon8FyCEJaKOu2BT+g7IIiYCZPx2Zh232E+nRA7NoOhh1dO4bk2uhQxngf0J3MqhTwLtSq3GvDS3SNM55TPbOjUijlO2mMa/Rm9kY6sWvz0T32BrY1VRq5IuwHFtMGpHhNmCwiSR6M3Yzya4IUj2uOQeVxmPJ1TSOmkkhax72F7M2aehKRbJFJpevOQiVjk6pOPcWlzg3mc5MrVG7S7PdR4zpW1CkvVIuNhj5POiPvNGC2ZY6lkUcubBPGU7bsvMxxdRc4sc/nKVc5Ok+/cTLf0OIptM5NmbFWuk407bJVEgnjGSavH5kqVTGpGNiXRcQ1e+/J/Q5t3cXSBVLaAlbR4sN/gYDLlxk/835HcHglzTqzKKLrJcq2MlUqzfdxl4/rTpFIp7r36ddbKaVLJBIfHp4x6TYLRgNtfP0MALl+5+taM9dvt6rY2VjjaX+L+2QghhlaQIwvMPDibqjxx8+b3bQzUdR09Xebura/z/GYSW62w1zwkIQsU8nkO97cxRgHFzWf/RBWeH8RR6e0+2V703eM/7B4EF/zo8IGL6q985SvvqtVyHIevfe1rH8ugLrjg7XxQW7kfZd5M4tevbHLaSHLQa0FnhB+rSFaFSrX2geLNZjPu37vN7r3XeKoaYkchX+uEXFsrktND7h/vks8kefzGFll5Tqu+y2lQJvBPSERdSpVFWsfbWLkKl9eX2GvZpGpblGOByxX9HR0kyxmdaD6kN0jijnsMOw1yaR0/1mgMx7z8oM6VpRyFpWv0WsfcPezRHsy5vdOkXK1xZWuT00HIWaOFH0JSnPLKt77KK7cfsra6TujZ/OG3H5FWfB5fL/La/oBWp8PjqwV+rpJi7xDSlo7v+7x65FDvO/zkcysc1Rt0Oj7OsE0xEzLodJBkiZHrc/NKlUddkVM7ie9rhJka40CjpBfZ7Q4QjRzXr+aIEZk/alFLwGJe5Y39EWuXrtEEJC2BacQMZiGuDHIyz2Fnl/WsTClnoUs+GgE3FiRerbd40AtJ6BKGMGds+5x2BEJJ55nNmHq/wfHYAZJEsYKhxJimhj0SudsUieMIXYEbFZnFjEhjHKHIOhsVjfHcozcXUUSXUJApZU0WSynSxpCHDZfuJGCn5fOZsoqmashhn/Ykopw1ac48sqZA31fx0ekcDZj5EktLy6QLIm3bw53PsWcuNSti5oWoYoySzOP5Dvf2Gpx2xkxCk8F4joxLLqXRGdj89qtzvAA2SzL+1KE/EyhVLdKpBFlb4fDwmEQsEAoqmUKBhaUVtuYef/jIZTjzECUZVVFQwnP96jSQOOv0UWSVlx+1yMgTDN0kkSky6YzpDo6RQgdtOUezrWD7Gr24RHWtRtRuISgWfVfAWqphmTLtZoux1+ZWIoE7G1ApphnM03RHQ4a9Kd3eiPbZlOcvF6kYHldrGiESt3dbfPtlm5/6vz2LaZrnlnXLK29Z1sVxzK2XvspSJUcqodA6yCOIE9KqQLPdJmHodCcBM9cj63VYKRq8sPUMU8ej0+3jSybpao6EqvL4zadoHT2iVhDJZlJoqooXiYxGE6xUgXQ6fb4B6zsF4OHxKbPOPmsFC61S5vZem+HRGxy8TbLwdru6pXKaravXaezfQYhNHn/6BvUpCMkaNx97nGvX333/UbW2wH62ysjzkASRASUOOkPkuMNx16F2JU9uLSQMww/sAPJx5/0P46j09gePN2eq4Y+nB8EFPxq876L69u3bb/39/v37NJvNt/4dhiG/8zu/w8LCwsc7ugv+VPNRbeV+FHkziduOy+b6Cu5CFcf1mNs2ykQhkUj80UHeRrNxxvBsm7I65rn1HAlD4/Z+n1cendEb2LTnGopV5MnHLlM/OaN1us/rhycUDZ/PP7nK1cvLzGYOd179Kp6cYR6o+J5H5E64ufrOG+1CrYofS9x7sM9nb5RI6CKxN2c0nYFRZGNjk6trGXx5gKkJWH6TqRtyNhHQUj5qb8o0TFAf+CTyKwiyQbt/hjsfUzB9PnPzKq/ci7n1+us0+w4tR8GOdFzfZTUjoldV9GSGznBONe3Rau6xuy2xf1QnbLpk0hahL5FiQDKVYDhK0xq6tLo2idDASiTIyCEuEtl8hZFTYjqYcud4SqGQIVe7wtHJbUK/TRBL9McuFCCZX6TeP+Lhfp3p9AGjqYttTxhlQjZKFo6Wo2NHGHJAGAQ0pwJXFJcrxYjGVKJoQb1v85U7bZ7azOHVT5AyV1CTec5sj6kQcjgYErgh18pgBzLppE6Ih6EExIpK3hAZz0UyWkwYCTTskNY0JiF1Scox1ZTEwNGIZZdKVicMPFCyxM6UhYJBcy4jqgmO2xGeHJBRZizXFiiXiuRUn9HZA0JZQlJ1BNFm5EQ0HXji8VXcUOD12w8I6y0KpRKG6DGa+8iqiiarfHN3iKWJGJpEApVEOsFsPuPhmc/IEwiDGWMXQi9gPnOx5x6DqcOkN6bjZrizc0qxkAP53JO4MZHpeQkKhsb2WUzJMkmFKrHjUh+EhCGo8Yj1YpnhJKA1EalceoalcpqTEfjWGslShiXVZ6mU4PBE4tFRh+37d5n4Is9eX2Uj7eLNoWR4bNSSDPq3eHzZxEqoHLbG5NMp0ikLaSyTy31XR/12V6zzB2QP08igKiLFcg2cHiNnxmFziKv7yEaelNlltVZgemaRzyS5lrfoDrMctV1kK8t2v8/J3h2mwz7dwwZbG2tsbm4yGs9odCdkls4tbeP4vFtjtz9k1GuyVrDIZSxGkymZTJZsrcjp90gW3m5XFwY6E30DQQAtPs8zuaXrXL5y9T3zi2ma1JY3KKdCEqaOkW9idw6IooDqmsmly+u0Ww85kKT31B9/b/H8SeX99/Lk/0G2oG9/8ChkI0xDp2/PPpYeBBf8ePK+i+qbN28iCAKCIPCFL3zh+143DIN/8S/+xcc6uAv+dPNhkuCPOu/W7CAMQ9oDm3Rt/QNLP0adY1arWaZ+isHMJZ/SubqcZDD3ORVMlraeIllc5tHpHOQSyzcW2O6+iKE4zCZTvvLNV+kPRiQYMxFyJEpbrOYlXnrlgPv3JZ5++sm3fp4XhCTyCxyP9pAftpBCm+FoRs9VKS9XkRSdg9M+gijy8194mvFoTO5wn9f3JuxPYt44m2GkDZ547s/yE5/7NLbjYqgyl0oyp60hk/mMx7eWeXD/Pt+4tc/SYo1W64zfPWjRX9WQQo9cpkM6lWatZHFyt8HOgznjmcfhYIggaxwnVbaW80ReRBRFHLVGaIJIVppxqWQyciLGzoxR/Q38MMKLQMquoaZNaMzYHwjsnPaZOBELo2Oe+wU4PD5EGG4T42N4Uywd9gdTJmOJ5GoKM5UkDkMSpsbx8ATTGbCck5FiAcONSJkqlRDGgU8US9h+jEbIcB6zVlzgyZUyoprm6y+9hjSSCYIIQYqRBBFD1fCQqY8imqOQKBLIZwzWSgKjqc3/PHFImhqHvQBZEtE1HTeSEYhYK+U460g86Ir0QovZJCaUZC6XVZbSMghTXj5s0SdkPaPgRxKCICNIAlfWTCQRDo/3mYUKfUfAt32qFbiymCArqgwnU8xkkv/Hp3L05yG6ZlAs56huPM6w0+TF7TaKkSb0VNKayZWsR7/XOpf5SAFZxSW3tkF/GvGV144oVRZATdEYunz2mRskEgm+MhqytiiR0yP2z/rkzJi5E/DSwymH7bvnLbeTOXzfRUoucu2zl7HUOd6oQTmj0Wl36Q2GVEoFwhjuHAzw3BmFcoquM2B1KUezPyOR0LGUiLWlCt1pTG5hFS3vs+/OkCTpXQtBPV0mFCTmtkM2lSVdqGF3HGRNo7hYYGVjk5PWmFQmy8pilQf3Mtw+aHI9CnHsOadHx9w6tfEFg6x0k0996ioPd3Tubx9y2HEoLaxjlS+9Jct4S47x4FsI8y5XKjVGkymt3hSruE4uk+a0/07JgvSdYvfNGfYnvjPz2ul06L76KkvLKz+wkH0zX7XO7lGK4/MumYbCyJGpVVaploto6uhd9cfvVTyHYYjTevix5v23a6PfvroGf7Q2+s0Hj5PGEXSHyJpx4ZN9wXvyvovqg4MD4jhmfX2dl1566R1OIKqqUiqVfmxnDy/44fN+kuCPK++n2cH7WRp1XRffmbKxXGZsPcnewT3GzhRdFpjGFp6q8eknn+Spp5/CcT10TeXbr94iI8947sYq0+4RCb9PFI5Ip5KIgU+332J3O8YQXL76ta/iRQI3b1zBdlwOTrqUqstYORHB7yHgIUQeqqGc284FaTQUsqqDqWmo+SyOv0HpyhJWMsMr945IJk3+7HNXUFUFBFAlWLu0TmO8xxv7Aw4O6uwenVFWxywaFmbaYxDYtPs+kaBg6Q6DSGK3Z2MJczayOmFWoaQnef1wyJdvjziZmayUVTKZNE6kkDci7uycEarJ826NYh151mOtWuTWYEy3OafTs8gJI/6fP/8M7e6Q29t17MgFQI1dbqzInDaHlAoyhioReA7NoctZs402A19Q2W10OWkNiX0Hz9Nw/JiMFnDWjxgHMu1JyM6LQ0a+ztMViUBQ2e5E3GucoUgpAmuV7FIaJRixXIgxJQ97OmKv5eHLCSqVDKJqMLdtNGGOHcT05w6CFHG5qpPS4WgYsdN0cF2Hs9MRQRTTt0HL5rGSSdJMmc+mRJk0USxwo6byxm6DI0+iM4tIJJLoSsylikp76JBT5nT6HgVN4/H1BOM4ZDgXKJsRUhAShA66bHC5YjCTy0wji+YohtQWtizw+LVN+oMxfvsucjKke3iGEPUJUNEzS1y6vISaqnFw2mXa9cnVYHWpyv/67DKt/oC7L0dsViwMw+TwtMXNBRFNUlhJR+TyJnYkECk+o/YJ/a0X+PM/+3Pcu3uH/f1dJv0T9GjG0vIGhWIRZzbgzqNDbt2fsJK/hue6OJ7KaB6SLdY4bo2wsmP8SGHueJy0JhjZZdLpNIcH+zQevUg6IVMrFRElkXprl5mnc3TWx3fnZFJZhqMi23uHSFaFnpsgu7KG2K6fH5MkHh2OuLd7yLA/AEHGj2UureXp1x/RzaR45skbLNTKbDdcKitbqKpKEATEcXw+CdE/Yzj12Ll/wKjXZOPSFoXKOrWFRUbj6XtKFr63KcwHcV14M19tHzygcdRjdaFAobzA2srieaz30B+/26TJ7sHrNAY2Lzyx/IGL3x/E27XRb+f9aKMlSWJxaRlFPX+9UqlczFBf8J6876L6X//rf80v/uIvEkXRH/2fL7jgI/J+kuCP60Pc984evb1w/iBLo5qmoegWzkzgsStbtAol2u0G3ckU15IolldIJPPM5jZWwqTbH3JSP2F5eZGVxTIPJx0sxSWcDtltTJHSZTarMgl5xNZzl/j6G7C/t0O9O6dcW0bLrpNP1fnsxnUK2STjuU3KNGh0B3x12+XP/uxfotftcPsb/53be20ymSyp2ha6laM/HJHJlRDEmN5gSLVcRFUUAkReu7fPbO4wmbv0WgdslHWu1NYI3DmSHRAFeUQC3EhBTaY4aIw4qLd5fFHHNL7TSMR3KKZ0FFVgsZDms09dIhQ0TEXG8WzqXRtZjKjvP2LZGGEaKlWrgLyZ5OU9mwd72/zFz22iWUU2S+ssLi5x1Bzz5u4SOxBJqFAwQ6TY4VpFpDeR2W1HiMMhk8DAEKaUMzrzWYAqwdyLaY8j8paIHYATiYSixHI5yXIljSQLCN6Uo+aYup0gWbtCoQi1dI2s5iOFM7qzQxQrwA4MlleWEIm5dzbltDdiOhqQSjg8u2Hyma0MZ30H8djl5Y6N40UoGZ2VaoZw5DCedDkYjklliyRSGVwhYiUTsJQ3yWo23f4cL4qw9IhSWuP2bpejnkvKkDHlkIwwZSmbo++HHPc97CBAiOG4P+d0LHJlo8CzT17HiTSmcpl0dRNHsPj0C88iCvB7vy1y/2Sb7hRymkFtYREjmWLvja9jldbpjwOkVJVc7RJmwsINfFIJi0w2z1GjhWVOMRSBrB7R6NvUshprtQTHfZ+jucjmlU3k2OHs7AwALxQYj/vUFi0816bbPMYb98gmRHbaMXdO5thDh/4splpbojiIebjdZewdECKT6qsYuVWuPP08g8GA/9//999i+XXSusw9WaO0tMXlzXV2T1uMiTg+3CGOwMgtsPXpX2RhcYlE4rzRzO//7hnt/QfcXMuzkrvBf/0ff0DozFleW2OxnGdtIUdz0Ofh/XvUFhZJJy0Gd44I779BQpM403SG85CsNKGSNojLFsNGkpPTQyTVIJWv0h+MOOtOPxHJwpv5qlgqQwwrVY1q+buTbt+rP3Zdl+l0Sud0l8uVd06alCZT9vd3UZX1d/yMj7ox8O3a6DeL9Hcb2/fy9nwbuA7IKr7n/lhLEC/4aLzvorrRaPBzP/dzSJLEz//8z/MX/sJf4Kd+6qcuntgu+ER4P0nQ9/0/xhF+8rxbS+EPIonRdZ3S4iV2Wofs1rusLeRImAb3DtoUsyWuf+rPIUnSWzPiUycgVVzi8lKKRmsXU5HQpCR2JDIYTTHUGYaSRBYiJrMZ6+ubzEOZu/stysUK7riD4/mM5jHZdIJiJs3ccXC9mFKpjGEYXL/xGIIgMDx6g2Qpx3gy5cH2q+wdneLHEgkrSe/QZ3Nzk+tXNjluzzh5tM2VrXXkyCZTg17XJpIrWDKUUgqyZjB0oNUNaDoJbDwSps7WgoUvQUIBXQpI6zK6HLNz0uXmlUXyCzXub+/T73eIfYf63jYBAl/4VA43FNk/OKLnqhQSaURvhGllqS0u43gewaTDpbUF7gGamUaJzjANgSjwSagxhhjw9IqKJya53xGZzm2yaZmrm2UiZ4I7b5PUIgYzmbkTcNwDSU+yUlBRlSkHzSk5I+RSWSF/pUp2oNCZBLy+N6T6qXVOZi69vkNvVgZZ5WQwxvJSLCyu8MRiguO9Bzy8/SILZgJV1WiOwTAtVio622OJzVqe9aU88+mMJWmAnwjZ70t8+kaF6Tzk4d4+T3+2gKYIhLHE2PZQI5fZYEJ1MYccavSmHqu5mCBO0BzMaHUH5Eo10nrIqOcjSyqOIOLEaTw1T6vTZ+RAlE4g5mJShWV0TSdh6jx24yo7QQ8t6LNes6iVKwy6LdZTU1zvgNLiOr507ufr2VN+67cfsFYySBoKe/WY6XRANS1TH7h4XsxiWaWSEZnMfO40ety++xBBPuDOS18hldDQjCRR5BO5I+zJENXKIkkSNzYXCegy9lSW1h5H9fs0OwOkYMTW1ha+FxDIJlNfRdAquJ7Hv/0//jfc/d/lUzdKLC5UCQWB24ev8D/qDTKWwWM3n6BW2KQ3HNEZ2BjGud8znK84qXiUFlaYBj5e5FDIpLh2o8zAN5nYNq1mEz8U2Tve5slnP0X9tEU4bbJ+dZl0MoljT9m79U3Gmkk9svEGddZzCYb6IqPRmJdffh2jcoXrT33mE5UspNNpFtav0j67h6aO3rIWfFN/LEkSuzvb9BqHzMZD2ic7lNTNc236dwrUXCZNHEFvOMKy3ntj4AfdxPhusrq3j+29Yrw93wpShrnt0P0xlyBe8NF430X1b/7mbxLHMV//+tf50pe+xN/9u3+X09NTfvqnf5pf+IVf4Od+7ucoFAqf5Fgv+FPE+0mCP+5F9ffyYSQxa+sbhGHIw1svsn/3lCgCM3eZ6zefZ/PSFpIkvTUjDrB792WymXO97rcfbFMUuyRMk0xaJKEF9Br7dIcOlaFDlKixVDTYKEhcW83iBwGNHZ/2VEMdxhCOQFKJE1XKuepbN8TLV65yoKq88uo3Cfu7RILIasnk8mKKiRPQnmocHR2y35jgu7B+41OYhkT7+D6GmaJcgu5gSEmdUkzA3PNYyKWYRgrdicfl5RIIErunZ5TKOhsVFWkW0p446GLMdsvnwdBCt4fYQ5tSUqeozqm3Qpq9Gd96GGEmEkSezXK1Qq6S5vZdke37rzMadinnLDqtJraUQt56mky+yOmDN0jh0/VtFCHA9gXSaQNJkLi2scj+aYeFtEjKslhYTPK7r7gMul3GjkDPVolihT9/zUJWVDQF9kctrFyZpWKaQBA4G3lUszqnZzaN7hRZUUnnShSrK+iJLHonZu3SIhlDQXG76ItZpqcmj9dMVEVmEAgkRAFXUHF9mzj0Gbf2OW32qSRj1vIyO3OPvb0D1pcrhAhsn86Z2HOCAJT0AsGoyVG3w4vbXXRFIkJkMAPdFAlEHTeYIgkRSDp2qDKcCriChinFKIpOvW0zi2Q8d4q5kePqzQ3qrYeUsh4TB3rdDoaVZuIp7J+0WEzFxKbKQW9GbjWFJKuMgdmoz6S9z0TOQRxSLORI5kpIokIUt5nPT2kPHKKwy8FAZDyTyEl71KpVZHlCOHVx50m2uw6z7ohCqYzguly7vEExm2EaWQziHHK6yv6+w8HDbR5byXHp8hVkM4vn+wzaZ9x58E16uy/iNPf59JUiW1WTwB+ipEpcW0zy7//wFsuf/QmKuSyWZWJZCZKJ7+qLJUniwf17nOzcZq2sY4syrpKlWKlhJkLm3R4L1RxaPMG2p0Rzl1feuM90Muba1hqppIXne2iKhBZNGDXqrJRMrl0vIMkS+80pZzOLtes3mUbpP1If/XHwg6RrB/t7zM7usZhNIuULCJMjevVHqIrC0ndyVxCGGLkFOgObZOK9C/MPs4nx/cjq3s735tupE5BWFQxVvPCovuA9+UCWeoIg8MILL/DCCy/w67/+6zx48IAvfelL/Jt/82/4G3/jb/D888/zC7/wC/yVv/JXLpxALvjIfNAk+OPO+5HEfC+SJHH5ylVW19YZjUZv/R9d1wmCAEmS3jEjni4tc3Z2j1I2Tb6yiDILEVWDvOAzGbUJBJ+ErrNQLdJsN/FmOZLpVVLJBJqmsrm5ydHRIYmr15AkidncYToLyFVW37E5anFpmc7pLrnlJJ1Wk7WCykLeYDSZQtdlcXmF7aZLuVLi0zeWmUzGuL5DUphwsnOX/YNtnGRIOBvyqBNiJAvI6RqDaUjXTzHVEhzuNnnW9EkrLtO5zcBWWVvM4Y+SnHXGFMyYxbSIN3c5OmozcWJOOyMeHbYop1VurpjUA4cH9SGTqc3RXovB2Q79QoHBxKbppfnU1l+iPZiw3xWIpx5zOySKI3IJmarvoVlwdT3HcXdOrpgmkcuz12lydTFFnA+5d2JzJZUhnbbQdJ3j5hBD8kjJMWLoABGj8ZxZv8czj2/humUkUSQcn6Dk8pRMlcPWEYa2RKhVOTx9xELCxcwtoJWv0XX2sGYdumOPtKVx+3jGZGagFURK8hApMcaQwHYTlNMyYSSyf9ym3rEx8NGlANsPECWfOPKZxTp/uOuzVXDJpQyO+g7WfEo1n+Ssb9A8FTENmeVqgYqUpN4aMRqNuL+zj25lSeSXeGq1SLd+n0E2R6MbcOveq9jjLq8cuSykBVK6z3wyZFZSOO2McUOJdHOPnmdSLLyAGo35yRsFcoUi+40RrnUTMQ75b7/3DaxwwGbeJI7nHDSGPGw4zHyFVStJSi2RS8QE9phxLKIv5ZHmPhlTw1dkEqbB2WBOdWkNy9chkSdbGBMuVqnUspipAqIkIU7P2KzotE9nZNMp5o0JopyhO/FIGRKzUZ9YtPDsMVoyg/K21tpv/6522i2C3i6rJZWNsoYkyuyeDRi7Io8OjtiommQslbPTOc1mB9fVuHV/l43NLTRdpb57H6KAwHcYdlskNAFDscgkTRRFYjK3OR661IoFDjvuD8VT+b2ka+/WRGVpdYPG/h1OjvbJ5gp4fkC9NeLqzeffsYL2boX5h9nE+INkde/GR9FhX/Cnlw/sU/12rl69ytWrV/n7f//v0263+dKXvsR/+S//BYC/9/f+3scywAv+9PJBk+CPO+9HEmPb9ru+V5Ik+r0uj26/hD04/Y6+s8bVm596a8Yavvsgc/fRLRqjkIyxgiwJmFafWFlBEn0KCZlMvki30+a02WNr6Sk07bxwuH5lk6P2jK/driPaA4IwQE0WuVa23+FV67ouqhCTS6cZdpqYukYQhoxHA5qHddL5CeNOwGScx4yGiP4EezKh1d5nNprRHgWokUsYqiiaQNZS8PwBfSfF1lM/wafyZf7V/9ah74ygH+FNJFLpJDlTpe+DoqiMpn0K4gzHcclmUiyrEbHTYd+NCUKfue2wfTpFNQY8sVjElNPcPhzTHNbJWgaba+eza0pk0x64FKwiK0WByB6xnheZejD2JXwxjbWQpR9NqFgVOsdtDNtjOldwZI2rlRxbC0m+vT1mMveQ9ZBKSkYI5rxxf5eBo3BtvUTojNH1BH0bFD/E7Y3I5kpcubROf+qzf/AIy5DwwhAx8LCsJGdHYIUCcztm5AbUO3NyGZ2SPiMrzdEyItNZyK3jGeura1y+sszXH/ZwgiljT6Ix6pLVA8oZg2RKZKNa4O5+Gz+IeG4zwf3jiL3mhJkX050KFMoiN6ppNiuLvLzbo5zo8/zmAmqqQtqUaU/GhM4ILZjx7d/+TWRJ5trmIlM1Q0oXmXWP0bIpBEGk3hwiekNWilmuVRX2BxEeUG/0yS1IGLHG6toWYaJCtrLC11/bplvv4fgBD8YSsylMbIGsFVFI6xSUMb1+wLXlFPvdACOVwDM1xp7PaW+KVY6oLa+TTiXZvnPKYuzw5EaOY6FGJeEz7ezTHbs8uVVhPLORRJlLK1Vefe01dvaPiBbynIQ+ticgpcpEZoVUJs9kOkMRDDRNfeu76jgOp/sPuFzL4GcUBp19ynmLlVKS1x6qnAxjLCNCjM4wdYPS8ia15AI73Zhmd8DQGrO0WMXQkthTj3v+hLOZTLWYYTybo6oSnhtiJpJMZnOQEz9UT+Xvla69WxOVtZVFPD/gjbs7eNuNc7/t7xTPb19Be7fC/P2u1L2bTOTdZHXvdQ7vlm+7/SFTJ0AQhA99fS748eUjFdVvp1Qq8cu//Mv88i//8scV8oILgPefBH/ceT+SmPcqqg8P9jm49WWqQo+1GzmiCLbrx2y/Onvr4QW+67OryCoRGrmsSa5YYdw65ko5x2l7yN5xk8nhmNZIJZkwqFW+uynJdlwk1WQ5KaJEIko4w3OHbH/rP9FuNfkzX/ipt2bHkTX8IABRZu64uJMho9YRuaROpWgxDV2+9sZdTt6o8+yVCpZpcjSe0up79B2Zpy+VWF0sU8qozHwBO9Jov2EjaBksK0HGskiZNgv5JNXNLOmkyddv1xnbIjXZYzCyUfIquqZgyQG3Hx5gyjFXKhoIAjPHR5BiVDFCi0es5ROc9iRKhkoxLZEuKQyA5WKShbyGqWs8db3Go/0TBt4AWYzpTUVGYpEXPv8ku02b/dEpE/LECY2F9QoVz+HRw1eYDDo8qE+QZJnYSDKOk0z6cwJnwtA32KrZ/P5LdWZiBtwR1axBqKSJQx97PiN2Zjx69RXG4zFbZZm1qsXo6JTT1gBZFBBFnZSpU8oFPH85S3884Zu7M0RRRARaY5HLuslk7tHtz3juaoVcrsD27T5bJREvFjkewRNlmS9cs7h9EjC2RS4VJeRYZxqZ9AOJuScwHM+402+wfzJivaCRS+r05iOW1tZYqsj8t1cfYuUqbOU1FE0mpzq0t29xo+jgpyz22ja24xB7c55c0qikZY5PG5zZWQpAtz/iQIgRdYtsXmI89Dk86+NOh6zWciiqTU4R+Mnrae7t9xjPbYppnZVSgu6gxWhqMJxFZAoqy7Uqu0ctrEyS9a2rmIbO7nEH3/cppHXy2TTzyiKjzj5yHDLtN5jMMrQGDloyxxsPDwncOYNxl6igYiVMOmOfvi+SWbrJ9sNtekmFhKEhG2kiWWcSZ5i+8W0au6+R8fOkizXU/Cpnww6e46Ins+hLz+GKZ0SmjJzJsJoroZsmY2FMa7fFzE0RRRDHIIgSaiKLIKpMhSxv7DUoZpMIWgbFsOgMHbKrV941h/6wGmu9WxMVSZKolAqsXU2ycf1p0un097VBf6/C/O282+b1j8Pr+nvzbYTE7sExRwd7mNkqO3de+rHvm3DBB+cDF9V/8S/+xXd9QhMEAV3XuXTpEr/0S7/E1taffBG/4zhMp9OPNeZ8Pv9Y4/0wYn+SY36zyLNtG1n+2J7hgB/Na/1RY5fKFeqex72TY2aTBoKkUVraoFSuMJ1O3/V6u65L43gbS/ZZqlYxEiYA68saD8/mNI53SVhJAFrNJsHgkEu1JBntMfqnuxxs32M0HDOeTDjpu8Sihm5aKAmfnhPQG9nEgsrcdjg6O/ehTigCqu+Sz6UwNI1cd8it/de4XShx6dIlAPRMhbPWDr6UYLfRIejXkRAwcgVaU4FZoLBo+RiZCnKywnA+I5CS5JeX8aRj9KxGJAr0ZzGtoYOvaCwuLhKYC3zz7jZzX6DlZ2AqMgs9hInAiZOlmNGp5i1Shoobj/FnY4aCTMMxWc0KrBdVJNXgtOegjBymTsjIk7lzFqGqGklLJogFRtNzSz1EiYVKkel8zsP6iKRp4qsqxCG6YFBvdYlyLj//i3+J8XjM3de+QVqa4w+PsQenrK2uM+i1UU2RSlph4imM7ASmlSOX7LKzM+W3vtkkY6rUUj6+GOJ7DqFo0RvMMZQBURShBgMu50OKiQgp9FjMK0SByclIZKGaAiS6c+j5CcaxQmz4lDMCSUPF7ykMfYMHewFqIsfqSo1MUkf2L/FEJSaMwXk4YBAalEwdPRsz1pLEok11XaA5FVnKJ9BMg0CYMpl7aEmNmaJw7ywkFuBufUbCSjKeh1TWS5TyGlMnoD+1EUSBEAUlkQN5hJW2aPRtzkKTfl/FD0QiXaIAJFIZQsnBGQ85mTs8PHNAUimkNR6vGThhhoPjJnXbIkiYIMwYxFlGURrB8Nkempy6BqJQJKlWUStFdBcO2h6iItKdK/izHifHNq1mAzOVQ0yv0G412O8JUPdYW7+M6NZpHjzk80+uctav0HR9ht05tlIiNBb5zGOraHJM7M3xnTGnvTNspcKlBYliPkE8yhOHDsPmEYnSGpX1G3T6AzYsmRVB4+TO75KuFSgXc/h+yFF3jpWvsTgL0QtL7HRtQn+IpsrkN59F7PWobN4gcLfoD9r0ejZSpkqldu2t/PAmYRhyclJn2juDwANZxcrXWFpaRhTFTyRv65kK+2c7ZNMBhq4xGvk0uhNS5UuYponv+z9wn0wQBASCQmcwJZ1OvnV8NJoSCCphGJ4X3sDR0SF2a4dqIYlppJnbDo36PR56Hisrq+97zG/m2512g8bpIaHd59LmBisrKziu96Fifi8X98gfbux3k0l+nHzg32A6neY//+f/TCaT4emnnyaOY15//XWGwyE/8zM/w2/91m/xT//pP+X3f//3+exnP/tJjPkD8Ru/8Rv8xm/8xjuORVHE5z//eW7cePfWqxdc8CeVOI7Pu/K1Gsz6ZyiKhOPMkSWRldW1d32P53n47pyUImK8bebH1DUIh+xt32c+m2OqEqcnB2wtF0laZZKWybDfY9o4YWR7TDtz0kbMQlrAlF3UisVRP+bOfo9q8bybW5Soos6PcGd9qiWTZMLE9XwMXSNlzBg0j/FWVlBVlaWlZerA9OyQh406p9sNyjmLxKSHE82QwjFmPMOQVGJRZvPSJilDoTv2OD4KGI1mZCWFuecwmwvY+PR9hel0Qs5SWarlyes+QmDTmTgouoDtBky9GaftAYI342g0pjcaY3sCvu+ylgIvFIndEC+Imdke+70IXYOkGiLjo8ZQMGE+nWEBvVad4/aUOPQQQhcjoUAc4IYCxUya555cZ691xO7ONlevXae2eoXO4S0GQw/VddH0BD1HRVYNJFXBmTkETBCkAFeRsN0ARI+ttRSllMRwJDGcOpwNO9zfk3hiSeP4tInkOTy7lcIHbh+1KCclNsoKE8cnJzvstx2G4xnTmYalCBRKAmEAvWmIJOoEno07j0GU8TyHxVIJe5gFxUGNPTRFpjf2EZEYzDw01SbQI2KS9FyBhJUhmxQZdMaIskEoBkixT+BFSJoOzoTdvk3XUfnLl1doNs6YuiGhPWIynZBSAyQ5ppYWaY08NMFBjCIyehZBFhmgAJBOyFxZKuE7c3aPugzHASsri6xVKvijYypWjJPXCIFCPsVA0RgGBq8c2Ry2RGQrxeaNp3n26ZvEgDhwqKQWWFxaotVsIvo7BAWd5YKKJIo0+mcYuSVWNy7RmGukC0kMw4DIJ51MEgkBS0sF9ESKqQeukKE5DagUk2SyeQLfRxIiypMpr97ZI5csEPo29nzKpNkgacq0hjai8hSDsYcTKSjMGM4EXrl/RDrdp1CskS8tkVZVDk87iEKELoIvgC7GaKkUszjJODBRZR2pUGBpNc/6xsa7yj5OTurYrR0WC0lM49zVotHaoQ4fqUD8Qbz5fW+2T2EwRlZ1rPIllpaW39f7NU3DytdotHYAMA39fNzdCVb50lue3Z7nMe2dsVhIvlV8p9Xzz85Jr4FXraG+Tef+gxBFkZWVVSa5PJPpnKX1CguV85lyTdc+VMwLfrz5wEV1pVLhl37pl/iX//JfIooicF6k/sqv/ArJZJLf+q3f4m/+zb/Jr/7qr/L1r3/9Yx/wB+WLX/wiX/ziF99xbDwe8+Uvfxld1z+Qyf0H4ZOK+0nG/iTiBsG5DZZhGD9S4/6TGnt3Z5uju1+nQo+tJ/KIIhycHnJyf4JhGBSKJeCd11uWZXQjgT93EcI5lmkRhCEHe4e88fpdolCkZnmo+RpFbY5qnzLqJSiVK5StmM2nL3H3cMTYDlhNh+jxmKNmg9Vrz7B+tcLxAJa2nmA46DNsH3Gye4+jSR3x6iqqKuPNz2fQOyMQbYO1K49Tq9XQNI3r12/wuudzaaXHSspFjWYcH5/hdE4wVTDNgEQM85MBJ5MamXSS+tEOjbMGq5qAlFSJ3RlpQcHxIkwNJkevsbG2QEqHKHBQY5/YGfLGvs1ZZ0RShbW8iKVLrOaGzLQ5Lx4EzByXcOwSigqrRZ2k4TMJJzjDiFQ+QUqcczoMmPbhRIG1jQQWUD8+5MXXD3hhy+RGVWatqDJ2Y7594HPctfnMzRWEsc3X/+d/5MH9+yyUUgwGY3YO6uCNSCkBa5UErZMOTr/BkuwRqh6zuUJjMGI69KgWReyhgxcLbKZFYtNBPx3w0m6bsCOiSRFSIJCXQjRZYNcbUNHTJLWYV6ZdAl0mG7nIhkdsw3QukNU6TJyIW6cxuZRBZCfQzWU8McegsU+wIKErcG/7kITkEzkC4/6c+klIKmWRwmbcnjD0Vdw4RxT4ZNQUw6lDhil6OKcgOKRTCq35jKPjLr6gMx5Z7Oxsg6TT6k4YNfcIJ6fMozm+5zJ2Qpy5w5Lus6lKlC2fhycOo3AGwKDXoa/prC7mSeoCtaxFNh1RKefY6Z9w1mjS7MwYTh22lsskknl8MUFrOMda/xzXn/w0lgZH7TGqkSJVvUSpVCaKIoadI1ZzOoFVxRnVKectlrISbxw8QklVeOypT2EYBrsPb3Fy2sCSNLKVRRarJbwgJELgtUctAkeiVsiALIMmY+kyshAhuENmoy5m0OP5rQytrsBZ44wH27cZxHmKC+vk1SmLxRR2t8zJo2P6kyZxGGEmkrh+glDJ0jh4xNX1GrmyxWw84I3dOtrKZ7n82DMA3yeleDuO4+AMm6zXvqtNzqaMc1eLXgtl89L5QwMff96+fv0G/WoN13XJ5XIfWHJy5TvOQc12HQYjkHUyS9ffIcEIwxA59ilm86jqd0scVbRoDnpIkvSBzykMQ5K6RCmXwtI/nphvcnGP/OHGHo1GH3vMt/OBi+r//X//3/nGN77xVkEN509zf/tv/20+85nP8Gu/9mv8rb/1t3jhhRc+1oFecMGfdhzHoV3fxRJtrq+UyWXOE46qyNyvT+mc7pFKZ77vfW/3q3502GZtIaB+1ub+/QcYos9nnn2M5cUcu2cNpo7PRtlg2m+dS0JCH8VQMBIpEmmJpYpJv3WCMGjgjZs0pn2O+zKxkkRzmqj+jKwZsLe9y5e2X8dMWHz+8RqiZJCQDE6PX+OVr8qsb14hXVqmWlvAm3S4sr7Aw/t9ejv3Kegezz6R5/UHh7jjGelSga1agqPhkGZzxKvbXUwzQXse8PCVPtmUyepiHjVd4PGVZYIgIrQHDCYugj2kaIHn+6QVn1RVpZTSuF6TOGyOcTWVpYrJ6aTPbluh74pk/JD2JGAy8+jNRDRNJggFWlPQZJAiGNvgfGel2gtgKSuwWtKRdIPdroOhxJRMn4N2m5dfu8UkTFBvP6Jz7/eYr65y6cZzeOUU2/f3GEpguFNUbB5flpAiGMkyh0M4CSUquSTVooiu+KxXLTZLOuOZx26nhUyAjMyTmwVOej6NnkMyoSAKoIohZyMBUUmg6xKdwZxqUgFLpzcOcAKBZMLEMjyuruRxQolWrCJKCjvNOfM/fI2kLnHYGDOch3hBhKgkmAUKlxZW8XTo93aJYri5rHLvoMFrvR4zJyRTnJNWAqYe9KdzojjifkelmDcxwin//j//T8LEEpcXU5wcnNBoNClZ8LnLCQzJxYg98gmZWZzg4ZlH5M9ZObd25vM3CswGHfYaNvlMGkmMOWgOEZMjAkHjbCzQHIc05kn6rTRX0stkC0tcefoqP/H5n6TX7dA52cVzBQI/4OykTr9xxPH+Do2DWwwW82RzRUJRZR76tFsn3N1rs7BpYGROafsSkiQiySZRHHBv94zdvQMEf85oZrPTk6luPfOd/QUCvu+jigaeH+CiMuo1WVvPkk5a5DIpMimLuVJCyxcxlZDVSpb+YEjZ9ChdW2PYb9MZNtjbU0itPsel1SqKKzP0XYYtG9BQzAy943vsqSGqaTH+AVrfD+Mi9HGiqiqqqn4oDff72byuquqHavTygzjXhKvfaTlvfCwxL/jx5AMX1UEQ8PDhw+/TTD98+JAwDIHzm/jFztgLLvh4cV0X354iERIT4fk+qqJg6jqmMmNoj/E8713f+3a/6kevH9E4qZPPFFkoaKytLKCpKqWUzlFzRnNgE+OSKXsM5x7dwZxUcY3RaMjxaQt13mQhp5HRQ07q2xxtjzg5PuDKaoVqWuTqgokxzHN23Kc37bPXTKDIDro+51PXLhMmYmrJgPbZPbYnE5zZmOPJmG59G12JGPR6VHSTCJFMoYRkJGlPAh4dDTgZxEgCPHMpx0oOhkOFWNJZWt1AkXX6qomZUHi084hxr8HNJQNdCeg3HGoZGTfSkGMX33VQgjHtiYDnaAgxpDJZZr7IxPexlAzdaEooDHl6TUGRJAIfDhtjQjHm8RrkUufXtmDBKCWhSyFDVya2bZYSMaVSwFFPZPfwjKnts1iw+NSlPGO3zhtfrRMJGmUr5N5BnyETPrMckTRVBpOIZMKkjEh/ColQpTMeE+s+pqYwmvt0Rg5OrJBIaMxcF6KYhbzGfnOO2/IZzMA5muOQYHl1hWvrGQ57rxFpAutFA1OxET0TkRhLjymmFOaRQRyArs14uafTm03QVYm1SpZJAHPbZ2Fpk2IyZjgaM3YkioUs02GH2Jvi+x5KGLFoBpTlIbYXYxkwlUQmDlRSIo+vJ/EEg+PTNseNW4izFX7yqTW++ZrNkjYipQiUygl6WowpC5y6OkQxVxez2FqCGAh9HzFyebC3R7FQ4LQ1AlHixuaIxxdFNjJlvr1r8NjqZ9m8dAXSq9x88ilUVeXB/XsEvT0uLxWwEjkePXrE3uEBUzXJcmKKkpihD5vEQZZJqHMSZ1jISFzZ2uDJp7ZoNhq09ndYXL/Kp559jEevf5U7D3fJGbC1kCLUYHMpgxu7fOl/fJnlUpqkKbMfRQwDk1Rli27rFo6bxNACpnOH9thlY/MynUmEZ0+QpQS99ilmZCPLAaKlMbUj8tXSeQOcIOTx65eZOj6u5zMbdkgwJaGEbNYsJEn8gTZzH8VF6MPy9g2RHwc/aPO6pmkfqtHLD0LX9bekJ4YqfiwxL/jx5AMX1X/1r/5VfvmXf5l/8A/+Ac8++yyCIPDSSy/xa7/2a/y1v/bXAPjDP/xDrl+//rEP9oIL/jQjSRKt3pDJ0R7KXCWTTmKl81gJk7kfo6ZT76nre7tf9cHBAd/+ypdYTkUMGvv8zu9/A00zKGYNvJnHXlwmlg3oeTT9HP32hNX4mEZrRL+xx6ViTGlhjXH7BEmCp64ssVdvMW2MUKxFTNnnyRsbyOGE+KxDoz0mZSosVMtsbayy2/IwDYN8GPLlV75Or31KQeggOT22LlVoqAIzp0cpn2FxaZmXb+8wm7fY70bYHiwlQ1arFnkDEpJDHPrsHRyjZ5e5/Nwqg+GYu7vHlIQpZUtGEiClx5hKyOnQxxMkJpMxkedgzyNEIcaxHURkzEQCV45oTEUOejEpS0eWIg7aM+I4YujE2B4spiETn08cTJ2QqS9wPIxZZEJJjxnbAUd9n+5MQZQm6AjMbAlZDLEnYxhNkM0ML3zuWc76t6gfdbgnhagyGJqO54GZMEhZEbFQZHjmM+6HvHESoAo+9Y5DayKQUGMOOvDG0Yx8QuKwF3LSD5n7EAgiC0URURnzxn5Ey8sw86YksxBFcNCLOO46KLLCTsvjyuYyFjHFrEWrP6dUWseUYyRvSEaQECWNQIzoDG3MoIfpi1i6wNaaRXscEUbwxKpF7M/RgghFj4gjAVWI0RUFURXoD4ZculTEmw1ZNHXa8zFelCdrGVwuhyDIpNJpwljCD0L6vYi0LlAr5XgwNlCAh6czlFmfrCoj42HJDrJu8Mq9Y57eyBCg8dhjT2BWllharXA8dKnXjxm1jzh+9AbltErfktE1BTmcsVFLcu+gTaKsUsnqyO4MIRoihPD6G69xZqUpLV3mxBLod5ospE0ib0p1dZEHsknS0slZIqnyKhvlGqmkxX/58uts1zsI7hKWqYKoomaWqK4ssDdq88bRhEIqBEklXTy38RsGAYIY0x+OaDcbrCUn1AoWUdJAkiSieMSj0xArW6I/HGGlMgAMpz0sQ8GV0m/5xQPv2aDko7gIfVDezYVDz1Tet476w/JJ9Dh4UxN+0Gtd9E244D35wEX1P//n/5xyucyv//qv02q1ACiXy/ydv/N3+NVf/VUAfuZnfoY/9+f+3Mc70gsu+FNOs3FGUvWRkga+b6NEMxpHXdqOgVS4wqWFjfcsqt8+UxQGPklhxnohSTtI0D06QAlVBK9EOakyDKYkVp7h2jMvoO/t0j475PDwmMncY+9sxKDnsTDVuLRaYWFhgXw6xVGjjyJ6RP9/9v481rY8revHX2tee573Pnufebjn3PnWXNXVDQ0NCCiCUVHAnz9QQ0jkFzUmJChC0IQY5BskGghG8RvNTwW/+PWrP20RaKYeqrtrvPOZp332PE9rHn5/nL6Xqu7q7uruKnrgvJJKnbtrrc/61L5nPc+znvU8z9se4fkS4CKJASuVPGUpjSqFJHSfw5NTPH2eTrvJ4c5durvbuGgECYipIbNxmyDU6M4EBKDZauNZUyqlHJcvz3F8sAOuzWRqUi5UaA5MOs0z7jUn3PymF9FUjdHMBxSSUQ0Xjc7Mpm+EmMzojkJkTac1hLgsk4wHVBIe6UiE3Y7FcBKysFokKVv0IyKKoDOzxkiE5GMhTxRhtw2mA90ZLAJeKDO2BY4HAgs5jUpBY6dhcDqYMp/RyUR9QkFhajkY0wmXiwJX8jq36zMaA4db169iGyNm3oi9dkg2GRJaPk5ostc0yC1F0SpP0mx1+fhxg4QKspon1DzKGbi8LNEbjrFdn1REoK1I5Mrz5LMJFFFgMmwxs0cMJw47vQmeFEPAo960MZ2QuayG5cuYboAihQhCgOM4XL16DTU0GLcOaY99xpMZB8d7jKYmacVFU6GYjXN5YYHmsI8u2swX4jiOTuOky40Fje4sYL9q052FLBUVdE0hCHx8a8KtpTjaQMJ0xljmlP7IYmZ7VAcemqZg2gFHHRNNlRHvTShf2gBAiybwJgFTOySfmSNfLJNUHV7frmMIi1y9doN8sciD0ymyJNOuHeBOOizOpYiVdeYyGs3OIbuGgea7xKIRPNvAMUxurFc4rvocHh4SjycZT2bYtslWSWFYMwl9j0gixUnzDEFSEMwelYSMrgqkMxkqpQJvPNjD6h7y5GqFZ569RhAGzCZjauMZO6/9PrKi0RyM0KIpnrh8mSAMqbZGFBfPE1HVnU/Rbne4ktERJRgOHXKlMvVWn5P9ExbWQj7e2WV1dZ18Ic9wOGQmS6QrpccB9RcTKPmTEtZ6s8z3I7GWw/p5Q+S1a+/doID3QuPgUdOisnHpQjfhgs/LlxxUS5LET/3UT/FTP/VTjMdjAJLJ5FuOWVp6b59CL7jgTxuPhA+eubHJbKXI9oP73DlrY1gB/VDnW7/5A6yurTOZTN5y3mdnimxfoNNps766zNRs4joWiwtzTMdj7h00WLr8NFublzA1FcuyePDGp1hOuFSHU/zpgLw6Y9ht0xwa/NkPvUCllKc/nJLIlpmNavQHI/xEDHfcQpAiOCGoEZ2IFOC4Do3TBnohgeoOYNYiqQtois/UsDjsjKg1Q/K5LInSVe7vH9G4f8il5RJXN6+gyCHHRzKXlufoGC6HzQmBLzF0o1RHJvHjOiEyJhHiusSlS+v0TJ9s0ma5nGPcMVjJwEzQ6E1mTKUQR9CYWD5z+RjxqMtJ06U9tBnJIicdl5WCRDmTwPZmJKIuoRQSi3gEPiQ/07CU1kUE32McJDkcqQwMA6QEWxtZ8hGfo9qAaATWizq1kUUyEqMck4ipHqfNLsl4kuVyilrdwhZVzEBhZkBrBkrhKs8+9wLVrskLzzyJ71nUD++TUmzubx/gSAkubeTovLbN1BrTGvtIisbm2gI3l1NMJwM0vcAn3jhiOTlGtEMSERlVi1JUDSIqxFWRmShyVO9hBBpjW0RKLZDLF/HMES+/MsKbDVnIiIRZETsK9YHHnWpIYTxFiwzJJuIkIxNa/RkrlQxtPcHBEDoji/pEoTMLeXJVoJjUGI0neIFA3wiZGS62XUMOTDoTGzeQUQIX2/EYuSqRRJZUIkHDNEl5ChqQiUmYEYXK8gYLy0UGU5f1uRjNUUgkGmNubo7eaILheAzGYybjEc9cWyabTmJ0I+iayGI+zk6rhyCDZ5h4KLiugaYliCsBa8sLnHWniIHFjVKESzmfqddl7Cm0eiHNkUEqIpDUBcaGSEyXaJzs8err92nUT7EmQ0JJZTSdsbFUYbfXoXv0EF2PsLiyTtcP2Nl+QG8GK+ubbwloJ5MJk1df5d7JkIktkSuWGE4MGvU68/kcH3r+Kmf1JvtHZxy3Z0xGIctzSa7OFR/f91+s1vdPQljr84m1mE7AWa+BbV96z4PS90Lj4EI34YIvxFc0FPGzg+kLLrjgveFRc1EqmaOQz1KZX2A8mWI7Lqcdh6XllbdtStrZfsjg5Dbri3lymRz1Zpvawz200lVaA5nqcZWVrIAbKsipOW488yLpZJKPfPI+tVqDxvZLVMd10mGTb3viErIwx8n+gD/arvJffuuP+Gvf92eodqfceuIWD3bi3Dt8QMkKmHWmbCwWmRkhXVthOhnTH7lokQGL/g51VeDufoPVSprN+QRJLUarq7DXCanNRC4vppHzlxFnGrdulnEQGRkBcnyO7nRArVmn5DmkkwlCLcGTW1mevJKlsr6GE4hsv2LSHQXIShQEHz8IGHsKU0dB0KIMTINn15KIiCCGbK3kKVsynjJDEXyimkA+n8ILTEQRorqMhM3QCKlkVKaegho9b1g6G4MnRnj/jVWWS1GOjk9Iaw4vXk5ze7fBQcchpXusFSNIepy9TsBxy2Lqx9FTEexJj9WcTG+cIZGOYRpTxkEcN5rjb/zgXyWbTcHd21iTHiIhqj8mICAXFbFDhbtn/vnfXyTBYjREU2Ra9RNeHUk8u5pgYoZkIx6XVirsnY2IJGL0Jy6paIjruHQHNgYe+XyB5kgkiMTIVlZ55bXb+EaPneMGSXFK4EjEo3HSsQSpuMLyYoKZA/W+Q3fk0hx5TEOLkdmh0RiTVl2mjkhEj5PTYrx21ONuI2BrIY3pSvzOnR6qHHK9LDKOCrxy5BHTAlKai4/CRIxQXNnkB7/7ebaP6tw/7pIBqkOBiJTj/ZeXMGZT2u0Bg07IwBJRmgM+8rFPM5maoGU4rXWYBhHSycT5SLbsHKe1HaK6jGsHzMQk7eYAOZ7nsLmNioE3neIJMt12h1IujqTrxHQRdzKBIM2dvSYTR2IlrzEzDO4e94gqCqVkD9EzWEkFuPEoiYTLoHnEgSDSaZ2RDPvkc5vculTB833u79c5deHSjWff4kuvXL3GbPBt+OMatuBQm9o0zgZk8xXmsktk0knmSnlSmRwvP6yhxTJ0mmd86pNTSvPLFHIZ6t3pO6r1fS8DxLdriLQsG98PcEzjQub7gm9I3lFQ/V3f9V38zM/8DC+++OIXPG4ymfArv/IrxOPxzxljd8EFF3z5fHZzkaqq5HNZ+oMRalT7nIyU7/vcv3eXOx//MOW4Rz0cM5vNUS4VyGfT7D64w3Ipjra+zFJGwvYCxqfn5Qm9Tgdj0OTK5S0aasjEaPDEJZFiQiEej6L5ZQ7aDnfu7rKwfpOty1fJZtIsr26gl69jjtpU6zZOF5bny1wpFKkPLfTmKa5tYNo+XiAyns3IJ4rk8zmsUYd0FG6upfjDXRdbznPzhStkkp/CZ4QX+ERVkagu83Cny9jwWF+LYTgh7c6Qp55+kltbS7y8s0cskaCcifDabo1SoYiTFumMPPRokmkQEggiqhYhE5XOVdiUCPePugxNAUKd/nTG6ztDyuUSkqgShB5RVSCuquelEV6ILgXon3mGWcyqBKbK/YMTJDeNJEjcPhhTa3ZRZQk5nqc/G/KH9wc4goUWiROJpCgtbWCQoHF2SphT+Zb3PYWqyOzv7VGOxHn1xOSNN15mpVJg98FdzHGXp7bmuHQ5hS65vOYJ7DSbxCOLxCJREkmBfFRAUSRqPZvWYMjAjBAwpRR1kQQFQZKQQ4+0alFRXPBcmpJE6GkkUmnygkZtJmM3WjTtPpN+A8MKEGWBSTsgFZ+RTMQpJZOUdJWFQobfujdmt94jpigEcoT9XsBsZCPFQ3IpjaVUlJ4Br5/ouDMfV3S5vppnMoBBq0lnJDC1PIoJgRtlgbEZ0Ldd8E2CcZ2X37jH2uoKS+55aUNpcYPBqUW302CpmCQqOezWZuw2ZphuSD51SmV+nrWNCosLK9RqZ+zv73PlymUM2+esZ9GuH1Hte5TWn8aXCuj+hKNuwMP9OroqsJBVkNQ4i0WNQFY56ouMZiKeptKxo8ymExwP8oUKm2GCV+7cZziesJ5XkaI5CrkUuYjHLDCo1es0z2oUEhrzC0vEPvMwdmm5yOm9PpZlvSWo1nWduaUtZnWPYiaCZdk4pkksopEulh+XeMwMA81u8/STN/C9HO16lYf37rCb3eD60y9+1Wt932yzkmKM49Mao16T4XhGx5DJLWwQj8ffkgz4k1J4vOCC94p3FFR///d/P3/lr/wVEokE3/u938szzzxDpVJB13UGgwEPHjzgYx/7GB/+8If5nu/5Hn7hF37hvd73BRd8w/J2juWdNBe9mf29Xaz2Ditpn5vrJWzHo9o5pAGk82Xu3X6dSwtXSZTmqTVPsN2QcrlIvXpAo2uwvnGJzfUlPvqxJLZtU86ksS0TUZYQRJGrVzap7/gYSgkzjHE6FNEKm0i1GtNeg5gu0xtNiBdUbq5sMnp4n2Q5Q98uMeqcktQD5tMKD47q5IpF+iNonHZxwh7bRz5jT+eaIFLv9Dl7cJfve/86c6kUp4KBrkrYUgo31BAEl7U5ndGgxyde2yG0p1xbuUHhm2/xP357QL3VZTQIyGKja1COeXSnJve7EuATVyXmchon7QnxaITyfJ6Sn6HanKBjc3U5x3h4PofWFSM4oc9J1yEaEWiIIVeA+XyUXk/Cm02QQ5246rDvGvRHAZFUnmc38xxWQw6rbRzB4ZtuxJgKGU67NmJuhYm+SCSjkIhFmI27LGUl2jOH5WzAvNolikaCHp7TQwwLDEwwR31ESWIys+ns15lPSeRLMoYvIzgGcS2kalm8vt+nko2SUaHWGlBvTbm8XKCQjWJ2PALfJ6EKtKYTTlsDsgvX0EwfVTW5vlnBsbN8+vW7COaMQPSQQxHbEjkN0zhti9p4gotCNpNCVxXUaIqZ3aOUibFSiqLGUpSzcdYk0KJJ4ukC7YlHxxHYXICeYjKdGeRi8D3XFOKKyO/uOqzGQjIJgakC6ZjIyekZ2y2R91+FRCLBqa/yyv6YO/sdGt0xqVScZxZFDFfm1o0NEoUlAilCJB5leXmJ3YNjppaHaDTJ6xam4qOJDgevf4RSeZ7ly1tc+c5vxXNsPvHJT/OwcUY2IhGTfEpRk3ZfIp6bQ1d04gmJrc11rl1fo5RLc9120SWHduOMq1fWyBQXCIwOnmUw7Doc9jsc1Uz+zIvXWV6qAGA7DpOpieN4b2sDHtU819tVbNOgNtPZzJdYXV74jI2w6bXqFHNJKuXSYzGlSrtLfSKzuLT8VZfOfrPNco+rMGuST8iIMZFMPo/b3ePoUGXj0ua7Iit+wQVfC7yjoPpv/a2/xV//63+d3/zN3+Q3fuM3+Nf/+l8zHA6Bc3nyq1ev8p3f+Z28+uqrbG1tvZf7veCCb1i+mGP57OYiOxCIpJaozC88Pr96egLA0d1PUInb2J6D49hk0+c1jUe9FpFkDj9SpGdHEU2X6jSNJElUpCR7tRF6LM+1yxvousYTTzzBf7n9UbZrFpmcieKqCEEUORojW07xwe/48yQSCXRd52N/9AcYh3/IN28WyD73DDt7h7zyYJv/738z0TDQQ4NC1GUhAbrosFmO8DuvHvEfP+ySVH0GwxHTMM56Oc61ssns7CWKogSlEh/dMclEbVo9gfzCFlK3TWgNKBUypLQk3emYk/0eq4tl5nJp9oZ9IppGIeUzmU4JQ4doxGOlEsfwNXxVYBym6ItRtNAhmlR5+tYm19bm6QwG7J00GI9HdFs2puMyn43SHrsctCXaA0gmZMrJ87cDuqZSycbIJzzSioWoSGzMRfDVJKPxBMG3WC9HSWlpGsMQT0lSyWVx1SJuZpml5XXEwT3+8PYBc7qNZc6ojaCYz5BTTQ52blOrN5G8ES99+mXWChq5mEhMFdmYz3D3zGEQJlGzJTR/hOQJBL5PqPkct6e0Jz4vbmXxRQlFMpnYAaY746xqs16UmM+orIoCh6MB+/t7iARcWixgjX3aY4OELpDQFHKqTzomUu1NuNuwcdQUMwHqA5Ni1Obqeo5IIsuxOEO00miJBPGIzupymUREYfv0AVFNYj2W5NX9Oj1jDK7CeBaixEMmFswMl+HEJp6WkEIH25qSiGk4ik7SPJ+2sl5JUhLL3H9osn3Q4snNIqmYylxK4LQxIh0VGQ/bBILEwckZC8uXqA1chmaVvDxg2q0xnhqsRD3mGaGpMkV9EdmH2Nwa3/+X/gK/+u/+C7LQYzGnkNQFAqDZH3Cvq1JYusHTT9/AsttYto0oSOi6huH4aIksG2tL1Bs6zUaNGQ5qvsRiYpVYWqQ3nDIZj2m3mhycdeiFFbqdNrlc7i3B42fXPKfKm3jdPUbjKfFYlGa7S3845tq1y4+bk1VVJZNMctxsMRqNKBb/uMb6q8Xq2jrbts2Dj/8vVtI+ZpgkXixRKs3hOdbjCSXV05PPaWj8QmMBL7jga5V3XFOtqio/9EM/xA/90A8B56o0pmmSy+VQFOU92Zznefzsz/4s/+E//AeazSblcpkf+ZEf4R/9o3/0FvGZCy74RuDtOuXf7FgeOdpZZZ7dnW2EUYtg0uTh6wNSxSV838fsHAIi81mNyyWNh/unPNg/5frWKpoqMxm1GLk6S5duIGkhrjliuVIASWZsieQXyqSTCUzLJhLReeGZJ/j0yx/gUwd/xIYAq/EkrmexXbeYu/w8CwvnAf1wOORs9xWeXYwzX8qiKArPPnmDZCrF//nh+8iYLMcMFotJ0ukU42nAJ3brxLweyWiS1VKMXlTl3mGNNHOsZYp0wyHDRofKpadJzG1QqCxx5/XXmJdbdEOBjbkIubTCJ+7UuX08phgXmYwUHu7s8mB7n+VSDF3LcVBtURJsFGx2my6LlQzLZR1TKdNzNLr1PeaiAe3OkNOTM6xJl8C1aUx8UlGRJ5ZTxFUPkFnIldlpGshiQCRynmV8veqgmC6FWEg6JtGeiqRSKXLZGFbCJRVX0RD4ps0yrx57eIkca0sVUnPLvHRgECtc55N3XydqmCwuxHA9DVewUAWPemeM5YToigxBgGmYZCMiKj4jWyadLnMlU6Y/stDjKa4sLXLv3jbDWZ/F+RJDb8rM05kICVwlRjwjM/AkzpoDRn2ZQJRoz0JCSSKTjKDbE46HItlkFFURGLZrrOUVSsks9faUk6HDzDLRJZdsUieTibJ3tIsqh6RDBTmQyEZCat0xD04nbC6kyWeT3OmPaQ9NEvmQ+YzLt2zFmc1CxhOF7dDlpDvmYd1mPh6SjAjoqsRJ1+Z43KcrnbGwtM5KIQrAYbXFrDNClgTmKmWeefIqg36fSlagO3ZpVo+Z2S6r8yVGtsC0LRIVoyhakWarStQeE8EirYl4YYgsmUy6da5cvcZZr8Xy6gaL5TyL6RyZqIAm+niOyUG3jhLLUspEaTUbqHoUp+cjYdN3ovSCPO0pdPsT9EgEV0yiFHK8cPObiUR0dl/9CL/7ygmi2UFXJbRojvdvbr4lY/vZPKp5jsfjHB2qf/xA7Suo2RXi8fOHZc/zOD6tUT0+oDVyUGNxxqONr3qmV5IkFhaXGG9cYrOSIBGP4QTnvvvRhJLhcPi2DY3w+ccCXnDB1ypfdqNiKpUilUp98QO/An7+53+eX/3VX+Xf/bt/x7Vr13jllVf4G3/jb5BKpfi7f/fvvqfXvuCCP0k+X6c8/LFjCcMQ27apnVURJ6dslVOPy0AOjl+n1jN46vICjamBrGpIos+NzWXe2O9w0nWYTfvUpyq3nngWr1qlffiHPLFRIJOKc3/nkL0HxyjFqzC/zMe7VV54YotUMsFf+Yvfw7/99ZCHM4N2VcIJksxd/g6+/wfOH7A9z+PO7du0ju9jReIcu0MSmRKFYhE8B9U6Y3V1jYjjUoiB547p9yeE9oQnLy9iKFlmrk29MySjecSDDtYowXwmhT2R6XYPcOQUl6/eRNc0Wt0ZCDpKco7jVpOpaSJrCeREFMOwePXOfUzT5QPfvMX2yRBV19islMlERG4fDQiVBPl8ir4tEfhT4sU0vtFj1NjBd6bIgsCtskazH3D/zGKxXMQNZkwth7gcMp+PclDrE35GWC2wxnQ7A7KiSDQVErgCe92QuVGfnO4zwEKVZLqRBMlEkonk4wYijuvziU+9TFR5g35jF93t8pGhyGo5RxhGKGcT+IKCHhVYXxRoNSy64yH5hEIhGeeoY9PwfNYXCgx9m1ePuhyc1nH6p8QkCzdUyOsi87EIE6HA6tYaZ8c7HB+30FSD734iw2bepz20qY4hpUuEQYAZaPRMhblCAssNsGYTUqUUlOfIuuC5BkrLwJRiRHWFhaxGPjJmNuoSETWOWgbebEJWk9GkOO3GGbePJ5zMkqT7Xcq6gh/oKIpOKqFQWkhy0t3mZOjTnno4bgCCj+mKEAY4ow7N05DrT72ADdy4vModa4RnzyikNTwPDBeqHQtVi9Gu75DO5gnCgG5/iDAc48VXuLffYE2r8b7rWSYTyGsmrzd7yL6IGpzR7eTxxSy1Zgs/CJDUKIY5YuT6DE3Y2FxnK1okni4w657guFPsxCWmMwM7UCjMr3HnxGK7dkAhlyWWX+PSzSdZXlklFovheR6f/sj/g8gUz/OJx1Vc10A0x/Qbx28bPL65FOyzp3Xs7+/Rbu0Rj4xotrv0qg+JyQLP3twik9W/rEzvo+t9PhGpLwdN01D1BIIgoqoqjnX+MPpoQokgCF9U4fEiqL7g64WvaPrHe81LL73E933f9/Hn/tyfA2BlZYX/9J/+E6+88spXeWcXfCPybqt+fSl8Ielgr9bmwf17BOYAezbh5GiX6+tzpJLzSJJEVk0xmc3Y29tHlpbPz0vlqHYPmUvrZFMJYtl5poLJE9efYG19g1mvRnnzCqZvsHd3H2/a4emriwSxNMtrBe7uzPj43RrFbAo3FPmL/+//D7FYnMFgQD6fJ5lM4jgOjuNwcnxEbedTONMB4/4ULZxQH7RxnC2qpydE9Ajf9sJNXr/3gMZ0hhCY7J92UVSVQiHP6VhjYNhIgUMmFlBMQDEhMrOGyFoUb+hQPa5y6eqA8XjAcOgyndgMnCa+53N54yp5R+Ck0afWaTKX9Rn2xpydpZn5cQxfZ2gYhO6MiWEznln0TZf2xOfGlU30+Q0evvy7FBmxmBQwPQENh8tZl0+dhry630ESBKKCwa01jYjoIxHwmYl6RJUQPQG6JhHXAtKKg2DbHEwgNq/CzKJl+rTGDumcxNjx8MUEv/6RuwjjJs/dWKAZ2ijWjP7UZzBWKBR0Gs0WjbGLGisSZcbMEelMfF45sblU1hl7cbKFBUr5FJmxz86RyenZXa6XPERJQQ0CMtKMRt8ikVxlaW0T07ZodUf4U4XqKCSiqQiiSDGrctye0baipHJleobPnapJ30kwqtaRNZu5+SKqEqK4kCnkSKpJtpZynJxW0RUJ1wuwRjO00CaVUGibOo6S4rWDBoOJQUQwOD2RkZ0EG6sr2H5Iz1P49m95hs7Yo366T0qcAiK6LXKpKLMkKPS8Ge2hwGDqES1CLBLl+Sev8N/+d5++GcLhCNuFrC4RDW3GnoZryLQO25QLRbbW5ujOZGq1Uwa2QUQp0LFsnGBCJq7Q9USU0KPXOKYVOoixgDAIuLaSp5hbo9fr83Bnl6im07M8NNvA8aHdafE7rxxTysRYKCa4vFxgavt0xrBy65t4+plncd1zLftHGdt7iTS62KaSEEjqAcbsiFbnjFnUYOvW84+Dxy9UCvYomfVIjGS7XuVke4+VYozy8hqV+YXH2el3mun97Os5nwkNgiD4im3bZ/eDCNK53Hd3MCFVuXbepPkuy4pfcMFXi6/poPoDH/gAv/qrv8ru7i6bm5vcvn2bj33sY/zSL/3S5z3Htu3zAOULMB6PcV2X2Wz2uDb83cIwDODcSL3bvFdrv5d7fjQ3+bPnJ78bvFv79n2feu2M6aAJnguyghrPMzc39yf29+g4Dg4yzd6EZDL++PPxeEqjO6Lo2SyU0vh6FLMn48wG7B+dUSqXAVDUKJKq0+yff8+pdI4RcLdRozeBclwns7DBXLlCt9vFd10K5WUazTqGA3PZEno0Qm0yIRBUti6t8/puk4nlE9Fh3K1hzNIIgsDJ7j267TqWMUHVojQaNXIRl8vXbtGb1kmg4gU+L987ojkKyCxcwVcirG3eYNJvoMkB6bJKrT3koC+xsLRAJD5lrDnMpmPqfowyOTwpoOV6NB0BQ1D433/4MlhTXnjiCRKJCK3aEYNen5EXYTCZkEsnyBUqSHjs90/4/QcjbjxxifJahU8+fA3FsfGkIoVCkajqoLgGnpqjkMswWlwh7eukoj7N+oyZKPGt70uTWvSo9gMULOYyC2xsljltdLlxVaTjJwCI5xcpl3SaE49XewIz0yVVlPBslUlUQY5rzIZTGlMXwymQys0xFRMY1inPXV5lYSFPuz9kqRih4vns9mVSuXnO+iYPjgasKRJqNE55PouWLpOIawTpJPlonK6tsl0d0agPkewuqWyWjVWdTExClCRqg4BgDGejCfduv8bKQoHgyhVwlujXtulIcHUxi+26TEZ9IpkSlzc3sGZDqs0+M7mErcbZsTUEN4NlmBiWRDxXIZtOEssmMJQCXiJGpqjhyElKEQ81zOEYCZRkjrwnUCqYmK6E4UuEqoKlFlhdKTKtGtxvesjpBfJ+yELSI64rzCUlFEWmN3ExJgGxdJHuyGQJuH/QQBYChOQielRlJnkoisN2t0enI5NIXKMc07i0kObWpQqiKNI5bnNlc5PeeMbtlo9hJhi4EYqlCN5QoUOC8UylH2rM57I8/UyRtjlCnAoQyaJEUmxXR2QLEcrZCEpplXIxz2HrNcq5GM/f3CKia5iWjVLv0z47YvSZBrxH93yv16PRbLCVDCgUCsSjERKuw/i0y3G7xXQ6JQxDAKqnJ5idQ+ZycSKRJKZp0Ty9j2maLC4tP14zk8kSiUQxzQnLy3mi0Qi9sfmZ6wo4lkmn0yEe/2Ob8nZ89vV6Q4M2cHiwjyh+5TXN2Vwe01xjp9XCd2bnSpL5NbK5PJZloSYK7NcOmbN8IhH9/P+3NyVSWMM0zXes8Pj16H+/HnzkN9Las9nsXV/zzQjho7v4a5AwDPmH//Af8vM///NIkoTv+/zcz/0c/+Af/IPPe87P/uzP8o//8T/+omv/1b/6V/nBH/zBd3O7F1xwwQUXXHDBBRd8DfMX/sJfYDQavSdaK1/TQfWv//qv8xM/8RP8wi/8AteuXeONN97g7/29v8cv/uIv8sM//MNve847zVR/8pOf5ObNm+96h/SjJ6xoNPqurvterv1e7nkymfDaa6/x1FNPkUgk3tW13419O47DwcPXmU+Jb8kQt3tj2hPYvP7k55X+/nL5fPsOgoDaWZXpoAWeA7KKqCXwpm02F7MoyvmLpepZg0nnFM8PWL50DUEQafamaLkVXNelVm+QiYiEgoieyLK8svo5r1APDvY5fO13yKoWs0GDhOwx9QTEaIl8aYHRdMruUYt0XEbBxwlF2kOHVFxDV3yWshqlUgnXC7h9+w2ur5eY+FFy6STTcY+d/SqH7RmXrj7FXEpCcCdMJ1N8OYFFlK4TJRl2SSoOpmkx6HWIMqXnaFimRTIeYTKZYngCawsVMsUSoedSycc5agyJyj65uMbu8Rmv3N1nNSdSzCZQFZlUXGPmCJx2LYRogUR+Ad8c4roW19YXWF+ZJ6rr7B3XuX/7VeYXFuj1hwzrO+R0D0X00KWQgeHTMyVmQoJKIctoamP6Atagjhy6KKk5rnzX36H+R7/MolRHEAUaM5lq1yESVbE8hblMhJlp0xmYSFLIzWvXWViY46Q14fb9PZ6oiGwsJKmfVZHFgM7E52EzZG7lMggi1qjJNz33NH7o0253mI66HDUnjFydeLrAk5sFJpMZ6YhMJaNxdnZCuzvkuc0k3YnP3ZMRrmUT0QVK2TShnmUipAkdi6tLcTwxgidGaba6uL5AISkTk108a4bnWIynBvlSmVwhzyvbbeKpHL7n0mg2ycRVJuMJrU6brSLIsoolxAkREYw2rZFNXIXLxZBa36aY1llIwcOawSdPQrKFOaKJLJVillgqx0m1wZw+ZjToko5IrC4W8ZB5ZW/A4mKZeGkLM3mNVb3J7s4++2dtri5lGbSOMYcNPN8nFEQkUaE1gUopy0IhySSMs7j5JLIW4ei0TqWUp1vdRcVk7IjEipvcun4ZkYCjjoMgwkJawrUMRr0WrmNTbTa59/CQ73iyzOp8ljCA+8dt7u1WuXmpzK2nnyei6bieS3cw4vUTixe+/S8zGAyw+6fgzjB6p4zO7hNVPHw0+hMHC5V0Mk59qvDMh/4SV69dxzAMqjtvsLGQenzPA7iux/7ZiMWtJ4jH42+xI9XTE04ffoq0MKJSTBIGcNIaMSHF6rUXHme3347pdPo515uYLq/tD8hERNauPvlFM91fCl/Ibj8qKVNV9cuyu1+P/vdr3Ud+o63dbrfZ2tp6z4LqL6v8Yzgc8pu/+ZscHBzwEz/xE2SzWV577TVKpRLz8/Pv2uZ+4id+gp/8yZ/kB37gBwC4ceMGJycn/NN/+k8/b1D9ThWiFEUhFouRTqfftf0CyPL5V/puGqH3eu33cs+PSCQSX5Pf9Wg0QsVjLpdDVc+n2Ni2TVQVCP0Zmqa96w25X2jf2WwW27YfNyOFYcj9Vz+GFLqkY+cGJrGxwOvGhOOTNkrfQNWTZJeuPZYpr9UbaMk81qiNNTjlyBpQmH/rJIDV1TU+/QcOrlvHs8Z0rSmLpQxZtc/B3pC7Ry0W4h4fuLxKIZPg9e0Dup0zhtMST2/mWU0EtBsPUeJFxMDGGjTojz1idpx0VEI0aswn0xSkDrWqS1QOmMymtN2QD33v9/Ldm1v8/v/6vylKXQREPEHDmTTJCAaDcRfN0bDNHnOpJEk0itECjXqDdr/FqGeS29ik0ewhGjWcSYuWadKqeiwV4/i5IgldpKIppJY28aIpxCACoyMqEZOY7DIdjUlIJk4ocXjaYjzs0qi2cYwhejglKgeslqIoSoZCNkP97AjfsXn/EyvMIhatepPe7HyKQcxrc3tnHx8BL5CZOOApPtm4QiGqM2xbJHwfLxA43TaYTz3Lcytp/vdvH/GRowGzVQU5mJGQfVo9AcGPIE00mhORRCxCVBdxZkMWohMsPEbdGRFNIbCOGZ42cC2LYTxNXsmSViz2eg0e7A741MM2SdlkY06jGImSlE0Me0h7lGQ0NekdjSGaZ3ntCpYLyxmfTFzEcxwm3pRy1CUWzEipUxYSGVpql/7YIJ3QeNCpMeipjAyb46MqCVdhMa8SyAV0KaA7aHJYsxG8GZOaSSCANJVxuyLTic+gLSBIMhtLZW5UBI7r+/iGQe8zr2Y7wynRiEJ/5oOcQY/n8ILz313LCYmowPAURzwkarV5vuwxMSxeO7Ex0VFtkft3q2hP3KK4ssDKyhKtvkFh9UliUZnu2KbbPmNzc52tzU0s26E7mDK/cg2AnVd/h5zQY3U+SxDIzIYwG/U4PhOJKQHN/oTQD3Bnfe6/cUa5kCadTjLqtjk469Fxy4yGA+xxm7mMzqDZYG05zv5MxRt16c2gEhWY+Rq5qIQWSaDbTfq9ORYWl2id6G+55wH6AxNVj1AoFNA07S12RFEUDh68hhMK9EcWSCqLKxukkglOh10ikcuf1y/quv621wNQNO3x9d4tvlK7/YUEYr4e/e8jvlZ95Dfa2u91+ceXHFTfuXOHb//2byeVSnF8fMyP/uiPks1m+a//9b9ycnLCv//3//5d25xhGJ8zOk+SpHeleeKCC+BzVb8a9RrTfpPuyOBsLJGtVD9H9eu95O0cxtuJviiRJLc+8DQLC4tv61y6J3fJSiOiiogxC9hrHuH7PluXrwAgiiKJiEI+kUQOo/QGQzoTm7N+l4Ohimn5vPjcHCvzORzXpZSQuL4Y49X6lGpLB2uIGHqcHTdxlBJnRsBR9QwCB8OwOOsaLM0nidgNNosFNjavMxjP+NR2F1EUSSaTXHvqRYYnb5BM6FyKF9l+Y0Kz2eD6xjLRaIxPvTyimNKo5GVeu/cGmiIRCi5S4BBjymltj1CMsDxfZE5qE1gjri6pBJLNfn1Ky83wrU9lECIxQjnPTnWP09PXiciv4VljhkZIP8wQSDGKqsvmfIzj0x5HTR8xCLEkgVQqRAmGNNt98tk4px0LPYzR9eJE4+ffeVT2CQWB6iAkn5SJxSKMx0MWkg61vs9g6rM1H2UhH6U58+k1jxnNyixko3z8wQhddsjGFIaTgLga8uSKSIcQX9JRtAgH+7ssZWWWi3H2jgZIssrywgLT/ilJxSWTkNlvdTjDIJbK4+hz/NHDM0Yji5tX42yUI0xMj06nAyEMx0UQJQLfZbmY5MZ6jvbIZnf3gEJSxpn2mQ0aOCmBoSVihhHyhSKmMaXTaaLno7x4pcB8ucQfvXFCoyFhClFEPU5Ci3LaGjP1U8hxidPqKYI747uuqixmREYzm4NZiCTFCUWNmR0wHXSJhBYbBYneLM7hSYOjgUxTLlJZWiMTj1FcWWBxaZlP7o1IF8ps3/4kvW6DtbiGbUwJiZLURRJagODDdzy7xH/6+ICRozBtTIm1HOZXb3BrbR3P8yivXqF6ekJgDtmvjUHWyFXOH0wty+K1lxQ8T8Bv2qh6lOLqdV6czDip1ri73yQmzojpGvFEislU5lOv3SehKxRKJeTkHC8sX2XWeEh/YrGQXsJzLPoDm5kn0eqZnNY6rC0WCRUFJUxy6+lnSaayHLWrLC4tf0lCT3Bee7pYLrI5v04QhuiaiqapOI6LXWvQarUolUpvOffNtuazrzceT89/zpyf87WgdHghEHPB1wNfclD99//+3+dHfuRH+Gf/7J+95VXFd3/3dz+eYf1u8ef//J/n537u51haWuLatWu8/vrr/OIv/iJ/82/+zXf1Ohf86eXNDkU8qyLMGsQjCooksjqfx/sCM2TfTb6Qw3iz6It92sANRfILl7h8+crnOJNHo7DSwoiriwmiuo5hWewct9m+/SlWVtfQNA1BEJhZLpbf5tZGjucvLVHrDnjpbpNQSTJXjCDJEhPDwLFdptMpsVgEyxxhG0OUuEAuLjAZz5gpBZp2moFgMHYCsoU8i3qe+ciInGbTt6coikwmmaA8J2CN2ucqjZV5JpMJ1dYZndMGlfJ589tz1xcZ9jp0z/YIPJtUFNRgQlaPUp9GqM18gqMuXiCDHCEbF4hLcWpTkztHQxqTEW4goyU92r0hgabwbd9ynd/6vY8xPTzihfUEy8tpZo7Epw+GfGy3wzTtsxSd8Mxqgm/dinHac3n52GQ4m7C0EGdxaYX5rMxJc4zteJSLizicv9nomDK6HiUQXfJxuFSJ0ug72LMJUzdg6krMPBVfjOIGPuOZxeHpMdF0lheua0SFCTcrCvXBjOnMZqcbIqYl3FBhNOhTFxJIQpyJNWO/GVCeXyIiDEgkFU5bMyRkYoJJo2Wytz0mlZ9nRgI95mEH53LW2ZjI2PfpjF2aQ4OJLaMxY2VxQre6i6/leVg3ODybsZZ2mUwcMkqIY3ls7+xSa7RotdsMJxanpwrxdIbQNRl2W1ybk1ieS5ErFjF9FWXgYDtRltYqpKIirVOb1tTHcAL6U4GeJTCXhoExodvr8anelKWMwHxljlgiztgwcVSZSzee49ZzH0SSZcLBITPTAuC1l1/iwf17KLjEtAjhLKAzmDKY2niBRC6u4LgCK5UcV25t8rAX4eqTL1IoFB4LJI3ap8iezcR1CeUkWxuXqVQqeJ7H7s42/rRDOqvi+JBKZFlZqnCy94DQmWELsDYfQdUiVAKZXmoRQTAZeD7zuUusLK2yurxAq9Pn7OWHmLZFozPCocnN5TQNpYLomwShQN9L8vytF1lcXML3g8cj5D5b6AlZJ/WZoP/teJQccD3v8UhOz/O4c3+Hk5MWggSdaoJUcYnFz4itvNnWxHPz6KXLHPXq0Oo9/t0uzZXZ39v9mghkv9gc/wsu+FrgSw6qX375Zf7Vv/pXn/P5/Pw8zWbzXdnUI/7lv/yX/PRP/zR/+2//bdrtNpVKhR/7sR/jZ37mZ97V61zwp5tHql+3P/6/qMR9bClFolhicf6tql/vZYbmizmMldU1dh2H6XQKgUXt8CHTyYQbN2+9pe5sOj3PMFWKSVKJGAApJc7qvMfhvdpjpbUwDIlHVMrJCoEgUu/OqHVdZEUiEo6wLZn7dYGJ2cGZ9hj2uzhSGkdQKaQi9MZjjusj+pZMtOijZQusaBFuripsrc7zxsNDjh+0iSoSE2vGcDyjP/MpVZaYuC4P7t/DHDVxrSm2FRAoOjefusnZyQF+4BF6M66slai2pmzXbZrjgHw+TjYbJ1lco36yT0KVsewxx+0xM80gHY/Q7I2IiOdj7kbWFJwxohLj5TceoAcm5fVV0nMRHFlmajmkYzY5pQOehCb5PLtVQBNsKqlzsRJT0AgJEEWB/iygmNQQQ5FrqynunpzX/dX7DrrjElEkUrpIfTDFNGzyEZjPKugRjfm4T7s3YRQkWM7IhO6MSFRlbiGDrs+hqyZxu40uhkR1hdx8hrGQo3pqUusZGGGM1Uqa0lKGG0tRdu7dQdU0ps556Uyop/EsE3s2In3pBgvlAq2je4xmNfwUmLMZlmlz0hNwnYBsxEfwQ1560CB73GbsQHsC+VyBs6nEoOfR6c8oJGUGM4O9sx4RRQZJ4Na8TC5uMOkco/kO15diyKkUmVyBpBghACYnY9ZXSrhph0g4Yeo1CYSAaDzOatRCEnwankdOtah3Rpy0RdINyMZguZRlcyGBFpng9w+ILtwgLG7xh3/422TLqzRrVRLpArJh0R3OaA982kOT+tAjnYyyosNO3UCOLhKLxijJhcf1uY/us8VcnG5/xrh3QndkMu6ece3JF/B9H6+3z0pRZWMugiTKHDYOeWM85ui0Seg7RBQFL1SI6RHWy3FkK0Mxs4jphly+fpNiPgtAPptGjyY4a/aZTmfowYCm32FqWGiRBIIapZJfZnFxCUmSGI2nIOuP7+PFpWUW3zSX+rOzzJPJ5C2fiZEMB9UD4DzbfOf+DmeHD7m+eYWtzfJjm/Kx4yPyqvFWW9PaJla5xvVnPvA4K91+6SVazQbB4PCrHsi+kzn+j74L27bxff+rmlW/4E8vX3JQres64/H4cz7f2dmhUCi8K5t6RCKR4Jd+6Ze+4Ai9Cy74Snms+rW2yUYlTjIRww3fqvr1xQQIvpLXo+/EYVRPTzDb2yQZc3Z6wKDb4OHU4s6nb/DNf+YvPFZcfET4WRVSQXD+j2VZjEYjHMchmc4SiQok8nFO6x1kacLWfJK5+Swzouy98THccZQXby4gyBFe3e+DD4WEQG5piVfuVxEdE6d/yEm1jZyocHmuwit3DxgOe5x1DfbOZoRaDm3RY2FpnVQywYM3qmiNI/K6Q1oRCeyQRq/N3qFGPJ5kr7pP3DWRpAgzZ4yWTFCqJFlZSnDWtTBjJfKTNjHPpO9ZLKZgOvVpD2xyUYHLC0ncQOSjew4HHZ+ny0k+fX+f3njG5qLCzPTYO2mh4JLUQPVnFFSVqOTxxkGfuOxxUB/ieR6mbxMGfUQhRIgneOFagd5gwl7LY2i6FABBUlD0KAnPozf1kCSPQiZFUnEYmw4RBZA1en2Dti1SLpaJpOKoso/jOixXcsjo2I0O80mJRCLGEJXVxTnKUYP/fbuPGciYtovoh7x8r031tE8QhOQyCQgFJiSJRkKuLoOiQqs7YLUUpdmIsdd36Qym+JaLi8CLlxQKKZ1W1+K37zZx03E2SnFCe4Y9Mml3ZqzkJDKxCFPTZzBzMF2ZdCbLak7kuXURTQr5xIFNKMoIgohjTpFEEcPxcH0R25jSbJxRigtcXl+hfeahSw7DqUFcERjbCl3DpzZskFA9VEEkEYbcKKeZKwi0Zha+N6OQidDt1REjaTT/fOTY+64vsJis8OsfHnLQPiOhx5g4Kh1jwtj1OZhKXL2U49r160ipRUra+djJVqvF2eEDVvMy3X4fd1jl1nKCqZvgpDOgtfdpuhOPb7q1xCyt0G3vIfsWwbjD77/6Es60y83NRXIRn5jk0O8N0PMrlAoZZoaFrEVJJf64BnQ6MyiWFwiVGP07r4PrYjkCyWSRWMZnNBoj2QbjyQzJMDlq9Bl6Cfbvvfx5s8JvfqPl2RYeEpYvktAA36bRN6j1Tsml4pydtri+eYWrV688nmdvOw73X7rN1ffdfFtbs7i0TCqVejxqdjposvU1oHT4+eb4y5LEdHguy57NZjk5OWbaO28kvigPueCrwZccVH/f930f/+Sf/BP+83/+zwAIgsDp6Sk/+ZM/yV/6S3/pXd/gBRf8SaBpGmo0jiSJaJqKa3nYtkN3NMAJlM8rQPBu1Pl9PoehyBLTcZNWq8WofYrqz6ge3iPuD3jqehbXdXnlYJudV377sYT5o8aOk9aItB4Sj+pMDYvtkw5jR6d2cI+OGGL7Aj4yXqTEWX/CcbXDaiFGPJVBV/PMr2zRa5xyUGvh71qIWo7owhrx6i5nrRHHXR8Fkz//XBnPc/mj7RmNSY3f+K0GGxmHhbREMaMzMUS0RJJYMk80GuXu7hntVo1n5kO2FotEdZ32yOL4cJf/+d//Hz744lNMDZuPbR+ihiaeFCcvCmhahNvHU+RYgUIsQnljhWFbwU+ITA4eovhtAkIy6ST5bBbb9biyHNL1TNpjD2s6AqvH8emEtaLKk+UQ0bfpjW3SUQEzkIhHRIzZBEGTSUQkzkY+jmlQjMcJfJeTWo96QWZmhwyCGBPvPKBIxnXEiUIsKjEzA8a2jxSNEM2UccIprjth5On4qkY8kmIiF5lpEpNZl4w4Yu/ghEDP8KBqcSrOKOZkFi/JaLJPdeIj+haFqItpidR7bXaPWxiWw5WyzAcXYhy2LfxhEym0ubk4x0g16J21afvgCBrV1ohe36MUF1jIiASCyNgG25yiCzYFXeWDWxFqfYG7R13scMZKNsP3PlNg+2yEMRtTnUmsz8VAAF8UEFQRUQ4561tk9JDrl3LkdI/QHNKwxgjRPJFkgU/dex3XHJIQfOYTkIkIFDMJepaOHA1pDQxMO+TmSopyLsKcbjLpt4nEFxnaNolohGp3wN7tN0h4fQBmkyFj3+Bbb1W4eyAyMjyyisSAGbGoTq6ywfu+6Vsozy/Q7M6YWCHbb3yS44Ntjh6+Qq2YRMLn1qUyqWQB0RJITn3EmEz19ARVWSM1v8AnT0/oHW8TV0PEwGV1ocSl+SSBkiSKQU6VOei4mEqALSYRfJmZYSIIwh/XQBcvkc3mOLhd5Mn5AsvzRULOg8HX7+3ysYcDHpz2iSdzDL0EGWnCSi77ebPCb36jJUhpjo6O6OzfJ7V2hZvXttgoxzk862IoeVY2JFaWsximifaZaRqqIiN6M2Tpra7/8yYPPJd4LPXOjn0PeXPvS1ZNva0s+11XIi5MWCimKWQuykMu+OrwJQfV/8f/8X/wZ//sn6VYLGKaJh/84AdpNpu8733v4+d+7ufeiz1ecMF7zptrqz3Pp94Z0GvV6fc6qPlLVE9P3jZQfjfq/N7OYTTqNc5ODqi1HRxPZNiro5k1Js0jynMKzjRE1uMsFaJMwzGd2gGLS8uPX3NPSHH7dEJEmWG6IYfdkLl8jK2y/rjxqdcwafQF1pcWyIwnlOZjTA2PVK6MrCg8deMqy8trFJcusVQpMZiafOQjDqPeLqo348UrJdJxndOWRzwaJTIdMK0dUKiscmlplURc5/Zek54f56Ofuk2+0ECSFabNfcLyEvFolDAMOTytEfGH4Aw5Oqnh+yFjMyCbLvG93/IUCD67Jy0OBwlykWUa3R5bSxVS8UX8Th2teoQWTxCNqEwdn93TNnPFPNfXi7xUNeif3qWk+Vx58gr7dz5JYPZxZImEHDCYeqwsFDnowkF/guyG2M4UTZEglMhGfZYyAqpmM5mYnHSSXN1YoLZbJ7TOXwes5GSuXcrwye0eD4Y2U0dBSxa4vjmP64fcr47od7o4gouvFzibRdksBSSVAv0eHNe7DFod2kaE9FyK+eUCc/k0R9UOjZGPoMU4Pm1QTkvExZBsXKKQzZDOJWlPwbMmXJmT6Ew0MukExtRExkEJBALRpxANKGoqm3kXyxPxXBdRgXzE4/q8QCwhMXEUKsUog14bS4WZ6fL6yYTR1Caui3gDm4HhMl+p8Fqtx2zc57TrYgURpkKGlqHQfbiH5cu0+g6BMcE0sqTjMaa4VBtDzKkJgUfRkFmb11mJWIiBQHMCtZFHJgk+MqIkYXkuWkJnYpicNTqIRp18XmUEiL7J0e49ZFEkFskgZcpEEnm+70NbJGM6d3ZOmIUpmlOVYSCSkacI1pise0QQ6eN16/TNkGlySiuhI+hZEBXKhRz37h/Q6fYIPIdJ65BCWmUwdVFjCZ556hruuI4QuCjZefqdFg+O2uQvX+GZF78V4HFN8qMa6GJpjtlsRjKdx/SHOG7w+EFXjWVZ3Vxi9doLpFIp9u+9zEou+7ZZ4VGxhGVZdM722SqfZ477YwPJN3hio0DPMQjD8PG5988m1JpdGOyTjqogKcSzc4iKTiDH8Py3imp8XvVCWfmaUDr87GbKz5Zlj8ZFPvHSS8SW1kmlFlFV+auWVb/gTzdfclCdTCb52Mc+xu/93u/x2muvEQQBTz31FN/+7d/+Xuzvggv+xHjUHPSJVz+BP6pSzCV56smbJFNZ6m8TKH8pdX5fiM92GIN+h151B88LeeL6FdKpBP/ppXtErCpXFmJszicIwoCTVoOJmyGdVBmMerRarceObvXaC0x7dWxjghDXyNHn/TcW3rLPF57Y4uN3a9SnEs0R6JrHwmdkjj3Pw3ADBEVjdbFMo9Wh0WiAa1AfegTWlOtLCawQuoZIRDTIR3yyUXCtGfcebhPJLnL12k0e1CxUy+aZa6tIkoTQvYc5bHJ0lsRxXWadEzbLGlG5zPzaAg+291m4tUljBJ+6f8yg26I3mBBG59i69jSTsUxxaZV8JsXOXZ+E+Ayvf3rK8WCKHtoYgsVJr0EkFWJq86yVdBzL5ublNWonB/SNKvu1AXFdYOTH2NzIY+BwVHdo9T3igsdKPsLWShTBM8nrFsWsxsTSOOhPyLV6KL6JLHzmAcuzMWcOqXiUsWcwcmQenk0ZOw22FvNktBDSKYRkgkg8w3hQYy1b5ubmGtVmnFgqyzRIchWNZAQiwoihrTKzDQ6PTjjuOjyzrPKdT18inYjyYL9KtTXm0FI4bI2JBw6ZuSitic+d4wGCFmM6GYLiIyDy9NY8neEMw+gwNAKuVhSmTojhKaRjIitzcZwgJJ5MkUrEMG2XBw0bRZ1wbSGJpsh0p30mU4PGKCBFSC4ZJZbLs+QpWNaU14/GOOMm2WyBxbkEcjjm4MHLXKkolK4v0lgs0DvbQ3L63FiQubWu0e7OGEygNtFQEyXCeIaD0QhVEhGiGqoco9YaIYoSS/Nz2LPzTHUlF8cRK3z8jX1ePxsztxTh6ScXUfFwPIHK2g0qGzfOR2Hu3aGciLFz+y7lqMXi1jytZpPxcQ9z0mVv+wGphZvEiquIokQkO8/dvVPSXpNCxGUum8CyB2gyzByfQmmVnYNT/KiEoVUoXb3Kd37fD5DJZACw7bW31EBPp1NUVaWyuAJGk6O+AZ0RSCrE5lgulCmVzgPmt3tbpWsq1eP7j3spjvcfIFsrRPRL5xLogUehkKJXm2HZDpqmEo9FGXb28MwxnmCQLUYQxYCjw3v0whyltVu0BwaaOvqik0XimTmqrcPzn9/BFJL3kkf2ebt68Dmy7IZpUkmrePb0vFlblx/v+U86q37Bn26+bJnyD33oQ3zoQx96N/dywQVfVR7VVndq++RWsxSyGTLJ6OP/9nYNMW/nCL8cQ/7YYZztc7qzTykdZXFtjdXlBVzXI5uJMzp1mNoaU8tBV2VcL8SwbIb1NjPZIxZ9DdQIAKl0huWVVcIwxLZtqg9fJpV8q7BAKplgsVxg8cqzpPIL+P0DYok0vh8wMyyGXhTPD3nj3jbusE4uk2CxlCKlVtjfNxmYUC6nqbaHaKqGFLRYmUvzvhuL+L7PYcdk6oSM+i3kaJLxoE0YOJhuwMlZm74ZEFVl4mqA7YTYvoxvDkmKY/b3+wiSRiSbISlOWViQqY9atE4foOkJXr2zw62r63i2jRaNcvfMwRm1eWpBIK7JTGybncMqZirNB96/yuHeAx7cfYWENGVpIY+oJegPe+Q0G91pkkRiNQO6qGN4MRYXolwuS6ihRa/XwXDgymqZ/qHNR+400UWHZDoPwNSV+P0HPXRVYS0LCcMnrjkcHtd57UGVrYUk8eIa+coGslmlFIfRYMD9bRPTsomqMSajIcnMPIGo8KntY5SwQQB0RwYpJkQCje2DKk9eXiab0NHEgKPtMWNZIRLPMgllLCzq3Rm6bBA6MzpTH9cPeWItRbFY4t6eTRjOiMbi9B2HrhMlcEwGU4doVkbToxiBStOKo0UlriznyCVVOsYMIVFGTi+wfdKjko+Qy1bIpHIw6vDE1hJH1RaO7FMu+MzcKSe1GubEoCtqjE2P/PwGkhZjK2sTVQPq4xAr0FHVEDUSZy6X5NrWOq3uiO2TLqapsLRYITd3hRW9huJHOeg0UYChLeO4OjuDKJmsygeuF3nm1iK9wYQ/fPUOdnSFVFSjfugx7jeZu1zBHreZ30iSjMdQZJW7Zy4PajaB2OTp1Q+S1WMcVDsUFtapHz/ElJL0ukOmgcfi6mUy+Sk7p03S8TWKCxukS8uEM59nlp94HFDD2+skaJpGtrzKrG5QzJSQJRnP92gPTGLlFcIwxLIsnED4nKzwg50D/GmTjWuLjIdT2ladw9f26TWOWdq4RiBIdPojkKLo2vlbqt5gyGQ84pufu4Zl2Zz1WuA7zMIoNjE+8MKLtJqNdzRZZH5hkX4k8o6nkLyXPCpxS6bSuPaYG5tl4vHzZmxVUYjG4nTHU2zHfXzOVyOrfsGfbt5RUP0v/sW/eMcL/p2/83e+7M1ccMFXG9u2UYWQQjaL8hkxGHj7QPmzyzYe8eUY8rc4DGPKU1tzKIrMdGZiOw6byxUO3CkHvS7jaYflYpJoPEX7pI2jiTz74k2ubuR5sHsMJHjt47/zeN5tuTL/BfepaRrLK6s0NY2jXuux81y+8UEOD/b5xEv/k3LMpj8pkyou88Tlm3QnIZ+4t83M15CJILgjJlZALJ6k3RmQjQlEA5dPv/I61b7HB55Os1nS0PU43iDJ66/t89pug7lcjMW5DIKksJRVWcrJqJZOtXZIvQu91gnPr8dJRlTafZP6w5fIz69TdTUGpsiocUY4bZBJRlgtZlG9PoLvoGsJnrkxx8OBykm1Rrc7IOp1cR2Dh/0J3bGL5fhISZHTxphkYQ5FjyKGQ0ZhjMZEIC7OWEx5TByJxsQjnNm0xy7ltMJ8No4aOa9fdxyHRt/kWtlDj8tk8nkULUpGDzhuu1ze3ODqtascHFY57Q2xp33SisncE1dYWl8CQeE/fvglOkODv/I938ZS0mM0HNFu1UgsRAgtg1uVkNqgwet3xohqitrIpNnoszCXpzOU2a+PiSgCq0kHXbCJSzEWSgUeHDfYq414/tYcc/MLvPGwzp1Ti4kjMnUiqKJCfRzgToZMbJ1Tp0jdnVHOqHRdjZOqQ99J84E/8+1cvfUEv/F//Teuby5QSMdo1avkU6sIooU5vs9iWsLxbXbPRszpFlsxm7jmYooDatVjXMfFTehIqkh5cYVGa4hsjMkGCq6c4rDjU2/bDMQyl575Dr77e74XURS5/+qApOQjR8+DV0tK0g9MVtZVnr2+zHA45qA+ZDKzKaY0IhmJzfkEk5nBRw8a7OzMmM4MBiORWCRCJp3gyZtXGZkBbxz0GNgqzb0WYeCTjNYwB3WWVyvk8kXEWZ2oJpFJFNk+G/OJnSH5ygoEadLLi+84uHz00FxvV8GzQNaJFZfwfZ/7r34MPJt2u0O3PuWFJ7ZIJRN0+0MODo+4urlK4FpIRoNrGwsMO2cMJi0m7RhDW2a/26CwsI7juMwMk6OzLtF4imL+XNDKni9j2Q6iILBbmxAEARuXNrE/z2SRNyOK4js+9k+KZDJJPJnDcf+4hEXTNEQ9Ra9Wx7JsHMf9qmbVL/jTyzsKqv/5P//nb/lzp9PBMIzH6j/D4ZBoNEqxWLwIqi/4uuZRoGyYFqk3BdVvFyi/nWjCV2rIVVXFE2TuPtxFExzwXWwfdo7qzJXnufbkCxwf7FEzh1g1k8NJlO968UWevHmFeu0MxRsACXIRl0rCo12/T4O3F5A5qvUZBm+dNqCn5yiXK8RiMaqnJ2TlKS/cWGRrMY3pKXTGDqGg8P0/8AP8n//5t9g3fMxuFTXwSSeXmU+YRCIyE8diaLjsnTaxlDwbyyWy6TjNZoOFtEi4tUzPH6HG4hi+jOB5pCMC9rhLq91l96SFJgskdBktFLj9sI7j+SRVDaM6QI+WsDqwe9qnKPeJ+H0WcgpJtYjvmoz8CNeuLlB/w+ETr++wmPTxLANzOmS/PqMxcsnEJHx08mmNJ5aXGc4s6kOPVDRG19J4tW4TAIVsBXPk4MoJZkaNbEpAEUQcLwQgGxdJaAK24yLFM3zTM1fo9AYEhSixhI1nDIn7fZ5aT+JYMxqeQeC7eIKMqul0hgYzV0BTQkzbwrIsPNcmF/FJ5GM0GhN8/1yA52zqMOi06Rs++aTOzdUc1UaHZmfK0BW4lhXRRBE/kqE0VwRF5RO3T3hw2MAwTVTJxwhVFufzrCZn7JyNuN+EaH4Zz46R3LrB88/k2H/t9zjo94jHkxTn17h28ya9Xh9VFtiaT1PMJlDMOglN4M5JwH7HI3AFfCFEkgSenZfojwUmVsBiVicpa9w+tHnQhsZUYhpxiaaWUAo+w9kQLywwbImEYpHNa5sszmU4OjygXJlHT8/Rq53vZQak0lmEEPREgY2VCo1RQGFhnc7ZPtdW85z2fIIwpJjPoOsqf/gHv4fmDZjWLVLpLL6WJV1YQYuqXHriKonCMqlZg/X5DLVGi73+Kffb9xAiORRFpdlwmRkOLTfHB77rL7K6tk4sFvuS7u9HD81vDk6rpydv6cdYyqu8cneXj9+tsVgu0BsboGeYm5ujWzugkosTjxU41lROH1TxBhZnA4dATOG2ujR++6NEsvOsXXkCOd56/BCtfUYIpj8YvcWGvVP14S/12Peaz2d3XSlOZuUJ2jOZ/uFXN6t+wZ9e3lFQfXR09Pjn//gf/yO/8iu/wq/92q+xtbUFnI/T+9Ef/VF+7Md+7L3Z5QUX/AnxyGA3qucGWxXjXzBQficiDe9k3N6bp4jsb9/FbT/gqasrXN5Y5s7OCbXjbZrNNO/TY2xcuYGqqRxWO0SXAp5/6hae5zHtN8mlIhz3QBZCopEIi6rKdvWA1StPYOcvvSUTPQwSRIM+OTVGrpRmMjM4PH4DgPX1jfN68YU8Lb+H5fgkkilCQk5OD+h0EpRLBQrleQ6Pigxru6yURQpRH9scM7Q8hmGOeFpC9wP2d3cIbAPBM0hqMtlCgatXKiQKS9jjFvWTfZrtHiNVZL8LIzNkOW4QOiLdgUQ24mIZBsPJkGRihjGa0Z6ZKJMZpYUkXhBBDmYIkkoopFE9gdu7dQJxgZHtsIyHLrrk0wKbhQSdicN202ezpKBHBPZP2+BOcWd9ThoDCpUVEvPXaPptWl2bMIww7JtIoUXgCSzlM8QLBbrAUU+gaekIisCVxRQ4YwR7hOeGBFKE8biP5ztUihXcoMl4YhCo8PufuMMnX9+lOgZPjHOpoPI//uA1Ou0mKS0kJRsEsyYxVeWNExsI6Vki3ZFDKhElX1kgm03gOSYpzeMjt7sMJjJrpQRrCwlaU4dA1Ok7Gq9UfULb4dp8CiFdwBUUQkWgkFeIOwo/+P/6EWRFoe9ESRUXyak2utvgxtr5G5N7dz7J/dMhS2ubWIGE5XooWgzLHmLbFolsmSBsoMiQlRUiCiQiKtWRj2qBo4j4yvls5rlbT+NJHp1xj844oHjpOUoLGxR0iyvr8yTjMQ4ODrj3Bx/lDT3Hyuolpn6Ck26N0iLsHlSJRDRmlsf+WZeF9ZvE43GGApiWy9QKEIBGvYZodkjqkElUmPTP2H1QZxZ2KVdcYrkKK088g+BOWSpn6Q8G9E7vspx0GbUaGIMDlMICcnIdXY5RUUqkUimy2eyXbV8eBadv149RyGd5/okrPKgZeFoWVXUJrCl3X/80cmCyWlxHEiUy6QzL6zFCOYZhn/K+52+Rz6bpDUd0BibRaJRodPVdfdh/N7FtG8dxUBTly97L29rdhRtslObwPA9Jkr4msuoX/OnjS66p/umf/ml+8zd/83FADbC1tcU//+f/nL/8l/8yf+2v/bV3dYPvJZZlPRbLeLcwDONdXe9PYu33cs+maT7+tyx/2SX8b8t7te9iaY7JdMZxr81ZtwuyhppcJhKN0e/3H0/YeMRcuUI2l8e27fPRfKqKaZr4vs/ZWZVpr45jzHBDkczcEuVyGVEU37LGyckxZmuPbFLnynIOZe4y08mY//XSPkkt4EMfeJaJKyOIAvv7h0jpZZYvv4A5bNEZTJHl88xpKJ5noTxBw/FCjk4b7OwcMZn0SWcKaIkChc+Iv1Q//hFct4PRD3l1YiGJEjFd4qzRYTgYEBgTWo5LvTvjaFJHFM+QRJGzeh0rkFi+dItrKyXmszF+dzbik9sPeGolhq5G6Xkqgi7ywfet0+uP0FJR9s4GWKbBylKZ7sjCsH1yoscgjFCbKuSzFcJARop3+eabFjEmdGc+PVPE9kTWUiJ6VCSZyiBH4myfjRgJEl4oEZu7Qm1yQtnzGJkwtAWapoSXLVLKCcwVHYZtg2RMY6uscda3abkerq7TnXjMyxOWSklmgc5M9mh3umi2gF1YPJ8AMpdE6QzJFovEwzEtC5J6GoB0aZlFOUVMMAjFEEuI0Q8ChpaDosUYujG6bobW8ZSeF2cYZshpBkJUYOyqFLOQSURQYzFWMgkOwzGmbZONadjECCWd6UzC9X0sSSVdEFksRIknYpiuRKVSptFS8WST0wnE0xrjmonhezhSiqef/wD5uSXqJ7s8v6oiaXEO6yOSBYV4NmSoS2ixOLl0mvZBh+bpAc8/fYPhaJnX93Zo1bbp9zu0Bg7FUoWGmaFn+ewemMwGA2aOi6JEaI50JCWKroZMxQApKTOvKdhyFlPIsHa1gq8VEVJ57FmTeKXE+jOLpFNJXn/jDqnsIvFkmtPqKYPmISV9RntqYHd8On2bdOI8mM3Ob4E74aTXwe0rzG/FmBouu9Ue01GHWHqO2/fu0e91IQh47skbbKyv8fq9fTKtQxQhQEgtsrR5C9Of0G46VNJLHO7vUVRcCuuLvGFMmNpd+r0+d08NNraus7QM91//JOlM9i1vrB4FiY/u/Tfz+WzUZDLBsy0EKc3U+uMyBkFS6XcOSZkjLi2VSKuX6J3t0u4NeHjYoFgs0ejbRFJzDPsd8sUiyXQGZJVcvoisTDhrnLB+9Uls5xJ77QZ45zYsnr9EsTT3jnzee2G3H9nDYfsMfJdTVSOeq7C4uPQ59vCd8HZ299H3raoqruueN3O+S7xX/ubr0Ud+Pa9tWdZ7tjZ8GUF1o9F4219U3/dptVrvyqbeTX75l3+ZX/7lX37LZ0EQ8MEPfpDr169/lXZ1wdcyoigyPz+P+5ngs9Pp4Ew6nA3qIKtv6wjUz8yBfTNnZ1Wm9W1Cz0SwJjjTEXf3Xqe+9hRPP/Pc4+Ns22baq6lIJGsAAQAASURBVLOQTyBKIpossLm0Tm80onfvkCuX18mnU5y0JuQXNqhYNq2pzPLyCg1VpdHaI5fScQOB3mgKJNBjSd64+5DG4R1UWUZzkoSzANsZM1QVxqMR/ZPbXC5JWNMp2nhIqMRIpdfRVR+re8DhWZdLWZfr61maZzO6nQ79oUFzaPDczcv43pBPf/rTlAspUnrIsSUw8uIQ1TDDPqVEhGJKx0UnntDI5TLsHZxxXOszHHTIZHKkhRFBVCId1xm4GmowYy0b4ogiriWR8l2mhsVu12ctKSKIAt2xTU6QmYsHmIFCQvbQBJOjmcR0YtCdhoh6goEtEJs20QWfqD9CidhoksfAUAlCUCSYuhpH3RmKDNWRgeXarKVgorjca5yihSax9WVs20P0ppizMbWZQVz1kep94nPQm/n4Wo7+NKR60OW4W+e06+AEPksZE1GLctZsMTICptMZc3GHfFKmkE1j+xKCb7DdtHDHTTLylFgwwHRFeuOQ2cihN7VYyCroWgQkFccNyEZCUjGfqeXz8LjHuFsnroZosojvuYTejFoHun7IN3/gJiubWwSeSW/WIjRmjMZjDj2BSDxNNJknEY1imBZuKKLIAYl4jOFozKRXI0mPrbUIp00bv7/D8aCLI2ikFYepIBAVfbKlGHVLREvEEAh5vTnjmdUElUycOw2BeHmZlc1rEJ3D9VzmU2VSyTiCIGDbLsmogDHuMBoWOd7bJub3WCokUTTIpCRGzTMcSQQqLK+uY5tTkvkFjtsmJ32fQadKc2SRjyZ5YqOAZTsct48ZGQGX1hZRVYVcMsJWeZPRxMJSS6wsL2OYNs32Pq1uH3vaY24jznQyJSrZVAoJEmpIciCwmA3QBYtu/5jDgwOuXrv2lodmPOfz2oa3Q1VVkNXPKTMbjifMphNuXJonlUqQiEdRZJn2yOETd09ZvxRhrrKIpqn0hjOWVlffYneiER26Q1zXZXl5BadceUvQ+dXk7KyK2dpjLhUjoicJfZdGa48qsLy88mWt+XZ294ILvpp8yUH1t33bt/GjP/qj/Nqv/RpPP/00giDwyiuv8GM/9mNfk2P1fvzHf5wf//Eff8tn4/GY3//930fX9cdiGe8279W67+Xa78W6nneehYlEIl9X+35Es1FHHB9zqZQiHkt+5jXqHm1V/Zw51G8u8wjDEGvYRPJnCGaTWGiRkKcoYo/d11oIgsB3ftefRZIkfN9HDl0KmRxBEFCXBELXIK1LaP6MXPw88FJlkUI2SQGByWEPSZK4fPkKR6pKv12lMZUwpyO0YhnPtmjtvsR6TmRxbYt4QqXabeEKBUatKtXTI5Jhl0osxcSbkl+CwbjP3rHDytYzpMo57t27j5qJgCUSzFqUMxqCEGE4dVmdi9FtHDO0FBbWo4zUPttuj9OGx6aURXZmJFWRZu2IjVsfQpA1uq0aO6dtxt0zPvTEIs9eTdMd9qgPHETBp3l2ijWsYyZ9zNmQKyWBpYTHqTFm2JmwK8uoEZ2IKnHSc2lPBSbEyMTWcIw+im2RTEbomgHJKFjGiLgn4gQy9WaLOd0gdCbsdxSUaBJd0Tlu9qjXO4iuhhR6PLcIz8zpOI5Dv2lwvN8gT4PsYgG/0WAp6nHmi9SaAaIaIQ4Ypotjdmi1+8xnNVqdNqHpIIUeQzGJwxTbmICewJ0MWcg5NBo+Z12bUiKkGHUZdwwMy2VvCml5RklLYroetlFn1PPpdQSulnVurGUZuBF6nS5Z1abebjDoD8CZ8O0rMeIxle36lDNXZBbGORtBLFvgxtVNHj7cplGvcmWtjJyP4E477Ox2SF6aQ5Gg2Z1QWtzAGrWYjEf80Ud+G7f5KpfnYwSGhjEeI/ZPaE1C0NJsXVtiYrdJRkLy8QhhSsGTfRLRCC/XPH7/fh9NNzHUMh96fo1YPImQLuEMz5BDi8FZDcucUGt0OD09I6HB9oMd+vVtnr2U5WTWY+Ql2VwtY6ZCHg676MC9269i9k+xbIuWoZHMfy/xZJY/9x0fJPRspv0WjusiCQKGYZCMysihgxxMSGsSs6lPPKaTSUTIJKJEoxFanT6T8QBv5mH061jTIQldYjEVYWaGLOUE6sMuyVgJ3+ijKArNRh2vu/eObMNn26h4PM6gvEK3fp+IKj4u0Wi0ekQiUeaLGVRVxrJ8FuZy5NPv53c/+RAptYAvRhjYAlJijlI2RVz/YzfeN2fIWoRsNvsVlT6823bbsiysYZO1Sgo1cj6xI67HiagiR70Wysald7VU4+vJ/369+8ivt7VHo9G7vuab+ZKD6n/7b/8tP/zDP8xzzz2Hopw/YXuex3d+53fyb/7Nv3nXN3jBBV8tbNt+R3Oo305VUYxkMMZDFGtELLTQ/AGlXITNuXmkvRHVg1fZ3l7l2rXrb50ikkmRys1R7Ryiix4OCt3BhDCUiBfWUNXzhiM7EB4H8I8aoFavPMnR0RFnZ2fsHlaJqTJL65eoVCpI4vlM5d32mP44wBw0uDI/z2mnRWiOmYsnkSWHWq3O/JUIsUiEdEzmuDnh0y99FHdYJVeqoCTyCEHIy6/dYT4B45HN//6DEYeHB+QUGw0RIUwSU3wa7S5+bJnnS+e1qLIikyzUWCymkVSPT945RBCgOVUJLZO5qIevRFlNO1hWms7UQBJCQEIURE6GAqUwJK26lDOg6TJHfYfJdIIak+hNHUwpTq5YZi4ts5wRqZTyHPSgedKiFsYY96Y0BjNkPWToewSuSywiIQcBK2mXiCxTG5is5RW2KjEmQYAzGzDq2Ch4xCMal1SP4cwnET3PkC2XokR8hx0cfEHhyQ0ZHYOljEzHVDnuebS9JItpmb7rsJTXuLygcb9mM5gJXJ6LIoZ9CF2moxn5bIAgxLhSkmj6Mt2ZQGfqY9gutb7N889d5/dePeGjBx7NwZSoJJCORFktRYjrKqlkgts1kfVcCaMqMTAETmtN5ktZus4lHjQnTEyR6UTGD1NYzRYfefmAm89+gI1Lm+ztSvxfv/Gvae98khslDyWU6HRHJBSRQJYphD5Dx2b78AwCjxefWiKUFMqJBXYaFpaYoDK/gC9qBKFIMrGEll0mubhJuTLP7/6PuwThEWk1YHh2QNiv06oOuTN0ubWSIuV1CI0AMZLFc0JOam0sx6fbHZJYg4jTIqlNmVgDprMZd//wN0kUlnjf1W8nEtFx5srYjoOaqtD53T/glXsnXNuoMJzZbE+mECuxVFx4fC/l5xaQIxn29/f5yO0TErJDKjXPeFBjt26gxgvIokK9O2Dh2i1kMWA4HH7FM+rfti546RZyvM5wNKHb69Fr11DEENMJiSUKPPP+b0MURXRdZ39/j3Zrj3jki8+b/mrz5vGjTvDHn1/Mkb7gG40vOaguFAp8+MMfZnd3l+3tbcIw5MqVK2xuXsiAXvCNheM472gO9dupKh5U9zlt9ChIAyLqlFIuQioRZWIY5DJpbEune3aAvXHpc7rZ58sl7o8mbB8eMxSK3Dm12FxfYbFQot3p8eq9PWyiaOLLVN8ki57NZhFFkbOzM+YWl8mHKnpUxbJtVFkhHtWxZj0sYnQGQ0qKR6fVo3pyyO37PlFV5Gwc4fq4zckJHFdbLGsNnlvVsK15sukktd6Elw+7rOcVnixXmM58NKeNbDVYyiXIZnxMb4QdyZKJhDSMEM8L6A9G1NtjypUFBENCFVtsbJQwZxPMoy69SZ+9sUtE8bGGE+YLSWZ+nNPxiOFMJYzkUFSLSiYkpYukYgpGKLFSSaJGNGbmlLHpMnb6dIY2SSmL5NiY6YDVSp5hN8Vr22fkdYV4TECSFUJrgqVo6EqctDJEwcZzXLpOSHskk0nmqWQDJpMRquSxVooTILFb7TEYexQshxywVCmSVdMYzgEPto/YujqHKieYi/tMTiZU0gmskc/T1ze5txPgBFPi7owEU3qGxv/9iTZKYLE1n6PZtBCCAM9zqfZFxmbAlbKE0BKQJJHBzOGNnQaCIGOEMr4cUs6D6k056jislONkkxHCkz47RzUMt8DhyflIwcAa8v4nrxOZhAjOkKuLSVRF5tMPqkSi5xMqJEnCcRwkb8RGQWU5K6BrPtNZQDwRoTUGVY/heAqqaxLBoj/oEY0liMazqIqP7TmsLFa4urVBszehaSeI5SpsXNrEsixcz2dnb5+4U0V1e4wNF8W28F2RQnoOYxzjo3dPmatAPqHzB79XZeKI9PwUq89Bp9siYhyTjoo8vznHOAi5V9vljXsLvO/ZJ1BVFVEUsW2HUE2x37bYPXvAzA6pFGI8v36ZfKFEfzA6D0ILl1heXkGP6Nz+6P+k3zlAxWe7p6PJHlfSKXZbPlJyiflykZahIwjCVzyj/u0mgmiaxvZDif/fb/06cfuY1UIMSZYYzETUlE6v23mcBV9cXKIKb2k+/lqddvHmxMGjTDVczJG+4BuPL7sqfnNz8yKQvuAbmvO6xy88h9qyLNpne8wnZeKxCKqqPD72tD3m5GyCFOuzOTfPxDDoD00CJUlMSSGJ4WPnW67MszuZsNNoo4omQmKB6x98mmKxRKfdwhy2eHAy5KzZQfRD3v/EAqlk4vPKoouyRrtjMqzvUEgo6JEoI1ukMdSJzqdJaiGzfp2tnEdZSXJ61sBwIywX4zizAbVGm0a3z6VFn8VyHsdxaY08LF9EE12iisZ+fcrYkShERRbzcbKxkEpOJ5KIcvu0R9vPMwmj3DvqE0/nSC3dwleOOblzjBlOaRh1HGNApxOQ1QPWi3Gi0RhHx4c0uhOOuh6JeIz+FL716RLN7oBAmtB3HDoDFUnRed+VMq8cDLh7OCShC+Rj0Bg0OT0eUuvPyPdCLi151BpNfHvMfDnGYrlMVNe4u3eG5QQUC1FU10J1DYaGz9iWyKQ0yrpId+Lgehq+oHPS9ShnJVLJBEu+w1pexQMEQcbDQxEl0ukooahgmCY9IJHM4swCAt9BVWQcdDqjDoZkMpyYtHouR22LxZyK6YocD2XCwMPXQgzbI+YHJDUwPAVBVen2XDrOkPm1G1QSMqPbLzMzIBJTqA8NOtMBUXVAZxTgSklurqYpRvuMAo+JbTMLFLJJibm4znTS56xaxZg6uBzz8d83icUTDJonPHVlmbDv4o2O0TSf5WxIfeJx0p4yCQRCRUP1DNIRj53DJpHIgMK8hifFaLcHaIZA6D3ERyIad3jwyd9GVVXK5QqhazAadFEkExAwPVjMK8T0gFxCIRpfY2Y8IC5MyEgOIzVgaCrndctAq1HnibLA5lIBOxTwbZ9KMcXu7j4rS/PkMml2dnY43t/hA8/e4PKlVertLtXGEEcv4sciPDgZvkVKHODateuoisJv/4//woPabaKxNBENXDFJLJ5jIbtEb+yQqlwimUy+azPqP3tcneM4mJM+y/kokYiO5YXEoirJQpzRm7LgoiiyvLyCsnHpa2aG9OfjzYmDfCYgGtHpm7Ov2cz6BRd8uXxZQfXZ2Rn//b//d05PT8+zeW/iF3/xF9+VjV1wwVcbTdO+4BxqSZK4e+c2pztvECvrGN0q8ewclfkF4rEoi5USoZLgwe0Po0p1ivkcgZLBCnVkPY4STSDLMvt7u39cOiIIiIk5ti5fIRo9V3MsFArY9iWGwyFO8Cpb5aW3feU8q8xTPT0B4PToALN6m8VSmmRcpVFrc/90QnT9Q6ykdeRyicPX7+KMDVzLxBc0xrbM+mKKes8kWVqmkqoRT+apj2WEEFq2TtPwsA2DzjSCpymkEzr5rIQY5LGtCVYYISooqLKME8lw7coHufLki6RSKTRN43XHYTgZk1Bcxu4MMYCp6bKSV5CCGbgBSSXADj0EQeDpa0vsns3Y69rk4wUkQSMh2Uw9Ccs0OWqN2a4ZVDIKl0oqSmijBB5Tc0RcBse22D5ukWGMnAwpRgNc16E69QGPuDjDmoIeUYjFY8zsKZ0pjF2HnfaI7a7ERiWOGolCGCJIIpKq4ocjJqZLBPCDgLGjYPoKkcQcrqQjRCKcTUYUsmmG/QF9U+D1h1Uysk1pZZ7xdEZt1MLCopRP8B03IwgIHNbA8mA+J6EmXFbiUQ76IhFXxQkE1KhGtjjH2mKBu/tV5nJRirrH1ZUU/b7IvZM++x1QknN8x7MbfNcHruMHIg/qNlVB4ZVX32Dr0grj9ojJ2V1Ce0wYCPiDA47bAf/27Izl+TxJb0ws8HEDmaOOxXRqctz7/7P3H0GSpOl5Lvq4do/w0Dq1LF3V1bp7ZjCDgQZBAofXqOzSrhkX3NCGxrsAjTQuKAw0LiiMNIPZcMEFd/fw4JoRds4xXBJDAhhgVE9Pi+rqUlmVOiMzMrQO1+IucqpQrWa6B92DGTCfTVVFhv/+Z1T479//+fe9b8iRlUJUDL68LmNNTQqqw8iVOOjH7NoTEpkSRqbMi5eKZASLlKnTHrlsdVsMDt7BdRz6vTaLOYFXL65Tb3QoTEbMpQV+/90B49EIPaNzeXOZ0WRMpJooKYmbZY3m+Oy6rGRk8kkBJI2MIrLfmbCwfJmmm+LRqYvSbnCw2+LC2mWevXEZSZK4YCYp5rLs92I2r79IHMfvsRIH8H0f27Z57uoK8qUSkj+jdXrMfqOH7BV5fqFGsrbC6to6kiR96hr1cFZ7PGgecm29xgsXzxqlNVXBdlwOOlM8afyBLPh7ZPpGo08cXH8cyc9Pg8flLsenh9AdImvGT2xm/ZxzflQ+cVD9h3/4h/z6r/86q6urPHz4kGvXrnFwcEAcxzz33HOfxRzPOefPjR+kQ72/t4vf3aGSUanmNHRNpNXZowEkU1kkNclf+su/wJ+YJntb38axDFKZHOhZBMUgU17ktHHygdKReuuIxknqPZlnTdPQdR1VjM8eMT/F40fOjx5u4Q+OAJGriyZOco1Gu8/b+1Nk2SBXShM4Xd59q82VUkgmlUKJQ5zpmaayHepk0hl6nk8qmUBWNTRdYX25hCKrFKYupuRwWM9z48Z1yuUKr333DSTbIZFIMhU1bixsEBORyGeYuAaZ0iLlcvnJXJeWV/imkiGZ9lE9H1GWyVlTFLFPr9dFlUD0Z1iWwHgqcdTxeeX5q7x77DOYWPRa9yknJAq5JAlN4eB0ymjqcHlFxBBsRhMLOQ5YycW4oUSUCOlZNnYksVIzWVlMMXJV2oMeRc3Dx2PqOWhJlYOBRLsPJ8MAO4yRpQhFMtjuGeRLRWqZiOHIwQtDjmcGk7bBS4ATqiTzVRzDwQltbjVG5BIaIlWOTywOBmmCwgrb3To3yiLZQgElVUbqhCyVxvQGI0QBVmsZHhwN2ToO0dMSYQiTqUQyqbFW0nn7JOb6Zo31pTlSCYFkPGNzLUt75DCLUyRyCQozhUYgcPXiBr/6M9cpZFN4fkB6GPBSbZn/6/U6d3Y7GPYBG2kfIylSSgTYnkckGOz37vDtB1PWChI3lpOUikVkKc+b7+5xNA1Z2LyONzhAiyymoU8/TPHszU103eTrd9tMQonrFxYomSHFVJZUIoHn94jiiIVKmsPuCbJq0J9GOF5MMZ+l3uwhRDG6brDbmlEKR9y4MIcTKRi5ItWUwFIxweh+BwA/iIlCn2anh6oaTD2FlJFleX6TzesvMhwOEWKRG5eqSJL0geskjmMymT/NLj9W8Ri1jjjcusVKWWV+eZ1iucKlIODGcMx+L+LSzVfOMtQfY214Gtd1CcPwYwWtruuiCBFiIoXnheSzZ41aAgLWrI+nih/Ign9YT8fjkrCnf//384OO+yx4XO7yWAbvz9pMec45P4l84qD6n/yTf8Jv/uZv8lu/9VukUin+63/9r5TLZf723/7b/Mqv/MpnMcdzzvlz46PqHofDISd7D7hQyzBLrdPs7LFYNMmldXYO91CySxjVy/i+z5d+9ufYX16he7xLLMaIWhKzUKM2N8/WO6997GanH2SLPnZ8wukeqxWT06mHJgs8/9xl3n2wy7vbx3z5xcuU8mm+/uYOb7z7iJRrkk8rXKxUcYYxvW6PoOUjRAE5PYE3PCHQKhwNh0hbJ5SyOu2hTXPoY5ZXEfQ8qaROqZTn4fYD1ucUtMIKj9oB/dEMXy2SqF5ieWX1PdkzWZZZWtlAI4ns6JRMga2THSaeSGPgk1Vc1isq5UISQZdQowlbBy0ENHxrzG4nZMudkpO7TOyAgeWzYAa4lsbAixBCl/W8iCjB8TBCFSMqKYW6nyKTN+lMQvzAJiFYHHYcpp5IWg/Ybdrst0MuzUkoqszlpTSyLPPuCRxTxDPX6DgnLKYTaKLMhdxl5i+8AMDJTMWILSaBjhiNmUopZEFjarm4nkphdZ2l9Uts33+HgdjlTt2h0e0yHkyJ3CmN/ozfe9Pm+QsiFkmquYD5ooknGCT8s4Cq5yVQTZXN9WWuXrtJKCictHrMq12SSZMXnn8Ozw9J5fZxtD4SHlEUnn0/bA9EFTOpUqsUmcYJ5P6AlBmTDKaIocNs5mMPR6iOiOxGxF4SL8rQHjsMrYhemMGSJazZBCHwKZTnWNtM0Rr6NC0NyQnp2hqJ4jKyqjEcNiin8/THFt1pSCKRImkkUIQJ80trHPT2eH23STWnM4wLNJpdokhkIlcJ/RTaqU8o5MgmK/idNnv1Jo8fina8BG8fThAEj3wth5BdRtCzZMqLpNNpVFWlUzc/dmnGY6m3uZSEWNFZr2gMOnt0gcWlZTRV47h3ynA4JI7PXDQff59/kIV3EAQcHh4w7TWQY/9jBbuapqElU8RRhnr3bBNhJnQa7R6Noc/la+sfCEQ/rKfjw0rC3s8POq5YKn/kcX9WHsvgnQfU5/xF5BMH1Q8ePOC//Jf/cnawLGPbNqZp8lu/9Vv8xm/8Bn/v7/29T32S55zz583jR6xBELCz/YiTvQec7ryNZhXIlWro+WX2+11812W3aZOSZWr9Bju9oyc30xd/5hfxfZ8wDM/syIPgEzU7fZg973A05q272/QtkOw26agG1HCCiO2DE8bDHvM5jVTS4NH+MaPREDFyePCgzueuzBGEAjMnIBYEDCnk1v1tagtrKFOLdHqVUyfJO6/9CYLTxRdTZGpr/M3f+EtMJn0e7t2nWMhy52iR/anInDbDlrKUl26SSOdxlRL7D96GwMUNBUQjS6Vao1idQ/d1Og24f+cO+y2LhYyKpkrMFxIs1rLMAoU5RGa+wDe+9waqbtJoD8ipNutZAT8SqSYFWiOPmeUxngaMnRBNhLW8yunQw/dl5DjGkHyyksNkENGxAobTgLEVIgYilxdUrtY0DlpjGn2fo4HEy+tJfuGFJYazACUt4x8HGEpMdf4yod2jkE5QS6Qp1Io0PShXa8zlDa5WZbypSqvdoTl2CD2LhdWrPH/jEqf1feJxnW7oMo7GXKxohAkda9BmISHScnQaA492b4woyRTKCzxz8wah1eeofszxzgw1kwSjQtJMI8sqkZTguGuRKZggiFjWlP3miMEswA9Cbt3fY3m+xukowMiUOWr0CaQcq7Uy3WjIW1v3qEktylmNOBbRwwk5NUly3gQ9w8SNsN0zLeybzz7L8mhCtVzgW28E9CzY3CiTznic9DympFi/cYPa3AKi02V/v8V4p49ppsEoUEhm6Q9HCEqCpflNommH6anEKHKpzZvc8ZIMfY3nX/kisagjBSNWKxkau3cYtk9YyCtcWJpnClxcrTGYFBhZEapWJlO8SmHluScZ1o+ysd456qAUN95zrTmO80QjvpBJ0GudGRxVCiaNfgurWOL+wz329k5pthq41hTDzDK3uEK+tsrq2vpHWngf7O9ht7ZZKKYo5T5esPt47mN3iM+ZWo8z69EaBRQ3X+Hipcvvef/HVSh6Px/m6Pj0celM9kPnd8455/xgPnFQnUwmz+RxgLm5OXZ3d7l69SoA3W73053dOef8hPE4u3OhZpD1C2RUn1H/kGRpjWs3bnLa6lC3WsybAWtlBTOZeXIzbXB2M31cw/mDMs8f1ez0/kfOjxsXv3hzlZPDEEN0IYK3bj/AbT/AmQzQUiWGDhjMuL6+TCkRcut2j5njcOdYxbNUZhMd27MxDI3LKyUSqSy//9oDkqrB3/0bP4frOpw2u1huSLvXYaWoc+XFa1h2gFq8xNgOOdy5h33aItJLYCe5vDBkMZOn2R7z4J23aTWP0dNVJLNMNacReAKdsUccuDw49hn0fOZKVba6AmEU0R+OmVkOmuAgS0mul22eX4jQVYWjrktn7FNLRAQamJpA4AdMXPjuXoAbSDhhSFHzkcQAogBRMUCIOO45SIrKz18tsJT2icIYSdIw1AAEgY1aklhUyeWyZGcOBFPWFvL83M//Ms12B2c6wLUm3N9vkp/PsLZUY3C6RyK2MFSFhK5wsrVPNZ9l1NjmO+2HFDNJqia8c3+ftAZRschgNMaIA64uZ7lu5NkfyAgiTAMVX0kTIpNOZfDFHrPQJ19cwIl13n50SiaVQEhWebB/TCkK8O8dY9sTNLPA1SsZ6q0+//3NFok7PUqFDJHUYxYZrF0qMOq1cTyfieWxUU2yPpfmqNFhYHmUSlma05C1ao7LG3PcflBnY6VIqZqnftLErKVYKSf4o3f2ODgdUcnpnAxC9LkbfPnXv0gM2K2Q5c0beMNj9KTKo6M+djij2e6gFjfJlBcRsqs0D46wunVmfkh2/jn+5q/8OkvLK+i6zv7eLsd799nvxySlLF0nYnmuyBQwjCRbhwOql77A9Re/8J7+gw+7ToKTNqedPoIANeWEu28OnmSMz6TePBJGFl3XnshZVrM6nuPyxjv3GJweUEnnqKUmmBWF7mQIVpNZw/rIAPlx0ForpshkUqiq/J6gdVSuAHxoScjjuY/adWJpgmAIXLu5zqVLlz+Q4f64CkXv52mJuw877v29Uuecc87H4xMH1a+88grf/va3uXLlCr/2a7/Gb/7mb3Lnzh1+93d/l1deeeWzmOM55/y587gJqHOyw8XqWXYncC3szh4ZXaBe3ycCOgMLVVVYWyh+ZOboMR+VUdutd5ALGx+YA5w1U5XKFcqVKrZtv6dx0XVd7t+7AyUoq0MWLxepH44ZWQP2th1uXLtOOpVib2cPIQ7QZZ9IyaAoMo5ts7pQIdSLZPJ5JElGDYZkkxFGPCWp+PgZjf5gxO6Dd0hfvUjeyDByQkJBYzkf8eyXb3LSmZKeW+PBgy2EcJXxZMLho1ssJ8d87qUig1mAJc74vdfukhEGPH+hRCev4Mwm7MQTQknHSCZonR6jiyGC7DGfFpjYLQR8UnJEGIWk1Bg5I+J7AbIoMI0kQmSCMKAxhqWCRFoQaE5g4ka4VsDPzxdYzsrcqh+jYLNU0KhlNGzHZ7fjkDA8RFEk1PKkMkX6Y5ejrkMsGVQrNfK5DLVqidnM4u7WLn7zCIC7b73G4e49rs6pXFiu4M96VKMT5sQJ9Y5HaS5PQSlixeC4Hv5sxht3xkiSwDOLRRAlJrZNEGdZWpjnqOMyoMLtQ5dRv8FsFnHhyk0uXb5Kc/cW3eNjtmwJx57SHrnUuxb3j6eszRVZqKhokksmnSfyXZJSgKlFeM6QTCbBtfUS45nL7b1b+JLJ/sTh6K024/EYCBA7HU6mScyizZUYxNDFDUV2610UMSSnBywVkrTyGrmkgCjKFMp50rUKkiRRm5unDsz6SbqjkNdu7yC5fdaWKiyvXyCXL/L6679PjMjnn73IdJDBtixGbkCv2+HylavsbD+ie7JH4Nlk01mubV4jJsbzzpx8Z6FMpJqYqRTqU016TzfbPV22df/eXRZih7WF4p82FH4/Y7ywuPTE2TCXNlhdXmAfuH+4R70zBdHl6tomGjaLeZlMyiQ9nLLftyjnKjTeFyDHcXyWPR6NmI57KLn3llHomkrj6B7T6fTMtOVDSkI+quTsw/g4CkUfxg/b0J+7FJ5zzo/GJw6q//2///dPMm3/4l/8C6bTKb/zO7/DxsYG/+E//IdPfYLnnPPnydPNPNNhn9P6NmV1g0zaZG5+gaMwZPvBu9x5eEC6PsTIVTE1EUN/703w6czR09mm92TUGi2anQFxHDMnvTejFscxD7ce0D3ZQ5UjVD2FaOSQ4uBJ42KtUuKduzIKkFJFssU5jNwCk16D/Uaf2WzM6cEjsoZPJlfipNmhO2zgiEnmMgqJZIpYFjneepPmOMYadzElC3eSICX7JCOBgTvl0d6AWZxiGkgsLK6QirssFk0kCaaBRqVUYHSqYo26TEddtHjG2lySdELF9adIMqSjDlfWK7z4wkt0Rhadkz0m4yGv32twcaXAUj5Hqz9iao+4UDOQY5HTQYBISBAGjGwwFBFNk+jaIroSUi4KuIHI6UikmNZIyjGjiczxRGSpmiZfXcBMJHjpZpo33rnLbidAThaxPQclKaOaKocdh4M+BFtdTkY+RxMdo7iInsrjuGfZu9NWB29wSEo7q1leyYUMGVNNJDjdv8/+boP1fEwh4dIMx8ylMzS6bU7qQ+ZTIXkFTCPGj3UK+QKa5LN/6qNlcwiygd0fcPHqdVJmgod3YjL5iIvPvEhSE+kcyLRGDsNek5WSweUXlwjVJLffucve4T6uU2F1qYbVO2RBt6lWaxiZIssFldHUp3G4zZVnX+b4oIY1G+LFHvXGBN9RqKQ0dnohxbyCQsg37zTZrrus6AbVfIpKOeD21iGn7Q7VjIysKHQHY1YurZEzI7Zuv06h+JefyLwdlJe5v71PTvVgdsqb36oj6SnwZ3THDkl3kVeeWSeVXOCk1eOP7/4J/+n+fUpSj+VSglQIe71DDuw9CnPL+JIJadA1nYVCgpRf592v7/PW91a4tL6AFAdPgtTa3PwTp7rIHnzkJndxaRmzMMdpa/uJs2E+l2UwXWKlVkEJ+qzMpWjv3yOhnzUNmgkdOiOIoXG0w3Q6RZcFTjs9oigiDj2mox6TQRdhskRtcYW15QUkSWJ3dxdr0OSFq8sUctkfWBLyUWUl73/Pj6JC8lEb+sfHnQfV55zzo/GJguowDKnX69y4cQOARCLBf/yP//Ezmdg55/wk8HQzj1yuEI0P6dUfoioKi0vLyJJEUhG4eOECL7/8Kl4Q8M1vf5ednR2uX7/2ZJynM0e+7z95/f0ZtbnQZX3xvRm17SDg5LjOcO815rIqiaSJGGeYzTo0+w4bcyZ5NUMQRuRSSaZAobbI8sZZPeXhYYat+ms0D+sYUpWFfIK/8fMr3N5pcvK9B8SCSjMoII4kljMOhq6Tz6kM+x1Ggz6tYwGzYmDIadr9IZ1mk/LyNbqDGVpiQGSPaYkwnbkUlq6QTCZJJE2OTloMhkNMr0E38tifTHnUjojlJFavjlOSaXf7lKrzjEZjludrfON+j6NbHW4uqcSBhRhERGGArgQoQkzPihBiCCKR+iBABPSEwsz1IAwJYgFR0UglE/iegwAUMirPXqrx7LUNZBFi1WS7ZVGfDMnbBvl8hfm8zFCd4Pg+t4Y6b3UtkPNU1m9QyFc5OjrCn7QQZZ2jkybllISqnm1mFFUjY2ocHTUIrBGS75IwcgynDlIcYo0m9NtTErKEmUmSlsG1bWRN4J2dNvmESNvWiEKLwWRIcyLxB3/4x0ymM/xJk/WVRWbe9xgOh8xnYggskpLH5so6V9bnOexY7OoS1tSmos/IyjOa/oBiVqA3GHOlNsd8uUDKtNh70MYPQjZXVwicGYLd5UptjaPGkP36KWEcYdk+tx8eEqWWWLr5l1lZztA/uktJcwk1BSH0mc0chFGbXDLNfMpHFsYcdfrs7V7m4qVLNE8bfO3/+t+x975F+WIJITRYMsYEXgOPBGYqRgkG9EczVEWh1R1zvH2HyWTEwjMbjPsmk36TsHvIUFeQpZhcZR4baDcbPHdpiYvry7z57gNuP/yfhKVf5OYzVxmOJrz+vf/BPdlkoVpi6gQMuk2uzF97z3X99Cb3w0xUcis3ufL9RmLPD0BSsByHjGIytRyQVBonx08C5MFwjBce0e70SBoqz1+ocX9XYtBrIeMhxj4JM8Oj3X3W11apVUrAJ3dh/DA+rgrJJzluMpl84nmcc845nzColiSJX/7lX+bBgwfkcrnPak7nnPMTwYc1AS2urHO6d4fjwz0SZprjw11CQeLi5asUi2fXxPraKve3tkkkTSrlEp4fvCdz9HRQ/Zg4jonsAeuLH8yo/eEb38YbHPH5S1nmKwUsx6HV64BaQhAEdutnvQyyJOEFZx7AsaSjyAqSKFEolkmW12nadVKpFIvzWWJBQk+avHTjMqEg0/IzJOMhiwsJ5ksZHhx2sUgynQ7o9zpcrC7w2qM+7e6QzbxPRWiTSVZ5661bHBzus16USGVy1KYRoigSqyn2Tx+gB0OUcEKoO4zGNmkxppiT6DdDlHBKNGvzcMcjKbuYpk4+myUtTtgoyxBL4HhMxmOOXRE3gCAQOR1HdKcR+/2ItC7y0rpI35HwVQE/jBAlAVUWEMUkzkDEDQRwLWajAXYoE0gmn3vpOe7tHPNOyyLRmxIrJmbpKv/PL71EcX6NRuMEnBHTUYfIbpLOpEibBs3WCffv3aFTqVIrF5ABJ1KZ+gLd7pi0JuKKBoKSJIpDpkHIG48azNwAQzeZS0ZIosxMytPq+hy1ZxQKBdwwRh7Vcd2ApcIcedVmLu8RGxHV5IDtrSMOTpr0cmnk2KdkQr91wqGhcdQcgjtgMR1QUKeMO0d0Wk0UT8aRPJK5IiulJEEoEMegKQqhZNCfwrDvcjA+xZoMmc1mJA2FqhlQH/Tp9nXm5mokqkt87X98jc3UmLSZoGmpVPUpX7hYwBOSzOVUGp0OYpzGnfbY39tjdnqPYnjEtWtF5nMq7+yccmU5SzFd4o/fPkA3C1yYS/PO1ja33IDZsI7uDciYIorXplG/gx/FfH49yUE/5tHBKamZytzzkE0l2VhdICYipUZcW0gS2EMcx6HRamGGbXTN4eLCGpOZxXcOTrm3pfPCsx+9yf0oE5VMeYl24x6ilGS/foSqdhnbECWqnNaPWV9bJZdJ0zjaY30uT+T0SasB85U8adPg9UdDxr7C0bs7FBcvIpk1rl7609Iux3EJwwjPmv7IVt2fpFzk0zjunHPO+Wg+cfnH9evX2dvbY3V19bOYz48Vx3GelLJ8WliW9amO9+MY+7Ocs23bT/6U5R/ZwPND+aw/69lsRuA6CFKWqXP2KLlcqTJ1Ah48OmRw/4RRDy5fuPzk9TAI0HWNziTkG288IGHsoWcqrF165uw90+mHznsymXzgXAB+CLNhi6KpkcmVcGMJSVNIZSTGfYtcpkycXmC7PSZwJ5xOFQop2D8Z4Iy76GaGqScgZZbRqwW2u018MUQzNFKFdYpKm/4spECama0ziBVaxzZdJ8P8xZfoKCqHjsvRrYhYkrl6aZWyCQNPxXOmFEwwV4pcWMxSzqdoj8a89eabyJl55MwSvqWzddhn5utkzDTr8wqDWUiycoGOH7PgxrRHfVRF4Khhs7JQ4fnVNabDHsN+h0KmiOuH7DYCRqHKWDAYKT4z3WNlVWI1F2L5ITMxxBUVyqmY+bRI11fY6/oM4gIzyeTWicWxc8LGteeZW9pkMtxjbcnn6loNRZaJoogHhx3q9TqzyYhhc5tCSsH0ZxiaiOcJNEYKgylUcyo5zcLQz5z4EpqEmCiRLMUUsgqqHeMlDBKpCGM2xB42EVSZCys5MmpEEAZUi3O4qk2yvIokS4wGfS5UVXIJmXrXZRraCKqI7fkcnzTpDUPmMgo5w2XiRASBQKvTZa/jgaRgJFOkk0UsQWbmeESqyakVoyckHh20afY9ysUcjlph++CInZ1DjjtDhNkAyRNJpAtcWSmiShG6IrGyAAcjiZ1bf0jMz7O5PMfFfJ5aKYPtC4y6x3Qck3SuwDjQGUcxmpHCcaa4p0cUDYVcNk0ll2c47JFMpbFChRlpbCmPQ46jns1kNEZVBErpBLrg0x/OqJ90WK3lGNsxxVIWW5jhpkpE+lntcqlcZuwCxMy8GCNb5nQ05u2336LfOqWaEXBsiYntkcrkWF1dZ2f/mEKpTDadwrIdTrsTjMomvu8/uR4fW7SHYfhk41uuVDmwLB7ceZPG3pDAtdDNLIVagJqcY3V1lcHUIQhjAkFFVpPIKgydCESNdDpJprSCOnJZvPAM/dN9+mMbM4TjRovpsMN0MqZjyRjFZdbW1xFF8WOvUe9HkiR83//QjfsP4v3H/TSv2z9tY59/1j/esR3H+czGhh8hqP5X/+pf8Q//4T/kX/7Lf8nzzz9PMpl8z8+fFsf/SeCrX/0qX/3qV9/zWhRFfOlLX+LatWsfcdQ5nxTXdfE8D03T/sLU4ymK8qSJKaMqAIiSRDqVIl9bZWH9Mv3mAaWChvj9Oul2u8W4fcDltSoXLlzGcmz6YxdRkn7gzfKs4ei95wIYTaeIoohpmliOS0Y5KzkwNA3bHhEoMhubmwDsbG+zsmAzCWHoimw9fMDMsvGkAstrG2f14e0WgTtjc2WRqeWye+owHg5JmDaKojN1ZdLpAlc313FtC6+7jaJmIJZIqLBUNlDFAGsiEkQ2edUiVy2TKdSwrBle4NAZWUzHfZRoShILURTZ7QvoIxdFUpiGOleuXeCwOeX2sctpZ0gykcA0cpToMJcKef3YZuxEOG6IqUFKlyhnFeoThWmkkTZmLOVFcikFywlYyAfcb3gIapKWA72Jw/Eg5tLFLIZhUD/12G/bxMdjmk7zrKlNiNnd3kaRRDxEiGVqxYDJ4Iiy3CcZigiKyPpCiddv7/DwZMZ82aSa1RjPbHzHQgEG4ymD4QDQaB6e3Qz6vk4xbdAdt5i6KVKZLKKugy4QTCf0O23Gts7qco3JeEwiI5FSBeaLSY7bIzw3ILJc9GBIKEgoccBqJkBVFbKGejb/KOB0MENLpHAEAS+OSJsyph7x8nqSwchiFAs47pS37vUR9CzFyoyDRpd82uCXn6ug+ir3799nMJoixCoL6ZggCslmUqQyKrfaLXbvfo+XLs9TSAZM7QmlrM7MyvCwE1KVFVxTIl2YJ7Ijxl5EKhFRzGU5FTVUVcTMFTnsTKl3LIaOgppbpriwzoP7r+OHEYoHuSzkUyqGFDCZWch4DKYRpyOXiSdSSJtEyQwBMLI8REHAdlyGVkAc+4S+Q2kuh+KpFIyQ/e6QwaBPKpVieXmZ477LftsjORqCrGFWNllcXALOyhqbzSbepHNmhS6rmIU5FheXiOOYVvOUYNxkYyGHps8jaiaCnGDiRjiuh65rIMoEYYQbREyJGA4GjPtdhjMZJ4ApOXK5HNPphL36A4g8FG9ALimjJkVyxSLB4IB6XWF5eeXTXMbOOeecHyOfOKh+bPDy67/+6wiC8OT1OI4RBIEwDD+92X0KfOUrX+ErX/nKe14bj8d8/etfR9d1TNP8TM77WY37WY79o4z7w9y8HjcLGYbxEzXvj0MikcCprdBt3MNQRXRN5f7DXXb39lHMEt1jBSuUaHWHGKqIIkt0T3YJfZfltQsszp3JVfUHI/Z7LZSNzSePV9/vsmaaJoPaCo2DW9jT4VnNpyidlUwUaphpke6ggyGFmAmdbr9HezDj8tV18vn8WQNkMCGtBExCuLaSZy0xR6/fZzQcUNA6KJqDP6/izZr0GhanEwlBlKgWUyRSGULfYX9/h6XNmzy7NE9/OOJkqjMdtiklIiqFNI4TIwsWQZBClaaEVgcpl0UWIizfRhV9Zv0u3Umdmwsaz18oMCulOGoNuVf3mNku2YyK5HYIbQdRSRILCnHgUk0FdKZT7PGYotDlUslhr20RWjGiJ5LQE9SPu1QyCpfmDFaKAsVURKPnYigCXXVCWZd4+1EHXbSYVxUStsJkJHAp4XAwS2FN2qQVD9mZcWlJgcCh3+1heQGSYvDdbx8zG/d4dUUhVKHRcxm1y6SDLuk4ZjUlU06JfOP+mGZnyOIqvHF3n5ODAyqlHHMZmSDy6bQn7B+r9Do9rm4uc2U+QRz6TByJR8djXrvXQE+kid0xvZGNHlvIZZHOqUS9NURPpsmbMSW9he2K9N2IghgznCos5zXanstxN2KrHuGHEqVChpypMegEXKnAcllj2LNYLiQwZA/BnZCfn0PRA5A9qjmVYDbmmQtF+qcajaN9TiyPa5kUdqyR1kwiEUzJYTisY6Yvo4hjcukSgTtBl2O29k/JFwrcuLBEbzhmp2mzeHOV2B2R0GUK1SWO629ycTFHOZvk3k6fSFJZvfwi80srHOxuo6syxzv3KBBi6iKR3WM2cRnGDg8PPCazCdcubZA3fAaKQgA0BgE7h82zxlq9yP7D21y5sMZiIUn7eMbId1mq1BCsHqq4iBcHzC+ufsCe/DGHhweEgwM25zKYyfT3G/a2aatnm5fxwet8biPFXLnA1HKod8f4qsbYjjlt91lbKJLK5DipP2Awsmg7U6JpG0WRKWZWsQOL2Be4festUhqctgccPLrNlQUTc32D4twCc/MLjMbTD6wTH4fPYv37aV63f9rGPv+sf7xjj0ajT33Mp/nEQfXXv/71z2Ie5/yU8qO6eX0U75fG+vPm6Wae+sE9vFGDfDpBMe3jDO/R7jt09GUCOc1wcMLR4Zjrl9fI57K4roemqR9Q/vgwl7XFpWVc1+XNu7tMmtvIQoCcqnLp+Z/jwvWrOK2tH2gG4bourj1G9qZACikOubaap654WKbPwB1y4+I8kZTADja4u9tkZvXQpIBEaplcqULCzDG3eoXt4yFvbjU5Pu3gyDkiOhy3B3SmEY12TFW3SKZsjvsWgWdTCPPcUEVW8hr9QYQadCkrkC1cRlVUtFwOKfL43qM+j/Z6fOGFS0wnM9KSjSIHmBurjE+3cMdtxnbA9+53wB+Tn5NIGxITT2SxZFLKylSOA9KygxgLEGo0210GI5ddR8INFR4eDzFkly+uqaSSKoEccKcRMhy75Mw03rRJMidQrx+w70SUdIeUKiLFIZ3BkHt3mixkJSp6iaQm4Ys9DrZOEESJmZhn93REr+sT+iGh3Qfg2QtzZP0TptMBrU5EzYwxY4f7xwFdz+T//dIyhqrTaLY47Qy4V7e5vJTnZ168ij8b0WvX8WYuMwtM2SdvCNSnIQoCCU0kqYnYbsBeT8RQQ3wEloo6kShStGQMMaSUkbCVLOPRhMFsxvFYJZGt8NKNDUb9DsMwSXmxQhwE9JyYWl7nm2/sIocTFD2JL2ns9UMGYZJsymTiS7SmImamgIZCKp3DMIqM+i2mcYqBOyRKr0Nygbe220++j5cuX6ZeP6Le2mZ5bZMdP+Bbjx7Q7Fg0WUXNbLKUW6ExU6lefJUEY+z+Mbk8bNZM9nct9lsTjrs+gpRCNOc4HsJWZ8LizRIy8MwX/zdmg1OQIvTqAkIvREln2W5ajOIcTmCzkMvSGVmctrsMpwGZuasf+hT1afOX9/cybNV3sewphYSAmTCIiZ/Yhj9qjylm55DyK+z3hoSBTk9aJixUaezcYxa4lEsFClqBUq2MMR5xvPddrn7uFVZfusQtsUdWizDSRRa/L7P5w7SlzznnnJ98PnFQ/aUvfemzmMc5P4X8MFeupzWZfxg/LOP958VjXWhV02m1m1TTc+SlCZWCTkLPUmv1+M7DQ5qDPCoyo9GQu299h3Z9m0p1jnx5jkw69aQp6qNc1r51sI/V3uZa2Wf5+g38IOC0O2Ey3ENaWSG9eOMHmkFomoYfSgS2BRoQByiSiOM6GIbOxPHJJHXGVkilMsfbO33KGZGrK3Ncur5MHInUux2S2SWWV/Icdm06B7e5lhuSW6jROPGZWR5dS6IVSyyYAoe9AFFOIXYaNNUp9f2Ag5Mm3aFNOp2m05tQKy0jRQL7vZDZdIIkKdw+tIjw+NzNFfL5EoMoxf1eBqt3QELRsKly79hltzlEEkUuLWbZKAjstCxkIYTIZzYNMasaSAqD4ZTdpkPTMsjrAdcrAq1pzMRzMTMR5bTE7a5NEFh4gsBKQcBxbKYTm+tVg4QS8+ZWj6PTMTkZSobC7lGDSjIiLYAru7x9ElIfT1ifuby4kaGkOkiJMw3gra0dCpKDKPvU+xOS+RQb5SRh5HFqy/x//sd9fuV6GiV2GfUHzEY9br5wmZ95/jJv3r6PIeRoHA15cOpSSUsoQsBJP8QPRAZhyNAOaI1j3Ag0KaBtOawUE+wPRGQRLi+l2Gt7tKc+pWyFoX9KxleoLVWQZYn+xEUxsqTSaWQh4vSgQ705QIstdEFgpWYwXavy+28e8V++O+bmhSTVioGoplASBTLJeWZuTLWcJZcvYuRqTOUKi3IGNZ/Fi/70+2jbNouLS7RVleN2Hb20STWzRlVNc/3GM2dPf77fFLez/Yh3/uh3uLZWIaXF7HVnbPcUAiGFljNYrc5TK+fZOrEwVj/H57/8K7z++utsbF7AMJ55UhuZTqWYSwUkDIPLNyQazTYPD/doDV2WMzKl+YsfUMJ4vHl/2vzlacxkAnva4uTkGN1qI9htzGSKTL7AfLmAM+shGEtcuXrtyXjP6Dqj0YgH+RxXV/IoqkKISBzDdveYuaxCMnHWQFwolCioNvakj+d5qKr6Q7WlzznnnJ98PlFQPR6Pn+z2/9t/+29PHlvAWaPDr/3ar326szvnJ5of5sr1SRoCPu2M99P8KNlvy7I42N/HHbcZdhu0W00mvVPWigKF1SpmsoQkSsyVC8R36kz2X2dtY5OLFQkjmGEQILsyp3s9HlDg8ku/RBzHT1zWdF3DdlySCYNS1uOdb75JLStyda3yJBtWzKW4X5/SPHrE5ZuvUq5UP/TxNZzpzhbn19g63kLWIIgE+sMZw1lAOZ9EVBX6Y4vTvoXT6DFsn5JTQ0ZjHVmUSKXPeiNuHx1xaiVwB3U28hEvbCyhyhEPGDLyE8itEa2+zThI8MylLCcj2Ds5pt/fZamQ4OpyGXUt5OS0xcMHbxP4LuVckpENS0sLPHd1k1x5jvv3H1GrVFhaXOTtnS7FfJpC/hLbp1MkSSM6mlBvjjAlhyN1xMzPkknnKGcHSL7NYOLx7m6LpCbhhRIDO0IXfTRFQJIkwjCgNw6ZCjGX52XqjZBB5EM8Zr9uQyggiDIjz+BRo8d+y0KXYSmvUEjKdIZTJD9CkgWCCBAkFnJQUcdYtkYc+mQz39/seUNMfUw165KIQqbjEfeGAnIksZKReO2wzxuPQhaKGrMoga6rqPgc1o8RIgddDJAlETcQ6c5AjCLSCZHVkkpRzdAfWdTSHn1bZBZIOBORRx2bjCGxWZIpGypBQSO2kxjFJYKZwYk9gmFILMw4GqmksiaFUo3GyTHN7pRW45ScNGI0CDk9dZiEGisXrnPcd7ETVWwtg5LMo2YX+eJzX0ZV1TPptWACcorLL/8qc/ML+L7/nu/j496KxaVlFj9CVeLx32tz8+yVFvEdgf70BFXPUl1c49K6x1u7fbT8MuXVVcqXs4TJxff0JDyt4fxYoWNRVTF07YnOdPbCOleuXnvPud+/eXdDgU63Ty2nkEsbT943nVn0hlP0aMRa1SQrWaiaQ6d9xHGzS8tOcO3m+pOxH/+ZTqcxs3lESSSTNpk6AZPpDMeakMuk0VQVVVXJFKp0G9v4wYDJdIYg2D9UW/qcc875yedjB9W/93u/xz/9p/+UW7duAfA3/+bfZDabPfm5IAj8zu/8Dn/tr/21T3+W5/xE8nFsth93Nv8gPk7G+0e50fwo2e/Hx9y79V28/gH4EzRcnqlleLs3xhu7CLZMp52gWq3RHUyIQp9KJknzaJtFM0QMNHr9IYcdl9rqVSL5zCjGdV0Cx6LjOUwGHSJngmoYiFoa3xoSJ5OEYYTr+WiqgqooWKMO9foIfBczm0fPVKjNzf/p5/8Uly5f4eTkGNvxOB4GNCwHnyzT9gRBTfHfv71FRnFIair2eIaiRnjOhO++JrO0egFFVTk+aeNoNWppmYKSIJfSCaOAUlpH8nUavSmltMiXn1thvpjmtQenvG61CfwUX/rCc6wulHm0u0eveUhGsIiGe0ytmOYgoBsX0ZI5VuarDPo9xoMeo1wOZJWEmUEOLJAjWqctnil5CPkUBycOoe9Qbw5oTyH0LKQwRBJlDE2lPZrQm8bkEwrXV7KcDhxyKeEseIk8Ql3ipOey34+4djmLKXrstFySRorJbEi/4xL5DvlETCRoPOx5CEJIRpOwXZ/AFZBkHV2TSekySdnFnQ5xlCKldA0fyBoRw14XO/bo2zGmItKdQMJQ0cOYuaTG1curvHhlmfHEIpYU7Ejge+9u44x71JIeqmaQSEiE/hTL9lkoCXRHLvXJmIsVCT+RJIhTxIJGt9ekN3IwSiKtgYDlWEhqAt3IsLG+gpl9mbuPDth3ZhydjkklK5QLJu1Oj06vR6G8wN7eI0LfRZZk9MICN9YucCVWeePQY27lAllTw0wXKC2sP7lefpD02uPrpnd6AIFHQ9N/6LWWSCSYW1qnai4xGfbot+rYnVs4todkFKlWykiJPCvLK+w2rY+0zv4wveXcys0PPfeHbd67TYu7j/YxDeWJPvzOUQdNU1ib20R2WxAmcL0ptjXh1tGIS1/461z6funV0zxtquK4HkEkYjk2rZFPoZJ+0sS9urzArdGE/cM2NCaoevpjaUufc845P9l87KD6P/2n/8Tf//t//z2v7ezssLa2BsC/+Tf/hv/8n//zeVD9vxA/zJVL07SPFVR/nIz3jxJU/yjZ74P9PQYHt8iLfaprWY62dpiO+kwokzMEdg67rC9kCXsdBFlnrzlEkVUs1yOedlhdK5NOFhiO83xvq0U6XyaVKOH7Ppqmcdxs4/ceUUqKJCUXexpx2PXYOp7ijAX80TGFbJZSpULgTBl0m9TmLnFjvcjuQZ27t7/FQ7NEobJAaWGdi0+VgEiSxAsvvsw3v/lN8ks3eXTvXaxJA99VGU2HtBoTXr1UYOorCExZq5pkcnmavSZvt5uMwhQjZYGFRRFVTzAYdRlMFDJJld5oxkG7S7dnkTFERAI83yeXSVErmOzXp6iqgucH9Hs9kFRkNeDgpI2Cx9gVOZi5vPHOPUJ3iuOLnJ62mIQGmcXrqLbH2+9us31wijg5YrEGup6kpDmkVKgPArbafTRVZLsnMW+GyIpENaOynBdoWTKpVALbC3B9DyQDVdcYezLHQ/DQyWoC/VFAx9HRAMt16Q9nGCpEfkQY2Th2gJjWWMzKaHHITk/EFWTm8gYPT6Y0B1ArBmQXcnRGDllAl0UGocj3DnwW0hHXViVMJUYQY5p2jO2IiFGA5/ogSiyuXODR9j0qhs18LY/V7zCY2EhChCzGeKKIrCoIYkhoxSRTWZJKglnHx0NAj3QC3+d6BZZLMjEy0wCOh/t864++xtq1l1m++rO88srnODmuE8z6tE4OeOf+O8wXy8wtLjN2Ar6wvEYpZzD1ZbR0lr29A7ypRzbzIsW5VZZXVp80G0uS9AMd/h5fawu5FAkjSxx67B7cYjKZfCBb/JjH60fj4BblfAbdsvFiiZRuslGqIPs9Du8csP3wPkrpKvMXP/x29XH1lj9q837z8ipvP2rxsOmiCjbIOkpxg5pywsZqgW4nxbTfwheSKKUiy6bJy69+/iM3C4tLy3zrYJ/7372NGAfEsoFnLOJg0B+MnqyTsaSz/swXWF1bJ5PJnGeozznnLwAfO6h+9913+Wf/7J995M9/9Vd/lX/37/7dpzKpc356+FHdvJ7m42S8Pyk/Svb78THlfIKhp+DZI5LxkPWVJK1ZwCtXSjw46vCNu10KOZ+5oIiWrOKLNlLgUC5mEAQJRZZQFZVyqchs1EU2FtB1nTiO6XQ6FPwBi4tF5jMm3dGE7e19xl2PQEsyjl3CWZedvX1GdkBtfpn1jYv0BkMEq8miadMb3keUezw4uMVp41V+9ud+Ad/3zzLh3y/JKs2vkpIdFiovokgib7/xHZpHMhcvbBJ6NmpQRvD6+K5DJiFRSRU4GKpsbFxka+sB08glcjoMTrdRAodgfMyxlWBgiSQFaB4fUG/mydWWyeYKyF2P7abP6bDLw4M2JV0kpYKd1CilTSrJiK1WhBw5NDojprbH7jiJsrqOTJL9voAfKzy3lmPWanGhCruNAaYCJTNmavkoRKRVHSEKkWQB33URBRFJjgmjkHp7wkJaojtT6YxFNE1mFuvkUzqXFyGd1Jl6ITojEpLJc5fnaXX69LoD7ADiWOLKkk5Sgdv1Gb1JTMaUeGZF4+Zamv7Upz2wMTSJX355g9cfDQF41A5QfQMvdigmXSwP/FCEKGZiR9R7Nu/c38f2YnLFMvO1Et96W6PdGTLzZU66MdNpSNlwQZBYKmssVk10JeJY83ECkaIRcamqo8gC/aHKUTNk5iskjQTdiUcUgxhH7B8coqXyONMR1mTC3/rb/68zWbhWi0KhzJWVHJYXYk3GRFIXVTNoN06R+gNkUebSUpmNksTWo+9y+OhdFmtl3AiMTPVJkP2Yx8Hr09eaaiQJg4DxcEgwOmJ7ewdn1KK0sPGBzHEQBIRhyEnP4v79LbrNA3QlySSIuGROuFTJY2dibu23kYIFOu3WD11HflBg+lGb95SZpFbKs3rleTRNe3Kt3ntrgO24LC4t41VruJ7HzHJQxvIHpGQfrx+u63JyXKeoWlz93DMEkUAQhvRHFoPAZL8XEzRaNDsD4jhmTupQ354x/gnoHznnnHP+7HzsoLrZbFIo/Oli9PWvf53FxcUn/zZN8zOXKjnnJ49Pw5Xr42S8Pyk/Svb78TH5TJrOKTjjPikzScpQ6FkRYSTwhecvcTQQmEoZpOwKgpYiykoMTt4io6s8Oh5RzdhMvRBJz9Huzli7UEbTNFqtFoZgszA/hx9FnHQmOH5IxpBYzsY8d+MCsjdk1O8y7He539P43C+8QK1SYuv+HdTYwZAtlGRAuZyknA5469G3+R+eRzlrQODiff+StkdtLq/Nkc9l6PV65FM6yfkio/6AfFrl5oUaO3WZ77xxGz2VZa1cJiEYZNMmOQOm3Q75lMZ339ph2KmTSynkqzXSqRDdP+XOdoP0fJrsapHUXIqcnSbSUsyCMULsE4Yeiqry6lKBwXCI54fkTJ3VeR3BTJLJV0ltbvKLf+VvMBgM8EMBczXLo1vf5HTq4jjhmRW4EDCxPYaWjxeInAwcUprAWjVD0XAZOyG73ZiBBYo8YygpVFIGoZZhe2iQzZqYiYDuic1hZ4LrxaxXNE7bXe7sKHhBhCglGNgRuaTIUkmnMXTpWxN6lkQ5DY3+jFkgU8ubhDHsDTXuHVsYiRRw5qiYSSa5vuBgBTH1QUg+o6ArKmVJZskKiUWBV64vYnsh//vXvs2g3+Zy+cw45saFJbZ3d9DDGQlVYWKHHHQcXlpLIkoiB80JiWSFWjHNSWvA1AmZS4sgCmhSREYN2OqETByR1bLJ3/qZNRRF5BsP/if//b/l+Nkv/zyZTAYzm0OSRFRFIJXNEPg+7x4NebA/4PLGMsVikWKyRBx6FIQe42CKEStY7WO+/Se/x9cFg2Qqg2mopLN5KvMr5Gur5AvFJ9eaF51ptceDPTaqBoIgUjUDRh/yhOhgfw+ntcVLl2sM50we3nUopWR2TvpoukJ/FhKgkS3Ns3phmcP2MQCe532sPonH73kP39+8JyId1/PRtTNteGTtA9ni969Jvh/S6lsfWJOeLjNzZxMO9x9xbb1KqTCP7ccApBMacS9m8/qL7O5sMxe6rC8W/3St+5T6R84555w/Xz52UJ3P59nd3X3ipPjCCy+85+fb29vk8/lPd3bn/NTww7JEP4xPI+P9/vk8nf12XRfP95lZzkdmvx8f4wchaiJL69gjbZrstzq0xiKu6JJIFEj5MZs3fhFVVdnbukVv9w6PHtzmoRqTTmfI5vKsLC1ippNI+QoXL10mCAL293bpNutspjMMnBDJn6CrMpHVRZcTbK4tU8xew7Itllt9rG9tkzSTTGc2g16PFH0Ca0J3OMMKd5BknX5jgG253PzlL1PIFWj2JrSH0Gs30FcvUj86pH2yT7dxiOdOaA48grjEeKaT0AT0RJKllYvk8yVCR8O3h1xdyvDO+BRFT5BKJZDDDBsliVdfXSEUdE72IvqzGMVIIScLpA2FS8UbDDt19t79Jv1+gkTsc3PFJJuUaXc8dts2giJi9seoFFl95mWyUp44jlFVFV0WuX75KqIQc+/29zjqDjBlD8+zkQURN5bImCJEYHsxZkKlXM7S2u+QMwIURcXBAE1mq20zEmLSskPJ0MknYkpLWY47U06GHp+/UgLfomhKGIaJYRjsdSMaw4D9oUdalqnmk8wVBBazcDwImQwDUobM6uIibvYKSmGN2JoRA4JZodEdEFsaWSVkpSKwWDAQZYOg61MtyMjpCvdOfHYOTzAlh+eXdD53pYQcWdw+aEMEixmBIHCYT6vcGfl8Y2vMcGjTsnTWE4scjSa8sW+xlFNYyAqcDFzeOJJIiDG77YBqIUElnWaxmiVpqGwdtLnzzf+TrBZgpvN0xx6nh7tk1JDZcEC3f0QkqBTnV7l8cRXLCZEyRdxJj9X5PG9tNbA7HqYYcq0ScNhqkPZOWagsYSQEYk9n1rBw3Y0n1xqSgjXssFIwCUNQNIlapUTast/zhMhxHHqNfSR7zOnkFNeZ4dhTOh7Ikc3a2gUSCQPHdWEs4tgzmgdN9NIGr/3x14ijgLlyAUlLfKB2+3GQe3q4ReNoH9eeks4WmVtcYTALqe/tkJFdDFXE9iImcYrVa69+YP36YWvS05lpv7vNaiVDmE3hdQKE2SmNkxS58ln/w+PNvG3bRPaA9cXip9o/cs455/xk8LGD6i9+8Yv89m//Nr/wC7/woT//7d/+bb74xS9+ahM7538tPo2M99M8zn7vH7/LyXGdyBlhzaY0hh7ZtVc/1A726Yy5mcoS6iWOh0ccnkqMoyRr2SymkELKl0mn0+zf/jpy5wGvLPi8Or/KweEJDiLpcpZMeYlkusDyyk0SiQQ724/we7tkMyk6vQGVhE9WsXGCJFPbQ0RjNp1RK+XJKBm8ICaRyvK92w8pJ+HoYI9hY5uc5nJ5pcycPqLRb2B1hxjJFAnDQFUV0mkTsLBmU+7dv4/X2yUlOVSSPkfDLs2ugKsUGY2OmE7P9IBt7w73H4i4+hwJXedyOeDq5iLJbJXGyQlmNuBKOSAph6RzCSKrxq3Xdui2tpgIFQrza1y++QzXn7lJLpVEDQY8fPMPOe4fMpt2sV0BSdG5vlnDiRSUdIVypcbJWEbX9bOSFflMUkxTFarVOVp9n7cP28zsgJWCTNZQWS5pjF2BXOBw0hwysQREKUUshpwMXDQdYhscIY0iROSNgGxSo1ZJc21hie3tXb5xr8320QDTkPEiiQQC4+EQQ8uSSBUQCVkv+5wOEpx2JqDJLNZkmgOPkQOlZI5UPsvSygaOD3UL8qUajX4dyxvhOpA0NEJZJkDicAhrF66zfO0VsuUlhtYfc+16iddvbdGbOJhKTOhZhEFA19WJvCmXljMY5TzvHlkEsUSxMsf1C6t8794ehYTI1Qp02jGuF+JaFh1PQpIkdE2DdJpUUmevfkpK8VnMhCwVNDJpkdbBLifNNsZCkWw2x3hm0+lPkBTYa9uUa0vkslm6oyaOG2HNppRWinRabVYrafr9IRfms4iyRzaj0Z4NMZMm7e4x6dIi9dY2hi7hey6OK9IcOmRKa2iaemYU9tQTItd1OT0+oCJ1mCsmyRZTzLoxd+7c43TgUs1IzM0tICg6dpjEbu5SSOWYAUWaRKGFKSepFswPZHl3th+xf/vreP1DMl6bpKExmw6IpyrhYEqv26WymMaQIY4F7I/wK/uoNSkIAna2H30gM51Jz+P7AalMDlO1mfZbmNkSylNyeYIgfCb9I+ecc85PBh87qP7H//gf8+qrr/LX//pf5x/9o3/EhQtnC9jDhw/51//6X/MHf/AHfOc73/nMJnrO/xr8WTPeT7O6ts4fH+zT3b5HJSOjJ9MsL6cRpQn7e7sf+qj1cXaqe3qIp9eYjD02nnuOy5tr2K5LZ+hQKm3y6M7ruMe3Scc98rkkhWKRdFLnnd0enj3hqDXg+Us/w+raOtPplLtvfZtM3CWhq2ztDwnKCnFK4GQ0YUCZhZLBoNdiVikShCH7J33UdJVMKkHaCEin0mz3+izNR5RSNdJJhe4woqC7WJM+wvt+D0nV+O733uS5qsf8ahkvXaI7camVHIaBxG5UpXXcpyDMcKcBkhgjjk7Y6Xs8ROYLn3+Vn1ndIGGY+KM23amA2xni+AHD9jEzx8OsFHj5uWsUChnarS2CYIN8qcJStkwcWLz99SayGiGEAjPPxZ5OCOQkw06Xw+YAs3YVx3EQBAE1VeTdR7fx+ocszpWwEiHtocd4IhIIEg4Cgi9SSOlcrJi8eRQw8DQiSSclzsgkYj53Kc1cKcPJSOB/3m5jKAp6KgeKiu+71EopNG3Mu7ttfvaiSTmrIcsKg/GUSWgj6EUMTeOdo32yhkC5WsVxp+iCRRza2FGekSczn9bwh4e0pglIpRC8CfPlHEHCZTyScUSVZpzDMJIYZZXNSxdRUjlM08TURDzPI2OILJfTCLHHtDCmMfBpuSo3Fwu4qkEU6oxCgSidwRMSfO3WKbOJRc2UOO1P6UwEerZKMoL6UKA9DYkMlb/+yhyn3QHNZgczmSClFynms6iqQk5zMOYzXL52nRh4+ZWXaXf7/H9//3vUW2MU4Yhpv0Wj2cZQBBIJk4SuQ+zjuh7D0YTQERn2OnS7XRqDgMW1SxyNZTaSBVKVS7RO9mi0XSa2wOLyGqvLC8AH+yN83+dwfxszN8ESUuw86BO4M66v5Zk8GHLSHjGxPHKL11DEGVEQk6+WmU1heS5HQkyx3++RXFlksfKnWd44jnn47vcoBk3UpMvaahlVldirDzis75JJJ1mrpbl280UQQFNVOoMZx8M2rut+6Nrz/jXp6Qbo92emF5eW3yOXl7JsBNulO5j8qQHNp9w/cs455/zk8LGD6meffZbf+Z3f4e/+3b/L7/7u777nZ7lcjv/j//g/eO655z71CZ5zzo+K7/tkExJXvvAyCcNA11Q0TT2zDf+IR62Ps1P5QpGF9SsMhwOcYYvjgQNyktzKJYbDIbPmQxZSkFcMqjkFe9olZxZYWZzHFjIIxWUWFhaRJIntRw8J+7tcuVblcm2FP3Im+NGU42lMpKe5+MIKstPmsDkkVFvEsk7HS1MspfjC86uYSYPS3AkHe48QtS4PDocsRSZqukQ+5zGZObjvkxtLpvO4kYYjahx0QxBV1i7exCwP+cM39hlOW2hem4urJq7rIDg9KjkFTVZojWHa2mVrO4eeKXP30T3GI5ecJSO1puwe9ImVHCnR5tG9t1heWcGJVNxZTLq0wHfe+g7+qI2ezNCe+dgzG80sMJbyJJJpWr0J1naH57QGW619Dk87+L7PbNzj7ptvYIpT1soGr75wk/LODkrQIacLrC2U2G9PeW13hqylMIwEraFDppAiL8BiMYGi6Rw26nR7Q0zJIGj1MVIbPGwMOam3GExcJDVBOp2gkM0w8UArlUglUnzn0RQ1MlCkHBculGgPpjSOBnRti7EFEzHGVfIMgwSDwy5HfY+159b4Kz/3EqbscPfhEQcnLeJpk74js7z+HIl0nsZoQDWrIBDTmTjYvVNWF+cQRRsxiADIJBU6M4FEcZGJINO2Y5aWSmwuVXnzwGWqlJg1vka6lkAKYspFmcvLMqKqkziJmY91cMb8ye0TvqAWGDgiQihRWt8glTKZTKckFBHP95lMLcykgeN6NJptyuqEam0VQYXpbMxuY4ygGFxcSNPqDemOHA6HLSQxRBcD0CDwexgISLFLJZskHh4gZW9y9dlX0cwiXmcbWZaxLAc/CD7QH1E/OkSPZ+R0n8jpEfT3sO0ZszBJdX6NlZsv486GHJyOERWZF25cJpXJUZ9a6KqGqcrQGeG43nuyvI7jYA9OmF9NYQ9t0skEiiKxUA15cPuUTGIRI6ESxZBJnenBJ4wQusOPlSV+fwO047jvyUx71doTubxHu8dMD7roZpba0tUnJSqfdv/IOeec85PDJzJ/+Y3f+A1+8Rd/ka997Wtsb28DsLm5yS/90i99aDf0Oed8ljw2mlAU5UNvRq7r4s4myNnUk4AaPt6jVvX7Jg3z8/O47ibD4RBBENA0jfrufVJmkjia4UcOgiCRTknst/tMnQyxIZEwUui6fnaTHzWZK2fQNRlNVVlfqpEQZ3SHU1LVTa7efIl7W7vc3zthllgmkc6zmC7jD08wkwlUVSGTTbO+usxyqkSjPcKVM2TMLHpRJ5wNGIwnZNIpxuMpAKlchflalc31BJlUEl1TqJ92iWY9jHhGSh2yuqmxWhY4OLFYqqbQjDTGTESZmni+xTdev0N+4QKduMJ0WEfJJogcmaEds1TwWM6FZOkSTRT29o45HMoIRoH+8RZJJoyGfUQCrq3M8+rnX2VpaZnuYIZ7t07kt6mZa9x9sMfs6AGTyZhBf0AwPERPSXRnc5TnimRrMe/cGlPQLdBdBARiJYMTqXiRx8yNkRJFKhmFd3ebjKxTEqrIqxcyZE0FW7AY9Tu0nIjjpkdvAmYmj5otkS2l0b0Q/AxqYY1niiap8iq3//h3+O7dXRJek42SQhBoSLLG/kRmuZyikMtgzyQq0pnSSjGXIa0leEYUKVaXiJUE727XMRevYmYKtPYb7B132N3b4/6Ji2HPWK6VsOwJ05nHfhdCOY2seIydiFpO4nIhS6FUJfam3JdcipUcsnKdq8sSzvCUYaeBHE45noS4gsFLlxd4+/4Rdxs+/kMbWc5x7dIGL7901vsiCgKPjpoMBgN6I5vJdEKz1WU2aJ79TheX0NNlpnqaCyshb93d5RuNQ8TQQtcMosDi2ZUsDxtjdCkinTRIp0wOTlpcf/kZqpUi++06mWwOw9A5nQUcv3WHOAIjP8/a5ZvkC0Vc1yWOY+xhi421FRznGKt7gBpNyZgR250xlndK4Fq89OLLfO/+CYKsUy3nCZAAC8dzEYMAJBVde68ToeM4xBGIkgKSjOW4ZJQEwffNfmw/JvJj9O+vBcCTRsWPkyV+fwO0rmsfMHIJw4jOcEoiXUKSZCB+zxifdv/IOeec85PDJ7YpTyQS/NW/+lc/i7n82HEch+l0+qmOaVnWpzrej2Psz3LOj3Wqbdv+0DrmH4UwDDk+rjNsH0Poc6RqmIU5FheXnriuhWHI3t4uR0f72N0QM5XGzJZYnK8ymVoEgkoYhh/5///4M3l8rmmvQeDZnDSatI4PqGRkDvoeShjjRT5JQ+bW7ohJHGPmDPLJATs722SzOaQ4JlVZpt49pZCVkJI52j2H4SwinSjSHzugprn+6o0nzb6qqnI07dEZTMlkUkiKQbKwRGt0hJLPkV9YR1UVdHeA4S+x341ojZugnAUGC4tL9E4X2Gs32NRM7CDmsNHD8QQS6RwLpkHOiEH1kXWfYiXLwIpxRJmFtUuEEey//ZB4MObl568yHK2SK6WQvBlBEFLJG7x4fYnvbbVpDmwSskg06+MN69Q0j82lEsNpipNGE2SJ7mBMMh9y1HeRVIN8OsH2wSm9k22q2QRl3cVXfaxMkaQuYUUSth2gZqqo5Qs0+qfYTYHFSoFLlyoEgYfrC6SrCooIHdvDtdNEQUCpmqVWnEcxMhx2bKZTl6mvsXDxJV4omDSaXXqRwsNxEllRmKGTUcrMLVXRzALFUhXLO2W1UiFvqnQmAalMhhsLKXqeTf2kiT0bY6TOAqs37+1S0D1816U/i8gtXWH1yktUly5gzaZcXJqBIzAeiHz+5jqvvTnj/37rlOWiCRRILy9TNgzeeNjk3aMxmVyJYnGJWFY4bk9YWN1kZDvohUWa1gBTLZIuy3iOzclpF0GWcRyfjbVVanIZR8ogZlfIVGp0BjMSRsjDnUNmjo8mS0heD8OfoMwO8VwfVc0Q2mMOO30EQaCYUnlx3aRUvchJZ8hgFtE6rXNoZ1DkMqPWCaW0TMaUGToitusRCzKBO2b70SPC8QmXlnIkL84xnlk83D1m/+G72L1jkFUELQOxT7q0QPPRKcVMDVGI0HUJLYjZzFWZtOs83MmSKSyipYrsNQ7IpBIA7DWmRIFNtrZOozPkuNknNXcF3/eRZRmjcPa9T2sZ9noDEmOLxsBBNCt4WhkvkugOzz4Xy3aotydohRV838f3/R+49gRBQCAoT65LgHKlSnc44+CkR3A8oT+YIEQSL19bRlZ1bMdlUL/HluexvLwCQLU292SToWkaqqp+LE3/D1ujflQeJyUen//p1x4b7Xya6/ZjfhrvkZ/l2J/FPfIxP42fx2c99idxev5R+HT/B38C+epXv8pXv/rV97wWRRFf+tKXuHbt2p/TrM75s3B8XMdubVPNJDH0NHHoc9rapg5PblrHx3XCwSEXlkoIdpuE4jJoH3B/OkPWTMzK5pMbycc510IxxWjkEkkd0IbUcjXmi+vcebDDN/c8ZtMunh/yzM1VLl+9QSGfo93axvOWQVYxTQVXlmkPu0So9IMUnUihFCU5HsYYhVUEQaB5+BACD2SVsR1y7E8A0FQFD5V7B0NMQ6dv7xMrSexIZa62SEKX8AOBZDIHkya6rrN++Sb7d222Ghaea7G92yQhB5iahCwK9EZTxkLMwArojx2a44BuUKAiSAj+gKX5Gpvri8wXU2xt7xIjs7AwT1K00JkxnLgMJg6FpEstn2OaEwldF1MOSAgOLzy3wLdFj53GiNbbO+xPTAxDw5l0aDSaeOEjStqUnqdjChOSkoeaAMcPCN0JD44GhKHPZkajK2gklZhcUqTRn6KrKsu1LM39MZ4zZr6YwVJDPNdCiCFEYq5UJNSh7Ee4Qop8LsXmfJqt3ROOjhssrV0gIuLBQZtOp41si0SNA4rFPCMrT7WSoZrRSc1sthtTFrMGu0cDXCmmmk8wP5enC+zubmMlXErZBNOBz05jgFG9iirAyfE+GS0Cb4gae5jxlLkU3N0dUDIlXr25yUKlwEnPIlZM7uw0seUijUHAYDpDQEVSLY4ebWNoEsehSxx5iHYfQw4IJJ0XNvLkDBj7Mo4Hy9mIo+497uPSHbtk0wmaJ10uXr5Ofe8BUjggowZIBZmp7TId9Xj79l2SmRy1XILpMKKQTbCxMk+tUmK7aVMp5gkFmXyuQGsP1isGhqFRH0SIdpvDQ7DiLN3mI7LSjLYVEEYili+QFieoYshqdRE/CDlsHNIZO1xYSBNrKVrDEVJocjKeEYgpbqzN8e7hgO39I659/lnW1tep1xWarTNJvQFFfHyGp0Ps3ROMRAop0eTwUGFxcenJ9953LSbjBKPxCCeQqKytsXrl2bPretiG7hBkDa2wQq1W+1hrj6adbeBPW2dPahOGjmU7yJrJpeevnW2Kd+6yVpojk0lhuQEpRUZXRI57p3i1uSfrzuOnYT9unk4UPF5rjEwZQRCwhi0IPDzOlFSiKPqxz++cc36a+QsfVH/lK1/hK1/5ynteG4/HfP3rX0fXdUzT/EzO+1mN+1mO/VmM+9iMxDCMT2V8x3Fwhk3W5s6MJgBM3cRQRfZ7LZSNTeI4fvKeTHqexkmSab9FHEzZP2ryzBd+lUtPORF+FK7rPhknmdAZnz7ixkaRYjLk4d4Jn3vxGouFG7y21aXZG3Hz2kVeefEFNE1lOBwzHPYZtI8pLawx6G6zWMlSKxdpdIdERoEr81dYWFhE13XqR4fMGvfYrGQwk2mmM4uDxphBmKI5EagfbOHbE158/lkyhsR0MmbrsIuWLvL8hTK6phGEAfVOAxAJw5D1jU0Mw6BzvMvRg7t4vs9zm1WiOKJ7ske/dcLE9jloz3h765hMKsvyhRrtvTuMp1PU8lV8P6CcUbErJrfu7nFpbgVdjpiOXUaHLbqtJrVlA1HIkJA9ZLfPxaJCY9LCEHKs5ATuP2xzeNiilDNYW19iZ9KiIvrEQoAUwrDdwPH6TAWbWiHL4UkPoohwLLJU1LlYzjJIhHQnPv7MoTkVEAWRKHDw+j2S2TyFbIqdw1P6gxE3l03EYRNx7QJpzcESRbLZPLlCke3td5D9Ke1ul//fH3bo9IakzQTXrl1hraww7Fok9IDvODG9sU0wG5A0NIhjtg8avLs94OXPr1JbXmU4HkIRJH/CuNtFDLJYjkQ07aJkstSyF+judzjY2WK5qLE0n0FVByxckTjeGxCMAyZdg/0gZH19k0TK4vB0yKVrz9NoNsl4x3jTHoNGA3nSJxcEZNJpXBTuNyfE7gw1mSavJkklktSPZ0ihzQs3r1NJuIxFC0l2saI8mVyWjKnSiyasz2d59GgbM+qyoDskoyFHx03apyZjU8HQVS5uruOM2+RzeVJqTDZT48GDLTQcVufyONMOo/GEanWFhAGvP3qIa66jTfcpVFWS0YjheMLW1hGLSytU1jYwNJFyIY2hirTfOWIwnGLqKkYsk0+X2W30ERWTk3aXgSWgl4ssLS+TTqe5evUa7VKZ1157jVd/9pfodNoMDt5h/doShVz2+3XJ29TjmPnv9zKM2nXUzISCrJMuzXPx0mUSicSfXtvfV/R4nJ3+uOvTpUuX2VdVmu06DEYg62QXrz5pSu7KUMqZqOqf3l5Vw6Q56CFJEqZpfiyd7Y/LJ11Xd7YfEXS337PWvP7OtwnCmM8/fwUzmabZm9CfePR7Xebn5/9M8/u05v0XdexP+x75Yfw0fR6f9diftZ/KX/ig+py/WDxd0+g9lUR5uk4aePIeSZKeOKJNpjNoTJ40EP4wPM97Mo7ruRD6JPQMK8sLHHZdDjo+mhRj+yKVhQ1eev454jjiD//kO7Trj4g8i8YwYuOlv8TK6hp3jo5RpQhRMUnNrz0J7H+Q+2Pci1ncvM50OuXijRWq5SKe5zGZTBDV79Fojzk+3EEVIUCkMQgRc6s8vP0dwkggU1pg5dJNPM/j0lKeRDRgb++QMHDZXCgwnFpU5pZ4Z3/CvpMgNfWQo4hrV55hY22JR4ct3rp3wOW1CmhtHjVm1DsRopglmUji0aI99JnEE6xIpSBqxKGLH8QcnQ44bLbO9I+FiEH7hNd6HeJY5LkVgzAIef1Rj9h3Wcz4uJ6H57v4XkDfERk5IZGoUCiVUJQBzX4LNXYo6kkyuRyq6LA3G7G2eZGVpQr3D3t4kQByzGRq0+kN6UxDUDI8c2kBWYyQRIEoisgmzhoHCZO8+txF1lfm6PQbeF7AylwaI5HmZDDGM0Ru1wec9h1cMUmcXMBIl7n17gOOj4/4/P/2HLPBKV44JZWvsVKMkfMRf3D/NsQxwaxPp3HMipkndkBPyASxwKWlIooEmUwGX5Bodfu0Wm2CIOSP/vgblAyfG2tFdgZDCsqEZFkhZeYIBAnJi9HNEotXX+TktMXOQGQlkUHVZTYKMkIcYrkhrtNg1mvxxsMOuhTQrhpMBi3EYI7AGVNOCviRTuRbNNt9AkaY83nW1m6yUEzgDk44GFsglymWyggNh8awTTKRohNKxIDkyey0Bhw1h5jJBwRBl7EosLFRpJzOMhuc0m4f0EjmuXBD/X5NdUQxb2IUVzkd2NzZf8BGVWJ1/RqZdILD1oT1chUtv/qkV8dxnCclCcDZZnehSMIwiOOYdCqJeFzn9rf/O+O1C6gJk3R5kVptjmQy+YHA9WlFjx9W8vF+fpD85w9zh5Vl+YkcH4F7ZjrzY3RT/LC1JhnrZGULB4Fk4r3SnNNB6yNVUc4555wPch5Un/NTxdM3rceZanivJFUcxx9q/OIHIaqe/tiyVaqqPhknmdDPjC0chzCEUnWRC5eu0B+NWTUiVEXBdlxuvXuPydGbvLqSw9CzPDges33vv9M82uDmtSt4gUg6X2RxcenJTfTjuD+aukw+m3kyL1XT8KwJwfiUJFlWayUO6g2Cfhs1t8rp9jt4oxMeOD6v5zaZr1b55c9f5bDewPIPMZN5LAJsLWL5wjNsvFri3k6Ly+tzjFq7VBM2wqxFUXd52Aa56eIpFUaoXH7+MsPRiMN7ryEEDnEokZB9PBf2BxC6PjNB4+j+MbE749pqASdSuL6aozsJqQ8DEqksb777kFG3yYXlMsW0gjsacdwe4YsamiHizgSQdCbDAdZkgOBPkTWJ7sxl5vZx1QKhUmb7sMl4MqZkBKxulnhwPOS459MQ2kiFC2yuzKPrGs3DLXLZFD3JoDSX4fJyljffuku7UceQQ9wg5rQV4dsDCokAKbvG7bv3mQ16KJrO8tIKejLF1hv/A3vc5Zn1CgCbhZBWc4DT2yWZrCIqILoDTL+BlDIZSS71+iHjYY+VWobOyCeSdKZ+QLM74qR1Vi+cL89z89oG9XqT4WTAwxOVbm/KKxs1dMHFjRUixURNZuh6p/zMi5d5d7eENWiSTCXwPQdBFNk97uG7HoasEVsOV7NDEskUhuojqw5HR/soksCbp0PCKCKfEEloCqEoE4sqsZxgaMcIkct2q07l4gK9scf1F75A52QXJR7z3EaBjGmys7eDOuiwvlgkm5CZdHuMh31O2gKLtSq6pmE7E2zH47h+hDvpMRwOORrKPDN/iV/69b/FHyULDA5vkZxGjGMRNbuIqCZJl882v4+DUO/7G+bt7Uc0d7fxUz6KGJ9dl25IWpgwZ8ZszJlIkki9tU1fVT8zU7IPk/98vzusIJ05Nj6W1DttnDyR4zOThR+Lm+LTWfEPW2s83yehiAgCOK73pKEbgMA7184+55xPwHlQfc5PFU/ftIq5iISh07dnH5Ck+qTGLx+GpmlPzrVYATVV4OHBQ2aOj5Jd5LTdYzQLmF+9CcC9h69z8PBdvnQxTSFn0B/aFHM5lLjNrZNHGMIqtUKS7uCAel3h6tVrT87zJHiPdcbTKcQCQRieKQNkMnTel/0K/ICH2/uIgcVs1ObuuE9/MEAMzrJu4Wif5aRHlJJojrdo7bfZKifYXF9h3FvmQu0yrutwOoq5eP0FXM/n4OiUhC4TKBGh76CaEhk9Jph1ac3mufnFv4ymG9iDJne3vsZSJUvx4s9gxBNUfA7bY+5YBl3PQNWS+JMWz28skC+W6fZGLFUyyNKUP7m1j+hPGAz6DCwPWTVw4pjjsYquq3SnAd2Ji6BmSSZTnPYHSHGA43rIis58KU0mW8RWSnQ8g8bufVbKGp+/UmFkuRx1Zlx89mW+/KWfoTlTMfNVvnX7TRpb7zBfSKIlM5i6wMxykaMZFTNgOScQIdHrdnhUj8mlMiQVEy2R4ZWr81zbmKc1ibi/fYQwO6GieVxbWOMA0CWRvOZju1Pu7zZo9oY4rkqrvsfEE2j2LQR9ghS7iLUUi5UU944bjG2Bl57N4XkBiqpwdHREmISsqZBI5zFUBamYp1Iy8a0BvfaURD5HLp3BMGfUmwOKpQpesca7O7c5Pe1zYblGQoNy1mRsR8j4XFmtsDxf4t2DETN/jvbhCd1JSAGfL61rWEHEelHEiaDhiOw3x0yFBayZTW8mkZZy5MoXCcOQ7YcPmB7fIWkozAKVyBmQTykkCis8ap0wb1joqsytu7uc9mw6E4ExWZKORf/oPsV8mpkscWG5QtDdpqWq/OW/8htsbV2ge7xLLMYIidRZlnlunjvv3ibs77K2UCQUMrS3+rR2b9OtP+D5F1eZKxfoj8e8+fZdwkyOVGmFdCr5JDD883ApfFrdI3CHIGsU5q5Sm5tn653XPvSJ1Gcxz6ft0x9nxfVMhVCQ37OWqIqC5Uc4gfAeVRQAZPVcO/uccz4Bn2pQLYoiP/uzP8u//bf/lueff/7THPqcc57w+KZ1fHoI3SGyZnxAkurDjF+qNYPAbrG19eBJQPtxz7XfruM5KrcbEkcHB2TVPSRZJV27wOfnr7KxsUmjccpo5uD4Bt0JyGYFadghdCacHtb51h96FIoF9PwKxVjD/X79t+u6KGaR77z1Dex+ncgZ4/sek8hk/YW/xCVZRjRy7B3vAmcZ7HcfbOPORlxZSnOhqjKZutx9ewtP1Fm4CHMZBdnr0xtYTC2ZwNB4sPWIQiGHIKpMpjZeEFOeX8M0TSatDi4qo16TK2sLbO3G7N8/ZjQastuNyKs2X15bJ5lM0mgkUWSF559/hqW5Ep12m8mgTVnqUpkFLD37y+Bb7L39PyktlahUayjKHnunTZrNJlUzpKzNSOV88qqCF4S0XJ9KRmSunCZQYmbBlErBwCLBTmuENbJxbIklReeVy3NkM1lOBj5jLyBRucjuYEDwwMIXNNJzl9jcXGK+WmJ4OCYMIxaKKZKbmzyznMLQZd586xa7bY+MAd3ekOJpnYgYd+YTehoXrv0M40GbF66t8LPXqwiCwMjukTM1BnJIUhMYTl0AOo6INQt41O4gKRpCFLCxkGEpZ9GZBAyGMZl8EVGMOOh4VMsZ0mYKRzX4ztaQk0aXalqglDEpZ11kw8CxA6YzC0HUeFQfQuCwezpl1YiZNcckC/M4xgKRlGGukmdGlrawT8fvkcNhMVPDnzUYWh6lrEG/20FyxsyXK3SmESN/TF63EVJJ8kKEYjhM7YiskUdPS5Tnl0nnSpxOJF74/C/QbjXZv/11rpVd0vPrbD3ax6rfIw4iVi+/Qimv8q3jFk1L4KULOSajASeNUywhhS3kuPWoRSZfRPASZOcqrC4vMBpPzwLPpWWuXr3GaGGR0WiEaZr0e11uv/4nHG7dYqWsMsvIJLNnTwbSaoicTzKzfWzXQVdlMlpIvdXnmbXnfqh05qdZz/xhPF0e0u/30TSNfD5/Vsv5Y3RTfNqk5klWvLXDxEtQb42enHtmOQyDBEEYM7NsBEF4Is1p5irnWepzzvkEfKpB9X/+z/+Zw8ND/sE/+Ad8+9vf/jSHPuecJzxt0OK6Lvl8/gML/9PGL6qi0Gx3cSY9JqMW736riQBc/BjNik/fIO/fu0s5e8jF5+ZZrqTRNJmT9oTDd/8YVVG48cwzHNy9hJiKWViexwt8tu6+gdU+ZC5j8P94dR7X83nrcId7QwczVyGyBxC41BtN7tzdYikxZb2SRJRNOpOIxtZ3+J/DJnPlAo3ujJOeRSqhsb13wsrmFdaX04wdD8sN0eUA+6znBV30uDqnYecj3jn2mco+TSvmqB8zsDRO2gMurK+wWKrQH4xoD2yy85fpNt5mN7JQI4tSSgJP5NnVFI3xNt/+1jfY3LxA8+gh9rDJzq5NGMasLlQoFIrIZpeab/Hzv/BL2LbNoNvBF8fkc1nccZoHx4ccdx2y2SyRoiLqMfOaTdsPmLoCK1mZRqvP3olEP86zlk5z1OgysSEkw42LNcopkZSh4Ixa9E/HPDiBy6/8KrX8ZbxxCwkHXYatrXu0LQE1u4Ied7m6MUe/kKDdeEhF1Ellsty+8x2uzBlkChV2Tie0O21mvkp9mmTv6ISiEZIwEkxtD0UGRdUx02m8WMSahKx4Z+UIhZTO3XsRR/2ApVqaq6sVVtMuhuTiGBqLZZ1sIcck1OmiM51lkEyJQiiSTKWI3TGvLkWUUvDwdJ9xsIlu6Bw1JxiCy/f2D5laDmhpjr0hkRpz/ZWXufLSF5mbX8C2bczyKdVald1HW+zv38fbGxEGGhNLwmy1MZXwzHrci5m5IolUlnw5xcTrISUFuo6AntAxNAXLcTl8cAvRLKGVLlI/OmTQOiArW1xZrKKpKtOZzcWFBHtHTcTIRQln/OKLK/zJgylfv9vFH4/YWK6SUlOs5kvsnihkyytcu3bxA0HvdDqlfnT4JKN6q9lBDKZcWV9ArOisVzQGnT0sD0BCU0QKtQJSdo7GcILnzhj4OqKqUquUnly773cp/LDMbaa8RLlSfSLFCZ9e0K1pGqlU6j3//nG5Kf6gPg23EyDnN9nvtZ7oZK/d/DkA9nsNaPXwUACYX1j81OZ0zjn/K/CpBtV/5+/8HQD++T//55/msOec86E8lqT6YcYvrXaXYFRntWiiVSu8u9tmePgOW3HMwuLSx7p5PjasyOk+zyzPk8+edSWbCYP79Smdk10Wl5aZv/ACj7a/TkLvo0gxx0fHBEHIpQur1EppAFrTLm+8+ZCNpTLPXV1HkU0mJy0WjSnXLyyzubaIpirs7B3xcGePRJDk8tI6K2WDb715l71uRFI+a87qjh02V+fRM0WKJ6ecHo4ByCZENCVm5kI+paMpOq5scuW5z+H7PvWjQ6bOkPuHwyfmE19+tsrv/59d7u2/SVGdYko21zcXyGdT3K9PufXgdSSnzUvX14kvLaNYdU6PdvC8gHwuyc7JACm5wFtvvM7w+D7O8ITX9k84Ou2RSxucDgMkI8uFC0uYos10mmQ26ZNwEgwdCweDQRBTrhZYjqdcXMjxzKV1JoHCW2++TimbIkTkYX2IJkZ0LIXBZMq0cZ8/uOuhOadcramcOB6dScj+wSGFiz/LfK2KsryJLIR0Rw5Hh3XGswkPWx7lcgVzGuFMxlQKWU5GAbOjJne/89+QFI25cobOqcpCNU9lYQNhHPDgNESPRtywZwBMJsP/P3v/FWNZmt33gr99tj3e2/A+fWZl2TbV1S3aS2rmChwZUJBAkU8ECeiBAkiBgCCKT4RIgHoQB3oQuwVImqvRjKSry7mXItXsZndXdfms9BEZPuLE8d7ts+3Z8xCV0ZlVmWWz2sbvpSpP7PPFjn3O9631rW+t/2I0NgnJAtmQx3w+ia03ifll/J6M0zLpd1vkF88jBHKcvfpFNu/eYP/wiJXpBMpwn2jAIxIQmUqo7HfrvFMOYOpjTHlCKBRmeqpANhWDYB4lPsPKxWdPcnD3dnfoHNxgKhNh7UtPsV0IcW/9LrYUptIZ4x83CKV8pFSF+lDH50SpjzXOhbN0GgOC0QhXLmdo9XX+8q0isZiPVMrj7PIa87PT3Nu/QanW4kzSR0DT0A0LyeexkM/SGZjUGy0UweHsXJpcSqA7MJmaDTA7m+aobRJKz3EmEEPvN4G1kzl135msVSvYzS0WslFkKYTVuIvj6BhGCln1I/p8ZJMhdtttII1pT5A8H+ffPZkyLQtHSbC9e3Rc7GrZj+xS+MjIbfkOxXf1ox/ndD+pIsL35ls/qW6Kj9oEfFCdhlhrHasOLa+8r9DSNBdPxqu/+upDm41TTjnlwznNqT7lxw7HcTgqHnKwt8mwNKbVbnFhPkU0kmY4GhMKRxhOTG6+8uf0l1dQtPCHGk/TNLHHQ/yKj1DgexGlgKYRkEd0x30Mw+DFl77Cd4Dv7t5k0C5xuyxyZXmaK6s5xobNvcMauwcdJqMOnco27UKSVDJGQPYxnQwwsYYMRzpDXcAcdZlN+dFlmHgejWaLsFsnEvaj+hNMhR2Oqk3u7reJR4MMSOCGYgAUG0MYjZj4RAamgC8SIxKIcVQ8ZDLuIDkmlifgi+QekhpbufA0txr3CGse52bzBAMK7e6YbKFAuFMn6A0JBf1Mz69Q2x0zNvp847Xr+AMhxq5CwxgxV77Ol59eJnXlCtfuhrl2Z5fuJIaRuITZ2KHT7zOwhwT8GjYaA9OHK4dw5AAzMzHGLujtIYcHB/iTE5ZXz5FPpbl9UGMuG+fMXIY7BwMst8PZ6SA+vYperXNmRsY2bcIY5HN+hKCIo+lY/QrffrnJSkbic+fziL5p7mwfcGu7QduU0bwuz58rsF3soreOWAlbRKMKtYFJq9Rm90CmULCZH4Qpt8b0pALW2OG1/QnPPA83ixaSrLCcCaNJHoNOExMZx4NKe0RrrKJFYhQSfsq9Pu1OhxFhdMuHzx6QyySx0Nlr6YhykOZgiOJ6XDg7T0AVWcz4ED0B3RfCC+TJzK5R6jcZjUbs7+3yzrf/DGFcp7jhIkoaA8OhWKrTG+j0Wl20qABMSCcUwokEz8/k8Lb6DIQEsdx5xKBD1xIoDWXSM2d48VIBQY1x9sIZFEXBdlx29g7pB0A3DFRFAUGm0RmgBiKElDwNfcBos0p1HGNucYmXLubY2DlkaFmEBl26/SHlepHZ+SVmpvInzqSWXGbcrZ5EVAfDIbGAQiAqsV8rE01kKDar5GIatnV8DKN7KrYjHs/lYADbdhHUGKmVacoDiXLn/V0KPyhyu1U/1o+uVsqfeRHhk+ymeF9v2uhW37cJ+ChR8UcVWt5/rdvtPvT6Z50yc8opPy58bKf6K1/5CoIgPPbn3/jGNz7VDZ1yyqdlf28Xp7XNhaUcw/oetqjjjmrc2wJJDdIdq/hpMh9zWS2EEQTfhxpPVVWR/SHG/QlD3SChHEeqdcNAtz2U6LGqiKIofOHFlyjOL1Iul3HFIJemHPqmj3e2D+k1Skg+lZmIR0pocO+dbzFYvopPVml2+hzubVI62MFDoN/vk8kV8IcUdvcO2bj1BjNhh+G4hysu0B3DbCFLSxcIpefQ+gor2eNNQcuJ0tyvMRpbOP48i/kELgpOa4elmdQDOZaHlEvhk797de0MmzeXaNffoq9PGLvgj0/h2AKyJGIbfTZvvYUqCaCEqNW6tDoD1qaWubCwxM23XmE5YiFMTPyazJefv0g+neA72yaz089RuaHj08ZM5dOY3TqbrQHdSZb5mQJBmjiCitk9YiGr0jcFpJBKvVrG0WJIiSBdSWW7I6AbDZ5ZSZLPxtk+qFEpmwS1ALo54cxsgnTUz1FnSLlXIbP0FLevv8Vy6jx+VaPbH1Fu6qRifg6LR5hB6I8sRoMO8wmYjfs57I0QTIdJMEdaS4IWozkUsJQUP//iZdqHCuHA8bO+upykVRmCGmbsytiiTDQcpV6rUuq65FIRPCXMt++2iaem6R20Wb36EqancdS4hiqo9EYGi1PzBPx+fMVdAppCOpsjwJD5XAjTtqh0HIyJhSyJ4Bhs3ttgXF1HtRrkwyamPuS1G5sMum1cD7qmRsgvkwyrnFmbY3V5lng4SLFjs9MGnz+BLzJHqbVDJBykcCZLpHnE2JqQzmdPGpOkEjGi8SSN8YB7+3UWphLYyHx3fZ9AOMHihTPoY5O9rbvMLp5B9TlcX9/laH+bTCJMytdi4g3ZHo15c6NO11ROnMlEMsVe6/AkouoTBA6qbWS7RaNrMZm4TESNxpFOSxfR0jB39jk0TTtJVUDSiE5f5PLiEo7jvC/6Cu+P3BqGiWnZyJIEjs5gMHis0/0kiwg/SI7v43K/MdVi4dGbgCcRFXdd9wcqAXjKKT9qfGyn+sqVKw/927Ztrl+/zu3bt/mVX/mVJ3Vfp/yE80kjIw9GpKKRKXY1lUqjzWA0YjhsM3d2EdXukfJLjL0I4VDwxHn4IOOpaRqZmWXWK7vc2auxOuPg88FeqU3XS7IydWxkNtbvsnHjdcbtMoIPegOD1+/1ePHKLL2RTULz6KMQjPoJTLpYgzLXXu2QSE9xeHSEz+rx/GoMSYRvHHXY0Cdk5QVEZ0Q+NGGlEKDWcxECNt1JGEuH/VKTfEBi/uJLDIcjGs0mQ0dBC+RIJjXCQYV7d28yUjt86cr/8j6nYeNom0g0RjQaJRgMcuGZF7n9rTKOX2OqkMW0XA7bHYamh9bvMHsmRygQwB13WG/sIfqC5DMJ9LHBeNjGF52wv/EOzrhHOJ4ln4mhbh8iexbPvvAilaMD7jSrDIcJjhwYmB4XYlEkX4yb12/htms4Ix9aIEo87DJxXcZjCwGJCSK1bp/FTIC5TBS0CCF/j3wqhDWRUcUxybCMJNhgdOkMD1ET8/jUEMWewNDtUax20FSZL19dYuNWl1RY4rDWQhYcZqMePp+INdaJB0Qs+gwmEQpTM8wuneX6nU0kA9YWsvSGx+kfZwsBbnU87jZ6ZKbPcqS7HO02aXZ1IvEs07EUqiRQ7zuMTAvNnjA1PYMsy3z3/7jLXNhBFmNsFLu0hi06pkoqmSWVSqC3TIZji3BAxRj3sWUB23EZGg5Wf4+ZhJ+q4ODaOvqgwazWYW5tQjAc4NVth82mTbM6oBlxiAd93Nn0qPY9TMePPKoTWTpHaOEs7rhLpbjPwXaFxVwIMdhg2yezMDfNcKRTmFnAH8uyceMNbr95iOd5lMYF/PaE1rU7iP4ovvgllFie8tEht97a5rlZgctLKfBcsODSYgJdFpk5+yzRaBRVVY915R+IqO4flrH0LprXYzYdYyYjs19t07CizF94nmqtztz8ArFY7CRV4cE1QhTFR87f+5Hbbm9AfzCg16qCa9PXLXq+LJmFyfe1iPBRUeKPg2EYDFtlplPhx24CnkRUvFw6YtLZ/b5KAJ5yyo8yH9up/uM//uNHvv57v/d7DIfDT31Dp/xk82nzGh+MSImiyMrKCvZEoFVcJyT48Acj1MuHDBGJFr4XjbtvPLvdLpqm4bru+1oILywu4bo/xfr11/mr2yV8PvDHZzlz5fljA7a7w9a1b5CkxeqFJD4fbEVM3rhn8L+/XsGul7k8H0VLTjMbNVGEBitTIRpbDZpHAyRJJhRfYK8tIghAdB595KJ3SuRWznHQh4Nym8L8KuFoHKnrEUhNM1KmiKRnsIdN7MEA8CEEskiORyblR9MCLCsWW4dlWs066VQCwzDpdHuUSkfs7paw9SGyP4Q/lmV5ZZXq6ovc2nqN+qCOFowwUdNMhBaC4kf0yZSrdQbNI2J+gWwuRj5k8T9fvsbm1jZTUhBJ8dNuNhFdi+0Dma6hklMFnrp0lisXz9AbDMEDBI//+hev0ps4uP0G3V6XQlDCdizGvS6l+hsIQMNJMHvpJfR2k+LWJm5KpjcYEwz00QcddFviqNkiG1XQRzpaUMIRZLKpGE7/iIkvxPLaGfyahjVZJxuI0On1mQQySIEJUbnBftPgaOAjqVlENZe5bJidhs5eaRdLirGwvIJj23S7faKhEZ2BRQy4XRwycFTEYISBblDpWgycINnpLBeWCiymREQBNF+Fzf1r7G3dYzg2WT73FPjj1AZDZpJBomqYkWAS8stML64wMgFJY7fSwi91KXdskokw79zZpq0LiOMavn6ARmeMPWkSEobMxz2mExKCLDGTgo41wdRluv0R93bLNFstlNgUsYBAr3qLXb1NbP4qUiBOKhZg+aUXUMwGIb9Js7zFO70Bsj9CJLOGJElMz0yhRwMcVeokzQkL+SCKz8NFxBLHBGMZzqSnKe/eQgv02D84QhBADsaZzkS4Va8AnDiU9/OM9w5vsr65w+76dXJ+ncbAAtsjkpkgqUFEKcbc/ALVWv1kPr7XMX1wI35fVee+w33/97z+xl8So8XqTBKfT2TPGDNGp9vtfN+KCJ8Ex+ucRcAfe+j1BzcB0Wj0U0fFh50qa98nCcBTTvlx4InlVP+Df/APeO655/ijP/qjJzXkKT+BPK6Y6KNGRh6VS7i2vMA7usHmQR23ZVAZyiSzWQpT0yfv6/b6HFUbWJO3UXwejiATShYeamcuiiJrZ84yv7B40ur0wYhbvbhNyDfm/Fz2pJBRkSUEJcKREaW8q3HxqTSmaZEOgjvWOChWKLddBM1HNJrib//Ci+ATmLjwBVHiv39nnaNyiXu7Zar1PpIzYGRvE46nGbgaqhsGOY2vf8BcNkpPC9A9Mkj5DVbyU8zPzqCpMpbl0O4OKO5v4UwEirv3qBa36LaqjHwpgoEAYdWjtP4Kh1srnLn8PJlsjnZlH8/nYXsC2dkJi/kIG9Uah7uHxP1+5GACxe2wfusGgdEuy2kJz7HwqwL6oM039xocNkZkVj9Ps3LETcXhqUtnyaSOG3K0Oz0uXX0eTwryF//93+OXJszno3T6Y0KeQVqx8Xw+FHuC2z1AEwUWp+L0Ok30bp2cP0Z2Kk1Q9vhGpU3XlIkFDKJBEZ8/wcxUgcOWxUSO0OwahFSLt67dRnPqWIbOcBLA9sKkEvMY1U3WKzrLCZeQX0E3DEamQD6hoYV8jOr7lFpjYq5JIBggZR8vnz3DJRSKMqdmOKy00ASPeMpPSHK4ee01tiNRljMKq0kPX14kkMhQHm5y7/UKn3vhOULBS5QO95EmNtNRid2mRzRdwMHBdWC/1aVS7xEvLGMMJETX4qWn5mmVHPyCzpHPptqbsBzyMCyHg4YAioNpmGSCCptmhNt1j6RtsRwPYMoyycCE81NJ6u0mN6//Xwg+BW9+gcXnngeijLsNbKfD3kGdy198GkEQGJXvsJaLIk9PMzy6gewckvGf4dLaPEPd4M5ejcPtu5y/+jkkSSYSkFmcyhAKBnBcl3v7Ndqt97cdvi9/Wdp9G589ID+bYn5+HsOTkcIZLp6d5d7R4KSd83t5cCPumCOqjQ6e51HIJBHVwMmmPF+Y4o4UQhIN2kMXRIX84gVyUpDKoEU4madY2wKeXBHhZ8XxOnfcWCYe8Z+8/qhNwKeKijs2oWD0oZc+q+j9Kaf8OPDEnOpXX331h243f8qPFvcd00JYPGmX+3EjI4+rsJf9ES5/8Wmmp2fIzBaxm1v0+sOTn799ewuf67GWnyUUDNDoDKnUtthTlPc586qqkslkHr7vep3RoE34MYWMcdmPNb1CsV5E89kUojG0YABXiTCzMkssHmdY28G0bfKZY1mwdndILpelPnCRJJGLK9PcuLPFm9fvMBzq9OQpvvy/nicujlHFCY7rHueIApoEGiYBTUaWZQzTJJ4qcHe7TLtRYT5skUzojAJ+dltDqpvfJXP+AvnpIPuNPVq7MpmVZ3nhyz9/0vp948brZGI+5FyS4aBPSjOQzDqNtoUgdJiLe5Rch60GhIc+Rvt7HLZcZuaXePHpNRzH4XB3HYBL59e+57SkVwiFwsxkkgjiLLVBjXRA4eJMiEazQ2fkkguoNPq7+EMxopkw/U6TVNCHKMvotoAdmCaSlRgMR9TcOPokwGw8y8gLIIaTnEnN4YZm+Mtvf51BZYOLazEW5pexkXjl5hG3GyIDL44rh+lKEqVmldslg3A8ydmlOWx/mFZPJxFSWJy6yrC9RTh8fJIx8Re4eXhIW29zeS7IlBYg4vcIiRba2OKwdUR3InLPjDM1u8izl5Z5e7vBvfKQUb9FOBggHNKwDA+fqJBJ+ZFjcwj2CJ8UZvrCPOcyM2SzOQ7uXWctr5GIR/Eck3Fjl9lCilKlyjgcoDWSSGo2hbCHHJcRRyIj18ehO4Ur6EQTKvWRj3Qqjeh2kPQSmm4RiSXxjSr0Kpskps6wdO4Kg+EIygNSqTRH27dO8o1brRbqZMj5tTQ9x8TDIxELsTrj8I3147bWtifRH3uIkoroExmbLp2hjeVJ77MT9+Uvl774eYp7m6SzCtlUnN5gSLk7YKiPQdLed3J0nwc34p22gcAhpusRkoLkkqGTTXk6k2U6l2ZtehEPD/Vd9aBOf0yl0yWXL9BWlCdSRPhR+aRpbpqmEUoWqNS2jounP6tNgCT/yETvTznlh4GP7VT/0i/90kP/9jyPSqXCW2+9xT/7Z//sid3Y9wPDMJ54yoqu6090vO/H2J/lPY/H45P/flAnQ9d1ubexweHWHSYplVq1QiiWZmYqhyAqOGaXdrv9kO7r4+47k81RtCy26hVwmiCphFIrzMzM4vP5mJ6ZpQgnP7c8AVMIcfVcDsUfxJqArPmJRyc0KwckkqmHDLppmliWhSRJ1Os1hq0ylj6iWinT9QYU0kESkeP7HIxs+raEGk9wZvoM+7ddyq0yI0dHkcBWC1y9eJHOwOCg3ObGboeRIyGLMnuVDiMvRDAxRXNQpdVsMJtUeHpxjUpjwF5PorjxJuujAfMpFZ9PQovmERLLDByNSmdIZGCB4NDqmiTyC+y1Jni+AYaoYQO5mThKpMu9wx5v39okHlbojx1qXYNKzyYWT5wYTyWcZr+yg2v0qdbbVIZHWJZFrSeiTQb0fSatkcDMzBxXLqzy8ps3iVtNfFaXd17+c/yJaUKxDJvFFmOhiuIPEkqtkEymaLfbDMc2PtOj1vXo+Dw8ERw3Rt9y8fkEvMmEXn+IKErEs9Mk8iHqfZOBFeX8sy8yfRm+8c1vsrw8w6WVWcBjq9Rl4hMZdpqIahFhMubzX/g82aCHFgsQlRUunVForQ8IzT3PoHgNWxkgRhRiAZVYxE9zEqXZVZhbXiDn63Dl6lXqzXl2N++hAYvnnsEJzpK3BlxZCFDv6IRUUIwa51ZmUEIDFtIa1aGEFMwwdBX8kTTR8ZDNvSNca8zqTIpIKE691aV+1EUUJVK5ZRzHIRwOHzfoGQzweRMEUWFoOAQiSTqDMWpcxg0NeLNcIezEUAMTjnSF1shlIvmJZWL4iCG5GqYgoAaDjB0fjXKVgKIRCvkJhSK4jolhWLSbTUKxNIYNPjmEYRg4poEgxhgaDmNrgicFkP0qTh/aowlhBExPQpRlbNtmdnGV4UDjnSMXVbYZ6A6dSYbp2XlGo9FDUm2DwQDHNIhm4oxyCxTbRRxhjCIrNHttmk6TxPxlXNd931pimiatyj7T8TCIMsNel5npPJMJHHW75PJ5UvEwR5UDgqEwjiDTG1lEo2GsCViGQ7uv4wjHusy5fOFE/15VVRRFOVnDPgmPW6PuK3cMW2VwLJAUQsnCyRr1UUgmU1Qsm61686F1LpPNfWq7dv9vVkNJdstFxtZx91p9bFBpDvBnV7BtG9u2P/bYP4o28rMc+6PayE/Cj+Lz+KzHvh8k+qz42J9gNPrwUZDP52NtbY3f//3f52d/9mef2I09Kf7kT/6EP/mTP3notclkwksvvcSFCx+tq94pnz1HR0Xc7gFTSZnZlILo81FpFykCsWgEpI9+hOnz+Zibm8fKFx4yjo/7uWVZKMItwqHgQ+P4NRV6A0zTRFGU9xnCarON4OhcObtAOJ/GMzvceGePN90xz5xfRvDBUa3LwIsxl5s9MZh33nmD2rDKTCbMzNQMihaitt9AiuTZb7a5vXcHxBBT8yto4QRa5y5b+yXsQZXVjEJvoCJKGhpj2pUbaD4fq2dW8WsyxX4bExgTYr3agXCHUCiKT01gugK5whRzIZNcQmXQqhDRJtRrBta4S9IvcnG6gOmqdB2dnb1b7O6c5dz58wDk83luVCv0KuswsRj1+0RUl/mYwMhQCQkakYCHhM61OzuYwwazUY/zy0GSGT+7lQMGTQMpcZZQZo58Pk8oFELXdfq9LsN2hYTTYTnuYthg2xYHDRNVdJiKqfgkF1sARTARPBkLGXti0R/22Fq/xWG1TanSoNtpsLu7h6AlWJrNkk4FyeRnGVsTtvUqmdQKfr+fzrALrg6iij8gEEilaOwKlHt9VCwEYUKlZ+OJBrEklHY3qA4FnrnqcHZ1GVGUKQ4gHI0QjujUDstUy11Gjo+IrJHNpmg3PXRzgDERiYY0bMuk2tERlBhdvU+pdMRyzGbQshj2AziixsxUntL+JqNeHb8I7XcdrkwmC5JCfzjEMnT0bgMmDpZjE8/NkSlM0y3do6foNA2D7tgkGAiwkkqQU8PU2yKtfgvTA8ntEJUnOPhIRzU80aPUs8mOBqAMaLQ79EcuoewKoVDoJNUgqhyffAhKiN1SFU+NI/oEBiOdo1oX0Z9DURRS2Rxq0o8x6nJYrjBxPGRJxrHG1KpVgsHgifOoKMrJ+DNTOYrAUbfJcNCirsucXTnHzMwsnU4HAMuyTuaoZVknucWWbcHEwa+G8TxgMsC0bAJ+DZpdgJPoLnDiJDY6IwLJ+ZM14r7+/WfJfeWO6VSYgD927KzWtigCc3PzH2kMn8/H1NQUkjT3yHXuPvfXuMf9/IPI5vJ0NY2jVuX4GUoqoexxgOKUU055Px/bqf7a17722J85jvPEd1qflt/8zd/kN3/zNx96rd/v881vfvP4CC30/hy/J8FnNe5nOfZnMe79PEi/3//Y8Q3DwOhWWZtLMRpIjBu7ZJMhZuIid0u76MYsyfkrBAKBRx6Vftr7NgyD5tEWnmsR0r6Xn9gzxkiq/6Rj4/bWJk5zi5VsFFlSmbTXcTwdfZjEMkZo6MSCMq/fPqTYMsmkMwSTM5y5/DzzC4sUDw+Y6G1mC2mqdYGW4yNka2yWaqiSx9986SLddpPDvU2qzR6tVp2CpxNwGywFmoTCExShj8+GdFDB6NishSdsN1xuXDdYnU8h+I7VC2SfS+ryzyL4fdjiBEWLkC1kQN5k1LxLUFVQk1E6lR1KxR3GnR5n0xni0hh/OsfIFqh0hox7NVz3DACj0YhW9QDFbCI7HWq1EmPJZDEf47DrMZFN1rIiNw/2qLQMZEwuzMdIKiNyQQch6fIX127QKw7IZtNM9BZaNIs/EORw6xbTgSHTfgl3POGo0mSvOqKru5yfDiK7Y/o9m4kgkfSnGQ0n7G6WCPtVMpJGY7tE56jKbDxCPOhn1B9QKe0QDX+Jy09dZXFumsFgxHVZpF0+YPWF5yEdxXJsyvUOA7OCufNdPj89RvUCVGoDbmztY1gez1xc5GefWqFY69Nrj/irb73Kz3/lBdLJBMXBiBsbJRr1ClgetjtBcsYMKof4o1PEQgrheJLG0MCz2gQcGTWSo1ErMxz0yCQjJCIqxrBFe1gnNnORQFDFPdymMHeZ+ULm3WP9LXqKQjI/z923/ydJocXCVILJBNrNHu6gywvPXcKej5JUTcJ+hf5gyGvX7iBJIi3dwR/P0bA82o0a3WoD0emRCcNsLk69L9EbhdguNhAHAdYSx5rV9wuEO/l5qkc3addLTIwe40GXm9sHRJMu8XickeWxW9UJpjyGtT06rRYqOiG/wnRCIZeIYNngBVNM+vsUD6WTxkuhUIhOfp5m+Q5+xcfKfIFWJ8BOscmly1dYWzvD/t4ujfIeAOX9DWxrgYXFJSRJoqxqeK5FLKTRlgQEV2figiT6SIT9jPTvzeNMJsOeolCtF6HTA0kjnD92Er9fa/b99W6x8L0CwHjEj1/xsdeqIS+vnNRpfJTUkMfd96cp+r6/bgeDQaampjDN9zeK+bT8KNrIz2Lsj2IjPy0/Ss/jsx77fj3UZ8UT8YDv3r3Ln/7pn/If/sN/oFarPYkhT/kJ4kHFjmgkRBkot2tYhkmtaxJanMN1Xe68/fIHthf+pDwqD7vXG1JpDojNnD8xcA/q2N5vUpHI+Hlt4w6FhMZyPsb5qUvM5lMMfElSi1d56qmrJw75/bxPIZNlqRClUm/j+FNkcxJrOY3RoItvVOH5s3n6wxh/8cotkKMMRhaZgAaOgzSx8Ss+JJ/AZGIzGEM+rpJLaeSiMg3TxgC64wk/9ezzOI7DYDAgGAwyGg3p9/rU9kv0qlvMFHIcHI24ttkAW2cmHSSZk1A8H93+CH8wyO7OBoNBD0vvs39wQLO4zrM5k+lMkthagnajjGMNEF0f9ZHJYVmnO/YwXIFnV7Ikoz429xvU+jAcGRwWm8j5OEFRZ1hvs33jZWw5TmXvNtOiTSwaxVZEEo7AUa9O07SpW2EmsTSe1iWlOpRbQyoNi1FApmUK5CMWpm7wxbUAqirhuDYdycU3cWk3G4RCEURRJBaLUFg8z+1br5DMl5gr5Gi0B7yz2UBUgoRHhyzGXaazKcYLcRxjxFAf43MNumOP+eWzTLQGf/7GFt9URFQtQjC/iuVJXFie4qjW5l71EM0bM+51GI0tFlbO8Mxzl9iqDNkvt2iaMGrL9IYaz71w8Ti/Pu4R9KsYpkmpM6Fc2ieTjJBOxN9XV7Bw9ilMAoy8MYet42K7WGGNC749sPrIWoK+XiMV04hLPoKahBTJcXbqDGvL89zb3uPaG9/l3j2DiT4iGFKxfGFmMgEmDKhYMl944Re48u739j73iwmbW3fIRiUy0wsQyjEcDNhsq0hqkHgyyOWzBcKhIItZlW+/cZutnX2eXY7jilGi6SyxeIJrtzY4uL1O/8zZk8ZLs3PzHPI9+TfT9RHMn2VhYZF7G+t0Dm6QyySod2Eq6qPzCD3mmSwo4ST39u9hOh7JmbOM9PH78ozfq4jxSVIYPg0f1O3wUW3bP6k29Kct+n6QTysBeMopPyl8Yqd6OBzyn/7Tf+JP//RPefPNN3nhhRf4p//0nz7JezvlJ4SHFDviUWZm57ByeSr1JnNRiUAwiFHbeGx74ffySYp/3qvp6ggKoezKSZHSew2hIssgyjiOybhXIz23SiIWojcYkkmnWSssUurrJ/fzoEM+NByiioxf8fH2dgkmJl42x7BdJRVRAY9yrcGoUyWqmPTbXWxVpX10iGR1yMZUpgoBWsMJlu3ylafyxGIxZC2I7Bw3ZmpXD/l/fe3/iWD18awBpj0hHA7xzNWr5K48w7e+823+6tVv0h/p+NAoRDVGjsh3r++QTLTRQnHevnuIqmwRXptH9YZkBReTHs3WgIAwYKC7eIjslLoIoszzaznaTRiZLpsNCGsKzdGE0RhMBgwMG3ygjo74P/7z/0YhLjIzPYUcVmij4/QryLlpLpxfpNnpIwoivcmQVG6Ks8szNKv7xOhQ6hgMLJWQX2NouoSCMbq9IbGAynCskw7J+H0OUVnl7dYBt9Y3yWeeB+Cpi2fYr49568jjZrGI4akoqcvMxXpU3noZwRawhy69gUk2JpONqzRNhXR+HsedEBZ1zk35ee6ZSxQbPYbATNzHWt5PRm5RliMYXppdFF7dr9AOiVzJpZhbWWZqRUGIzZNIpmju3+HpMzkOj8rUGrvMSDIBzU+jeUitPeLp555HfuCo/kGHayafYXVqiYnnoakKtm3zjb0NOpU9ZueXaQ9NGj0Dnw92expfPD/P6tIctuOyODfD0dEso9GIy/kCPkkGx2KoDykPfFDIsbp25n3z5n4x4bkvPk/A70dTFVRVoVJrcGt/iKrJXJwNo/iPU6jiET9PX1hiPOqzcOYK0WiEZqPOK9/+JkbrgIDnI+gVyMdClMt3OOTY0RsVpti8t4HQr2F1j/jz//Y2hzubXFqI0piMgWM1kZAmPlKP2bX8VJjFE0F1NPZa3iOLDR90Er/fTvWHdTusVis477Zt/6TO8Ad1kDyVwzvllM+Oj+1Uv/zyy/zbf/tv+S//5b+wsLDA3bt3+da3vsUXvvCFz+L+TvkJ4NGKHWO6Q4dIah7jgTbG8P72wvf5NMedoigyPTNLJBoDQJIkFEU5ed97DaGqqoQSObbuvMlIN4iENHqDIbXWkFB6kUQsSqnd+l5RxHsiU67j0Gk3qO6tY1kutHcYdSsIhSCVWodms0xCc7m6EGXcKdPr64QiMcqVIUeHJnuDFgNfilxMwZt41JodIv4BBu86/ZMBk3KRMzNR1s6k2d3dw/R67N8xMSYaC7EJVkzkwlSY1aUFmrUio+EIxXOwzACuoKM5bS7M54lKOvNpP29vHBGVxoz7XSKZCLpjst/osdewePFimrnpAqOxQyDkUbNsrhd1ljMqXzyTododU6x3mY6JPH0uzk7D5sqiRm9YoliSkEQJQfZzUOmQjAUwbIHa0MMSAgjhAvulOldm44x1hUGjhembMBVS8Gs2Z+ZTNOo1to4aTEdl5pIaQ1OiY6uobZvdnR0GVy9gOw61zpif+Zv/DxLJFLdv3QSzh8SEb//1q+itLqOpEEraRywo0u6NGdsCqak8PlFi2K4g+zwC4TjxeJRKvQnAxDHoNDqcm02yNpPkXtXh6Svnee1uGUOM4gTyaOEkqcwMC4tL2LZNv37AcKSzMDfNhmlxq1jGHA8ojzTCuRlCoYdrV+47XNFolIak0mh3kSQRgRC9bgtb72PYLvlkgIVChDtbJYqjACvP/BytfpU3Xn8Nv+JjbE04aOio4QSpQhjZM+h0e+w3dNJTi0hhHzff+DZTi2cfmjf3N5XJeBJFkU/uKxmPoRb74BqEglmsyffuORGLIvokTMel2ajTLd3D73VZngvTMUTEURVDjzCTjZ04epVyCd/gkLVclE57gGnv4YgV0sEYsYhAvQulSo21hcJj9Zgvv1tY+6TTFZ4Uj1Mout+2/XHr3cdxhj8sGn4qh3fKKZ8NH9mp/pf/8l/y1a9+leFwyC//8i/z8ssvc/nyZWRZJh6Pf5b3eMqPAZZl0ev1HmvkHtf9671tjO8TCgbAaR4bj3f5pMedj3LGtVjuoWKcRxlCLRCmL2bpY3Ov2CEWixNKL1KYmqbXH57ITnme977IVL1eo1O8x3Q6RDyVZ+P6KwzK98irORxrQjYqMbI0StUGxtgiGzBo9y2moyK6amO7OoGASnruHDfr+1jjAYVUCH8qBkAyGiAjGyymZfLJMO4oRK8/4qhbZGirrJ7JY3dlCiGTWGDCOBBkr1gjrIncrjRIF0JcPLPE06tp1vcqhAMJPNtkKuRQtyTWqy69wZijlk2t71Hsgb/iULcizKQULvgFvrNrsd4coOzqtHWP5sjPL31hitmpDPvNIqlICMto0C7tEYomGTkytze7bNf3EYD9tg8pmGQSyLC7VcIdNRkYMIkuMZ+NkI/aVEtHDHWTwz5YHZ3oosJWWWI08eMpAXKFGfSxzmu3iyTSuZOo5d7uDlE6zMxGkSWRresSm57AG7s6nqjh83mURirVts6Li2Fsx6FcrTMa28TnnuaoXKNa2kebLaAP+2xWKqzk146by5h9RmOLF7/4eeojlam1q2Sz2Ye6/t1veOLtF3HGPUxjQLk1Jnv2aRYXl6iXNxBFEcUXep9U2p3NAxobf00iAIIUYGA4rC3miBVWKA8FOntl6o0WTXOM6K/jDOsk8iH8EnieQCGXpt2P0vcgqEbpIjE1E2Z+Jkvd8DOXV6m/Z958UHRV9ocRfB7DkX4SqQZwXBd/YopSrYegV8iEJFqOg+H4yOWniETClNs14okUOAO63e5JdDUY0KgdtDi7XCAs6nQ6TXJTx/Nx2GvT6gQ+VI/5h9lp/ETr3cdwhj8sGn4qh3fKKZ8NH9mp/t3f/V1+53d+h9///d//WHldp/xkc18Ga2f9HRScx0aPRVF8ZPev97Yxvs+xcfieEf00x52PcsZ3y8eV+OfPf08h5lGG8NwLv8DC5TGDo1vEC2kSsSi9/vB7Uad3/5YHHXLbhWrpEMewiRVyzE7l2N9JMwq2ePl2nWjIzxcvzRDQJL5xbZeWPkGSTCr1JtPpMPlEnN54wvVSie34ClfOfJ6I1+H8YoaeJbFjQ8AfJCKPcG0L03YQfDKuMSAaCDPqeSiyjE8QmEzAaJdZyCSx9DRTuQjWvRGZ2QLT2TCi5OITPBrdHqZlMR65HDVHZGM22ZjCTCLOd3dNpqemiGbmSSf7BCYdbE/ii5Fpdo/a+CJBnnrhIpXN15GkMcVimX6vz62NTSTPIhEsMD2doO512an2CCfyzM5McU5SeH29Rrc7IJ2fIZWUWEkm8Yl+RoaFX5HZqHl8a7eCKKkIskLfFDBbLh0HgukoV56/xFZbpbByhXQ6TTQaxbbtk+9KJBxkY2MDu19HEGXe2W2w13JIJpLEZi9SEUbsW1OYt9pUaiLn11bJ5vIM67skgxIjYGEqRmm/zTtbNVLRMNWBx/JUBhcRZPUhh/rB79Jf7+/RPbhDISaTiISJJLII8rEUmj+7wm71gO1SC8UfIT11vBn46298ndDoHmcvFfD7bKr1Bq/v7VOMZflHP/c8e3t7SFaHC4tn2amZDPUmsYRHJJ5mamoaSZJJNHvc3GlBUCUQVUm5AskA9AyPVHaKfDaNqvQemjcfFF3NzByrwxTLd0jFj6XX2uMRxVqPs1eeR9d11l87YKRPOGo5+MMJ5qLh4/nv6rS6PZACCIJwEl01LRNcm1g4yjiT4/D2Fu3eAIiiD3vsFDVyq8/9UDvOH8QnW+8+ujP8QZ/XD2Mzm1NO+XHhIzvVv//7v8+/+3f/jn//7/89v/zLv8w//If/8FSS7secT9qY4EHKpSPguLgol/zw6PF7o00fZBxCqZUTiahPetz5OGd8bE04alUwzZWHIoyPMoSu67Ln91OqFym1WzjIDK0A4XaZ7dbhsQxVcgote4a9Vpluu8HGdp1MWCA4aHDrZg0mNr/4U1/km29t0R0MKLZNXHeM5YiIE4PBoE8hE+d/fXEJUfSxURxwqDsk4jHmLr7Ezo3vsFMzEPwJEMGZeKzvlclFJQz8tHsGeneMEongiQqO7dC3RIa9AXOJMabj0R6M8EkK09MzKMqxQ7hfa2AKAbYOmljGGE/UCPg18mEHBwFDjBGNuShakGb1iKfW8hSrJjuVIUrAQJZESq0Ri6qfiaBwVG/gAKgRtktVsn4LXU1SbfQ4rLT4/KVlMvkCs3PzdAcm1kRBDcWJJbKIRo3FfIyxMea7b6+TyuZ48aWfYmdznRjz3Lp1A8/rUJjJsxpNUrMitEcCY0emcbRF8/A2ij+MFsniWjqhYIZKuURx8wZpdcjzX5zizn6A+nDCaKIihQv89N98ihe+/PNYlkW71cRqbFErHXJuKsw+PkaAP5Tk3FmFWxs71EZjDFdi9/br1HoGUuYiidw8yyurD20i7+con3n+WQa9NtawRVAw6faK3G2OmFu9fHzhROBYHw663S713et8bjXL/HQW27aZnteRZIWddot2p4s9bLE8m8Z1wfEcTGOEwIji3dc52N1CFGVCkRj20KQeWmXcg3qpjz2VIpWdYmFu+rHz5nHR1fv5ynvAUeUAml0k1X/ys/F4zM7dazh2GW/icvfmDfTGAaFojMo4TFbOkpxfIxKJnDiUwYAGooxuGPhDEZT4LH3j+Pk1dJmLl658pk1Zvl98nPXu4zrDH/Z5nXLKKU+ejxWp/t3f/V2+9a1v8dWvfpUXXniBpaUlPM870Q895ceDT5Ob/CCGYTDsVAGIREKfqEMiPN44ZLK5k2s+6XHn45zx+9q2j3LG32sI3+ts7+5s46+uM5tLk4i9u5GobRAsnOfCM1/kzTfeIBXb4tK0TCKqMjIMmkdN7mzbxBMJPNnPnd07+N0mAVVh7I2Y2GNUSaPZs5nJBGDiEY1GiGgT8oUpQuFfoLN/nVwmQbdsYxhDVMEhqqkEhAGH/S63axKJiYwSSrPVnGDKacxWmUJ0gh+XUDDEbn1MYSWCqvlpdYe0BxI+NUex1Wc4VIgFZWZnFFZno0wE2Kg6rOTmmUh+bty4gSUnENUs0wtTXFqZwu/38xevb3Hn3j7ruyMKmo9nzs4Sio955fUq29UJkYzNlDamOXQoGA5Kf4Ta9wjGZ5jxRExXZGVpjnYnykalyHikczhQ8WJhsoEAmWSExUyKiehnMOgTSAaQJYHukUGlYeHXfKiDLQKyD3004fBwE08OM5NUaFWLKKKNHAyyfXjEaGQRUxVGvR6lUpnk8ueIRCIEAgGmpqa4ecOjtrtNIuBD8sfBAV2IMZ7AVltmOBpyJusjlkozOzvFBJPd69/AcZwTCTlVVU++d4Y+xDeqMpcKEdA0uoMhN7/5FtZ4wBefuUA6/sBGdC/IeNAmEpoHQJZlYtEoM3PzXN+/xdb+EUFnjGGqVLsG1kTE1jtk0iqjgYFkV0koChOfzEwqjD/kICaWEH0ic3mVfDb9gfPmcZvK+yyvrJ40TrkvQwlQrZRRBZNRr8VyysONJinXWnSOBnjheYLLcZ55d22JZmbZ2X+HTCIAWpR7+zuYjsfc8jnUQJhKyWL1yhceOkF6FE8iIPCD4kk5wx/2eZ1yyilPno9dqPjSSy/x0ksv8a//9b/mP/7H/8jXvvY1XnrpJZ577jn+9t/+2/zWb/3WZ3Gfp3wfeVJSTMeOw/sr6z9ufuDjjMODXcPuR3i2994hMxiSjMewHedDIzyPc8b18fEx7Hud8Q8y1qIoclQ8ZOPNrzMfc+mU+9hGjsLUcfRvr14kncki2EOCgQA3795BET0UxY9hOvzVa7d5+twiL5xb5M8O7mIZBj5BYEgUWTRIKDY3dqp0xllajkYg6GciBYnFYkxNTbGnKJT2jxtbZKcWcSIhKsM25eIIhyS+ZJT08hmeubhIpzeg1vsWPTHGvhUg6caJz6ZRcgLbRy32KiPkYAwHGW2iosYXOHf5eexBjcPN62yXWvgVkXbfx+qZRRaW1+h5Ec5fWkEy2sxnVKLhEPV2D8UfIjDRSQRlCC/yn1/ZwRuU0EcjCjGV+UyQ5y7OMhMyqLQ6dCIzfO7MZQKBANcaFQzHQ323OE4QYGwYRONpBkR47fo92kebNNJ+ZpbPs5bLM2xXaTaa2AFwXYnFBJybCRPQNHTDQNyv88bRANVnwqBGu9okowwJSBOiSQgHBKrNIb1Rlca97/BnepuLz36JtTNnOXvuPEa/RizsEghFOdrosLJ2hk6rQX5mTDbs4+JMiHwmhqrItDo9vnHtgLe/9WcPScjlC1OYE6iXDzk3EyYaPtZjdScT/JJLRHHx+1UURSbiC2LvFzm8d5NWvcyrb3ZZW11mYTqLKPoQRBVfdI7hJMJhpUJ77BFNZFCHNWbyGYqtCu1ejy9eWURgwp1qi+lzq2TTKfZaXVLTS9SbW6hK7wMjow9+99/bBOw+3rtR9Qff06sfcuXsAm8PGziCj0hcJC1HUZ0QTz33OTq2hOM4eJ6H67qUWjpbW9vguYxchUQyg+po9EbHG/r5hYXHrBRPLiDwg+S9RdPRaPRTOcOncninnPL94xNL6oXDYX7913+dX//1X+fWrVv86Z/+KX/wB39w6lT/iPMkpZiOHVYZcB96/ZMWy3yQcXAcB9d1qXTG7O5u403An5ji7JXnWVhceqwz/Ljj1sNKGzE2d/JMRqMR1WqFXu0QezxECYRITy8/ZKz393bpHNwgH3K4tJTFcR1qjV3KQDZ3rFbQ6/WolIqIgyb9Tgtn1Ma2LWq6SHXkJxRPc1DvIeHwpc9dwh+Icme3zMRMMGjssdccYotRRFGk3LCZX8wQDAZPDPHYMOnu7vL8579EKupnOBy+24FOYKc2JpCaZzDuYngTgslZYtE4Vnsb0ekjjCwwfeh9nUsv/AzZdIIbN65TO7yJ5QrMpPwMLR+u49Dsj0lH/ESjKUS7x/puiZVLX8C0G1j6CEkMUm/2+LNvXWes91jKRelpBofVPgWxQW5GZuJFiSsm/VGLm+ubuIM6paMadkdkaX6OYCxNx9RwEVjf3IVRlXxYIuwLovoFRv09MgvLiMvT6I1dJqMmw1GUSHqW7bqFoALNbUQ7TL+vEQr6CQb8BCWbdnGLfn+ayu5dvH6Rv3E2QCIkMl/IsVcZkNBsxm6foL5L716FG4MjKuWX+PLf+GnSU8t0y3cQRPPd74dJqzfGH4iSjrkUMnEU5Xhprbf6yEadZEZltRDGsh32tt7Asq7gj+bYXX+VxYwfv+ow1A32K33isThhv8xgOEL2TSiWqjCqci4nM0ydQz+6yd7mHTq9Eaoqce+wy/nnfoYvfunL3LwxQ/HOq+jFfbr1A9JRjZ2SDag0hxN8koTPHyIWT5xsbvP5Am1FeWxk9KM4qvevaVX2wbEoq8fzKpFMgWOiqSozuQSr+WkmnofoEyg2dKLhIJ26gWEYNOo1jNoGX7oyhywt0ep0aXQNgoVzTE3PYJom9Vdf/UBt+iepzfyD4FHPuv8jtik45ZSfZJ5I85eLFy/yr/7Vv+IP//APn8Rwp/wAeZJSTJqmEYrnqHf36feHBOTwZ1Yss7+3i1Hb4MXLsyjyIq1uj0ZnjOd57O3ufKBD8OBxq1OuUW108BBIemX++//7Bo7rIE5MqsVd0jGN+ak0Rl9gvbyL6/4Ua2fOnmxGFqdTVLw+puWQiB1HH8vtGrIWBOnYoS8X9/GPd5kKOZw9N40qeby1XsXcGmJMJESfg4DHxDIIxiNEIxFCWpKNsUm7WCRuS9hukPzKOS4txNnavIckSfTqh3S7bUBle++Q7NPnSCQSALQ7PbSgyrl3j8273S61Vhvj4GVUd0BIcnFGOodHXexJjka7RXX7GiE65HISRz2Bg50NRKfP8+eyjN0ZDisdPCRqfQc5HeSLL3yew4N9brxSxrxXo94Z4Rg9fuFqnmhYpVIpQ2eXi6shLNuhOxgzHo+ZSEMaR7tMhywWMn729THX724TT42ILz7HdD7Pndf+kvmYy9iL4E8lyCsNQhmJlmWzsrLMm8MhG/du0bu9jxBIEQiG+PzT51m/XiIRFBh3SpSBycTm7bffYlBpkHYHCOM6pjVClCJE/T6Kh2UOq10yEQUlIPH0gka9Z+P5dQ5vfpNv4uPpZ54BzlMq7wOw17RQ44vkvADj/g5D3SChhDBMi3qjSjKiEUok6XVamIMWwqDL9ZfLrF79MkQXuFvuEOkcN3KJ5JYxJ3sUyzW8iUPdZ1I8KjOTChBOznJp9SI3bwS48eYr7F17mUSmQGLmLOenppEkiUgkgt8vE/RkJn4Jv+gyN5NmYCvEshl8gsegJ+ETfCeb22AwSCKReGyawEdxVO9fMx0/brvtuRbF8h1McxkkFdtxQJSxHfdEzx1RwXZckI431+/dzIfDQSLhHnutGtryyvui4O/l4wQEHtxk/zDxo74pOOWUn3SeaE9xWZY//KKPyfz8PAcHB+97/Td+4zf4kz/5kyf++37SedJSTFPTM+zu7VPqeTR6n02xzKOMaSgUJBzs8Z0bb1BIBFiaSSFLIdq9Po2D6w8ZqQfTS+7euU3BNcmkotxZ30LffwOfZ7FTH7GQklgIpckEE8Rjce7s1Vi//jrzC4snm5FUIomu5yg2dgFQFYlut07HbZBYuMrW5j0OdjaITcr4IzqbTpxsJsFsNkTkYEht7xa/8JXnMdtTtPt1TOOAiZTCURNUhzKpuQvMXLrKzNwSl86v0usP+fobr5AO+4j6ITyxGZJn8+ZrDFpV/saXX2RsmO/byESjUWq1Bl79iJ++nKCQiLBf7VBq6KjOhP7+NdYyHqtpH7at06y02etG0NB5e1gmlZ2ikJ8mlc4wCWSYRKNMJhPOX7gIgkB18w2U4T7n55LEIyrNrk4iFmIxH2ZouOCY+CWPTEAmEhO5V7WxPImzK7NITRFfJMTzzz1Fy1TI5QuMlldYLYQJh4KYlsVRr0o6EaVVGrGzf0RKM1n53Fl2y10MB4KqD1GAcCxNe9hgJgLF4iHv3N7G6h5wZTHPynQI3xmRP/vOmFsHI5pDP3p/iOLzoQUizAUi5FNhXM/g7tEhR5UuuzubHN69zNy5F1hZO0v9nXcw9DHYQ5qNFq1qB8EZcnYuzVAfU6o0KRTy2BMJp1ukkAwxm8xg3qth1DeJZaYJESYZ00jGY4wNg7/8xncYD1vk1QGO6GJ2a7RdlZCWY+J5ZLM5nr18jsyUztVnv0AkEqZY22RjMsHo1Xj+yllCQT+7uztMekfMaDJvbLX41ttbiM6ISHae8a2b6K7E6tM/dfKdeNRJ0EdxVD3PO7nmvqReSPMfX9Oqo8VyNJpbeFKQ3UqV/nDEcGzjBfPU2jrRwrF6yIdt5j+MjxIQEEXxQ+Uzf1CcNmw55ZQffZ6oU/1Z8Oabb57IsgHcvn2bn/mZn+Hv/J2/8wO8qx9fPmn1+ePSK+4f1S6dvXIizfWkDcPjjKksiYw7JeKz5xgNugzbVXBtbN3iTkunMDVNIBA4ud7zPCbjDkszKQ5KDcbNbb58LoHrWujNA+ZjGaIqWHqf0FSO1Zkkf3W7RK/Xe0i5YGFumj1go1Kk0y7RMv08c+EKgiCwf+tlCmGHxWiQ83GX9qDN/qGBPz6FPxBg4jo4rsDc7Aw3bnbo9gc40pD0dJZJeIafe+kLXDh/DlVVcByHg2KZgzvfhayfieaQnloG8qzMFXjz1l1MX4i5pbMnG5n7n1Ov18PvM1CSOfq2zLjhYBEhFM/gr7bwSz5iokQhkaDdNUj7TaojHU0RmUlorM358Ud86E6b7aMx8dDyyYbrzJmzWKZJ+aiI6E4oNi2CsQy5tEu/FWPQbfDc2jR908f+zgZdx8CwPEZDg7ZZQolOEbMHyJIEIwPP81C049QJ07KOPyxRptHuYboyTrvGQlrEr8qEoxESQCzoY69aIluYoXag8+27+2zvFWlUiyxkggSCEWQJLsxmGeoOr9ypEiucQdP2ccd9OrrHajaIadi0BmM6pS1iYpB0QiHo7rH93UNu3TrDwtIqVvUGltFC8RQ8y+Lb6xqlvoQ7cekKBVayK0jOiJDmw6+pDEcm4WiCwkyKYk9ACi5x0Dyi0m+xf1hBN0yunFlE9osMenWq7RG2KzBRd7l3w6BZLZOMBpiemSOfy6Cqxwo4tw52UaQJoWAeRZFZWVmlXArQrpWo1Lt4E4fFQo5sKobpCFgIn3huvc/ZffeaB5u/PJheUvE8WodbtPpDNps64UicWDBJKJynMDV9vE58yGZ+PB5/4L1+lIDAR5XP/EFw2rDllFN+9Pmhd6rT6fRD//6DP/gDlpaWeOmll35Ad/Tjz8epPv+ohUGKojy2uOmTYpomlmUdO8aPMKbtXp/JBCxzxKRTpZAMEdCidAdDjm5scW9jnaeuPv3QeDgmkhii06qRCUtMZUI0uwOCqkg2KmFYYzyfgWnZ+HxwP73zwc2I47hYtsNgqNPs6gRzs3ieR724TSYMkfk8jEr4Qz6WEj6omWy0BsiBGJHsEm9tt7AGTZqGylF/jGUNEeM2WjiJ4/mQpHdzuA9LVPfvkApOmE9KTMdUek4fJDi3soDpetihBCsXnyUQCDyUBtMejGi3+1wqJJibDhLQFDRFwkNgY7eEKqkgaGwddWjWG2iKhGVbjCyR6XgA3bTplQ4YWCLv7Ls8PfcVJOl4ORFF8aSgTxgcInldIpEg+mCA7qocNgw+fzHA2akYX399A1VzSUcDRBWBbDZEc9Di+jqce24AUopQKES9O+bWq98in5BJJVK0hw79TgNXDCHoZYK6j+54gpJaw9K7DJsdKk0LeyLSc1QEwSMZjzAZKUwnJOxBlXdaPlQhy0ohwjfv9hmLcUrjDp22Q0RzmXMEBp6fe9vX0YcDclkV0R2RD08wBi3e3GizsLTKfMwlqap0Rw7ZeJi9rsLsxePCxmqlzPa1r+PW7+LlQxwcHNC1NRbPPUM0HOKtO3eIJMb4Jg739oqU9jfJ+U0imkgwHOXs4hR9w0ervIWfIMmAj95kRKXcJb44feJQh4IBZKGH5fhO5oEoiszMzjHxyYQSHX76i0+Rz6ToDMYosozn2uy1ypjm4scu5H3QUX2wudGDzV+GIx1HkKhUyhi9Gn5VIFOYJpjIA2CPmkwGVdbf6RDNzBJKTlGsbZz8Pe/dzH+YU/1hAYEHI+ofJp/5g+C0Ycspp/zo80PvVD+IZVn8h//wH/it3/qt40YBj8A0zYe67D2Kfr+PbduMRiO63e4TvUdd14FjZ/NJ81mN/ahxU+kMkWgMy7JQFAVFURgMBu97b/HwgHFjl1wyhN8fYTw2qB7eYTweMzM7d/KeR733k+K6LuXSEb1mBVwbUVEYGBNsfUTBcPH7NcZjg6PmGDmao9lss5iL4ckBRi6MXY14KsegXaVer59oXVuWhYXEUb2L4JMQA0lquoMthpESi7QdCd0GWQnQHE0o18f4E8fHxt1ul0QyxXi8yHfv3MTtF4mF/Zy5cJl4PEHl4BblepfpSIRs4jz7Owo3W2USQZG2YzPy+fEl8vhjBTJhiC/mMcwxjfIBzYHLwvnLKJKPo8M9XkdmbjrP/sERWiBCJOfH8HSUcBzJEsGEnXKb8URBEwX6/T4H+3sPfU7RgMBhIsROe4CqwVxGRTA9OpMwTvwcTlhkc6QT0Qfkk7O4Ew8l7OFz4E5bwFIkJFHGlqPk5xKEhRF379xmZnbu5HMKJaYYOWN0N8RWs0up6cMKzKLOZrk3UljvjbC0PEtzafIJP4NeB9EfQjANLNfjrevrZJefZff//P9xeOcVBKvPoOOxc9jAF0hiSDlSPhPHCzAQ/MTzcTq9AfpYR5JFEqkU8ZBCtTZECedQ5Tz+kYHP7xLwa3QHcLdi0RwYBBPTaMEoROaYn7lIMhrgcFTj1maDvW6QbDyOp8hYnsjmYZX2CCKhYwdSiyQIBMAUh7TaNtFIAGvUxbIshsMRLgqmkqBp+fD5FGyfjOEI3N3cZzzssTibo9PVSUk9QikIBJKE/Qojfcxew0c6k8FxXKpujElXoUGedFYloKk0uiNkWabfHyKoQcKhJNulQ3IPzIP96oBkZgpJDlDv6Ezw4QoCsk/GMno0Gg1CodBj55sSTrNd2n1ozGpriD+9eOLo3r8mFrHRVJV2x6baGtJzNITq1vH3LpViPDa4vv4Ook/g4trC98Y7vIOanMcXX+RerQZOEySFUHyRRDJFt9v9SGvJ/Tn4qDGazSaWYeAKUboj63vrCRK2OfjQ53Afy7IeWhcf9xp8/DX7w571gxuLz9LWfBbr9n1+FG3kZzn26bP+/o49Go2e+JgPIngfVv3xQ8R//s//mb//9/8+h4eHFAqFR17ze7/3e/yLf/EvPnSsv/f3/h6//Mu//KRv8ZRTTjnllFNOOeWUH1L+1t/6W99L23zCPFGn2ufz8eUvf5k//MM/5Omnn/7wN3xMfu7nfg5FUfizP/uzx17zUSPVr732GpcuXSKTyTzRe7y/w3owV/eHfewPGvd+VHjYqR5rTksyoXiOqekZdF2neO86y9NRZPl7hx627bB91GNm7Qqe53Ht2jWuXr1KOBz+2Pf23giQZVnsrL/DVNSHpB4XQwVUkX5/SKnnMbt8fMx7//rxeMzr3/6fhOgR1CTwyYSiCfyaxu29FolUAhkPJBl/JM1k4lHcuUu1tI/P7KJKkEknUFSFrWIHnz/B4vwMsj9EJJFHEAT0Xv3k2fjUCEc7d8hrQ6ZTIfyaymA8ZmOnxM29LgHVRz6uMJNLk4hq7Jda9LwoS5deJJVOc/27/5Nc0Ma1DNqNCqmohizCQX1EpjBPNJmhNRaJ5pbYWX+HtDwgqIjc3j5i0CohixNyT/8d7K3/E3PYpjO0GbgacjjHz//UF8jmcrSbTfR+C8vQub7TQA6lMU2dYadN0C8TCAbZLbXRrDpzKZX9/W2issnSdAZB8Ng6qDARQySy85y/eJlgapZEKs3d/QbZuWPFEUVRcF2Xt996g87+O8T8AqrmR1BDOGh0LJludZfB0W0W80FCmozZqxMLTmgbEn1pGlEOUN74LqNBl2cWQsiSTEMXIJAjEM+wWzX4hV/8BVKJGKVKjXq1TOlgCxBYOneV5YVZNvaKHG3dxusfsJBWiIf9bBVbDHSTwdilOhQJxxNcPLPMykyacDBIo9Pj9sGA2PxVBp0j3vj6f+OZ7ICri3Ekn0u32+fVrR5b5iJf+r//CuL+/0VY1An5VYodD0eK0BoYzK1eJig5TCdluoMx+sRPQBGxLYN7pQE93eWp+QCJsEqvWQbb4N5+iWbPYGpuCb+m0Gh26ZkCF86ucvXpq7SbTdqNynF+eM9kfuUs2cIskWSeqemZkxqGB+dNrVrhcP11YkKPQiaC4YiUmwNGXoCF8y88dLrwcebio+j3+1iWRSQSwbKs960Pw6HO3tY6qgTTS2dP1pwH14zHRYsHg8GnWkvgvSdr755oNYaoiVmWlj64ePpR7711bw934nHl7OL7Isszs3OfeM3+KM/6s7Q1T+JZP44fRRv5WY59+qy/v2PX63XW1tY+M6f6iaZ/fPWrX+Xg4IB//I//Ma+88sqTHJqDgwO+/vWv81//63/9wOs+qtC9LMsEg8eNM54k9/NKP8ox4g/L2B807vbWJpPOLmvZKKFg9N0cxV3afj/TM7PUDjREzyYW/N6Xv90Zo2h+0un0yXFlOBz+WM/6cbnaiWQKBYdcMok1OU4BCmkSATlMo9ciFAo9lLsdi8W4cPUFOvvXSb+rsGA7Dq+8fRdVFLgwNXWSe/n69VdxXI8Xnz6Hea7A+tYu1aNDdF8Mf2KaFy8uMb+wiG3baJpG8fCAUfnOQ89mfXeHw50Nnn4hz2z6OAfSHfWIWgckFZkLVz7H7v4+b9zcRFSCTK9c5tLl51leWcW2baZm5piKuMiiwPVBk6BTI6xp2BGZqajF9t47tOQlUjMSymSEYHaYziRJX0zxv/3v79AaWOSehl6niTgqshQPcNT3Uan1aO8F0bsFZLtNyC/iKSJB0eJo5wbjYZOZZICYnCAkdLHFFm/ulehVJxSCY54qqExEk15vgNUuYvv87A4nXHjmiyzM5rl3b5PSfg3F52PUChHNzKLrOp2d13l6IYBtu9Qbe3SLAywliRVaYHFugWHIw+sdEg8pWLZL3A9bxSZOLANHN8hRpuO0mZajZKMKFZ/AW0c1esMF+kYIzzFIRDQigSkcY8T6zS4hRUC0OjTrCrIzIhX0ONgr4oo+/ILMrAbX2x7zC+dwig1iYZkrCzGyqePvv9+nUK2OMfQWoiCR1CbY5phb99qIjo49AX3oIxY6PprcPigTMCuokRTh9BwRaUBhLgmyhSB4aMKEbHBCc2yyuHqZVrdPVzTwDjaZinjkM36+u1MnRotn8h5vmyaFCJTqTepjP+ef+wrpyISj/W0qu3ewx10mgzFRfxpL7xFJ5rl46fL75pBhGPR6PdqVfc4vZJg4UYxBG8txUCQfQ1dlaXnliRquB9cSwzDetz5ooseWNUbyBFLRwInD+OCa8WHr98ddS9773r1dP416EXr9d+tFVpiZmf1AA2sYBtagwfLU9/KxTb9ISexheALZROg4vz0WIKSJ7LWa+P1nfiTtwYN8mmf9OH5Un8ln/bxPn/X3Z+zPOv3jiTrV/+gf/SMA/vk//+dPclgAvva1r5HJZPjFX/zFJz72KY/mwySeZmbnPlQp5MOKix7H/t4unXfbFSdjUSzbeUj39lFFUY8r5rlfYNmqF2mVBpiuj4kU4pkLUyd/V9DTiEk6BgLBgB/F8/Hc1UsMlmbYrJg89cJXHjK6Dz6bYEDDtExCQT/T2SjvCC7t/pj4YIgk+qhXjpBliVw2zbkzS6ydWaFUqVPteTz/0s+ejHu/TXOtfIdM3I87geZwTGs0wRFDFA8PODpqUHbGGIbJs2fyOE6ao36b4cBG8ofxGccLxoVpldVIBsuB8WaXvY5IpdVl/81rzKUkJDyuH/YRRI35hEAg1CMohejXqmTm5lnLq+wfTui16gxQsL0IAU0lqci8EFGpt9pstCeMzAn37m2ys7nO6uJZLp3JMRzpbO+9w3apRSEqY1ku9qDKxekAdlZkq9Rlt7VJxVvlp565ysZWnO3SDqWdEUEFxPACIcVBNzs49piJN0EfW9hBiYDs4Tku++U26bNX6Osu7U6Par3JsLHLfC5CKKCSCzocHm1w1DaJ+wVQI5g4VLvHsmqiIGA5NrWORSgsEApoOK5LpVqnWj5C7xm0+1Ab+zmqtQkndCxpwnDgEo0nmFuZpsZxhHfohWn2yuQDMpI9Qbcknn16ns2KTrXrUt7dJhsW6egT9ImCEkqTLixiDtoMxx36gxETz8N1LQRJJpPNkM7P4EpdFHGan/mZn2Nvd4f/8f/9dwRGm+RjEvPJMMHQhPKgyObtt1ldO3PijJ40Yinvsb25TnX3Bs5yhmxhBn80TSySJO8TKTZ0bPv9HU+fFI8qHNTHBsOJH8MRGI7GhBA+M+36R/Go7qwf5Rk8SpnDsm0Csg9BAMO0HioafVDC75RTTvnJ4UeiUHEymfC1r32NX/mVXznZwZzy2fNRJJ4+jlLIR2U4HHLn2nfJiA10W0FvyoQSOQqpMIfdOv5YjmJti1R8QsCv0R6PPtAov9eQmqaJuv4m0cj3jtruG0jbtqk124TCERRFIej3g9PHMIyHnGrTNHHMEZ22Qe2gBa4NogxqlHgihiEnKXc99FGLescmmymQ1bLgeZi2TTQcoj3oPTRut9tFkhW8yByb1SLNkYAqzdJodolLbTKJGOfOrOFsVzi6/df4jSXm5mbRwknyM/O0+2P61948/oxUkZBfwbAdIppAyK+wUTJolw5YTs0Ti8VI1TtoXhnRCpFLSGiqS0Iccv3mDRbTAZ6fnXCTIIOxxbWNQ2YWVM4tTJFQ/FR6E/yxNBs7B8hKgPPLZ3nq0llEUSShRMkMhmzcq+Mk/NRqZc7PaExsnVG7waDRYuJlGHba7FcSLCwuEAoF6XQHjLoVQo7JsFFB9Pko9Vz8PondSo9So09Xh7tNjWF4hq889TkChWk2ykUONraYzwRZu7yCbdv0xz3AR7k5QMlG+Nzzz8G4AbZOv9+n2qtx/eAmQykJW9v8JR0S6Qyqp6OIAlO5POO6QUgvIvuDuFhEQiKG5dDWPfSRwPLT5xkD05kY0wuXuPzUFQx7wo2b69zY2Kfn+MlGFaRAgV63RU8fMdgvkT2zwAtrZ7CHTTxL47DVxHLA9ueoGBZD18/IVsgunCPoHDt9qXQGEZML83HOL2UJB4MYlgn7TV7buUWv1ztJZbsvGyeO+8yHhsRyClHaqHYAt2swFGQCwcj3RVHiUevD6tM/BcBeq/zE1oyPy4Mnmh/FqX6UMociy+j2BMMR0NTvpWg8uMH/LDctp5xyyg8fH8lD/aVf+qWPPOCHpWd8Er7+9a9zeHjIr/3arz3xsU95PB9F4ulRkZ9PG23a2ryH1dxi+XKeWDiEbhjUGrtYsRlwQuTebat8VDmAZhdJ9X8ko6yqKp7n0e126Qx12l2JXCYFgOjzsV+q0Wx1kWWZiRxAN0Gw+zQHDkowRL/3vbbkqqpSbXQQOGRtPkNAi6IbBvf2d9BdFTmQJJ6LEnMddMujNdTRRyPMm9fodAe0Wm16hoCo+aln5iiXSrQObiI4Op4UIJBdIVI4y2zcR6pZYi7mI5+JcXfrgJhqMb8SQdFGTEVcat0ifd8cI0tgaBynJNw7qDOqD/AEgYO6iW0HsPU9plNBUukU84UURr/OdFjk9a0uAzOETzBIazaCOWImGcXxVIyJxvXDIQPLptcfsX9U4e5ozCSxxEtPfYVq30ESFVaXphmOxuB5IBxH+2VRxvQU9O6Apn+A26/Qavcp1S1C6QjDwSGV4RlqvTpWe5+l5SV0a5nG4V3azTGHNfCNJzw7q6IIEzpDg426QFOIMhsPMqhuYYQkxECMzPQ88Sg4ehfBPXZkYrlZcuMwxrhFMplgrGvUazVuVXr0bY35gsrPvPQ5vvXmOm/cvAnW2yxPRYllp6HtMZ5onMtLrObPMEGkXS/hs+pUqiMSyQTzszOsVx2SiRh+fxhFUYlFNKrpON++tksiO80La0toqkSxqpFbnSKRTFMeSEiSRCK/wKisE80E6Q8HRCMSsi2RjE0zNzuHPjYZDwQ0TaPb7eKaI2ayMRLR402YLAVIRf2Y292TOpL7Jyj5mJ/KoMJiIUJNmaLfOETsdcjORNkpFfH8KcL5MxiG8cTm7aP4oPXBNBc/09/9JHlU1H2kG3SdAI7rMdLHCML7o+6nTvUpp/xk8ZGc6gdzVD3P47/9t/9GNBrlmWeeAeDtt9+m2+1+LOf74/CzP/uzH9qi9pQnz8dpBPNRc9k/DMMwGHdrREJBRrpNJOQRDR/nVd0tFiF1/qStciKZwjRNEonEh/5ux3HY3tpk48brjNtlao0Gu9ddnnv2Kmurq+zs7NLqdImFNZZzKrvlNs29PRQ1wLPPfYF4QqNYvsOGaTL9bvc10zLp2QaGaeNXNVwXTMcjkcwQLJyj1K3hmAYbdR9HO/vMxxzGioSsyMxHNcxYEM1u8/rX38QbVvjp58+QTsxQbbT51rX/wdEoRDspYI/aBFZnMUyTnb0i51fnkCSBO3c3yRfG5GIB/scbr9Nr1ijkjnXd2wOTzXtHGFKC6UyS6VgE9BZnZ2fpdJrcHVsMdAsvDLYLfVfDaNWZhD0c10U3LeRAnEhEohC1GY6jlHoO44mJZU+YncmTz6YZCjbVSoU3Xn+VdrvNcNAjFosRjSXomj5yoThNX4xvX3sLo9tggo9UOk1Qctiv1Rl2KkxNzTI1c5n5qQyWbXHrTYvrpoVQ7ZBIxLlTapIK+lCkMOFsmkIkztWrq0STkI24bB9uc2djG/+Ux/nlwgMbnEMUfwHBH+FetUPEH8AKzKClRL5U6BCPRVAVkZcuJnnNnebmnU18PpnJREASVaJCH8n1oYVCnDlzFtF3gUa7x5vrJYZemM3DNigRZtcuEfVLlLsNcHtIkQJaRsQVBaodE0UTiRZWKUxN47oTyp3jU56Z2Tle3t/jzsYN2tUm140+q2vneOnKLL2RSaU5IDZz/qRpkuSPUm6PiEd0ApqKbpiU22Mkf+wBR/X4dElApFw6QorYSLgMxh5b5RozTpSNikUqrxDsvsHGm1/HH4pRmJknkV94n778k+JR68OTWjO+Xzwq6r545W8AP9io+ymnnPLDw0dyqr/2ta+d/P/v/M7v8Hf/7t/l3/ybf3Oy+Lquy2/8xm98JpWUp/xg+SzSOz6I0WhEvVLE1ce8eX2bVCxMNpsjFglSrndZXMycGOL7lfEfxTDf21jnzqv/g7Q64HMXMnhemFfe2ea7b1xjt6pjjEecf+pzZBMh9sqHHJVrpKJBHCVOPj+FosjY+0XuvvLndOeXOCjXaB5uIEZ9/NVrd4hEo8RTebTELFkxzNT0DNryCnfv3GZtsUdW7pBV+nTqZcxJECk0zYWFHHeOGgjDI+aSCoVsAkWWCaoCawkL1x2wsvI0b73yDb797e8gBZOIko9ApYMq2HT0CW/eOUCUNTY3d3n6TJb81Bx14OKlK7xlu9RLXXpjB1EScd0QlqBhTcbcub1Nrdnl+oZJJJZiJr3A9uaIm4cN+rbAih1iJpLF7jeIh2VCmkfLVFmdyxFRJ+y2d3j1WoLI1AX8PoONO3eICE0ymkCnuEOrnmF65XlsLUNV19i4XWEp6bEym2auEMETYCEls7N7l0wqSTRynItdPCrzzq11FKPMTMRhrpCg3/ZoDg0cLc7izCzRgMa51XkqXZNuu4HTK3K0fYuU7SceFJmfmz7Z4CiywtzqRZzmFsmYRlaSGA17TAYtwtEkpt4jFVG5MBuh20kxlU2ydm6BrqHQ6wtUq0ViUhxNlVEVGcueEE1kCYbnmVk6z97eHvFYktl8AsuawrQsRrrBU6HjNJRY0kfIr2LZNr1ej4FuYHnSSaFrStE597lLCFxmd79I8ajEN99YJzO1SCi7cjLPotEo00sXqTRuIJTGBBQD3fKo6H6mly6eBD7uny7tHuyh95tEkwGmMjESAY8b+wKNoUsuEWQupxG0aoTSMs1BF/Qqo7LOHrC8svrIOfS4rqkfhycxxg+KH5eo+ymnnPLZ8bETlL/61a/y8ssvPxTNEEWR3/qt3+Lzn/88f/iHf/hEb/CUHyyfRXrHB1GtlHGHFZ5aCONNVqjXaqxvbjGWUoTy51g7c/Zjjec4Dvc21nnrr/87Qm+X2GwYzwmTzmT46c+d4/pul44vxFQ6zcUzBcrVOiPDwXEdRCXMyLQwTItytQ6jKvMxl6A4oCCUqPWKoAaYjQXZKm4y6PeZnZ7isK8QnyoyP7/AZNxhLh8n7SuQDhdoBESUQJSmLqLJCmO9geTZJEIhTMsGPMb9FsszSYr9AfbEx+riLIoh4ckhKo0Ble13SCcTfOnZq4TCMV55Zwt7MuH5K2v4w2nqJagMFVRFIRWReerqZQr5Kf7yW2/w9u0dnlkMMhNxyGgytw+HDHsugVITUyugTM8y4w8zkCY0dJX20EKyRxRSSTLBWRxzyNbuPltNH9IowRlfiFxIQcTALzgIroPojulVx8RyK1hClbW5FPZ+khcXJSIhlVJ3SDQ1zdXVCNtv9ChVm0hGHb1Xp9uqIlgDZsI2Adul024x1C1SYZUOYXRT5OxyAQ+PVmdA2rXJhmAl5ycWT3BjY4+NUp9UpoCWmCXkKMRiMdzQFVr1ImanT2UoEvYiKIpMtz9iuzVgd7+EaTvs1brEMwMkLYJPjbJT32NategPR1iWy7ff2aY18phbSTDqVAAoN/uENJFQ8FjlpNbWyUyfxzRNvvWN/w/quMxk3KUz0OkTYeb8iwhqFGfU4tz094qAc9kUlflpNismublVFOW4Fb0oimiaxoWnP8/m22P6kwE908CwQYjGOf/0507mpKZpaNEs2zdeJpuK0xzpCK0ulukSjkTZ2Dzk2c+9iIbFTC6GpioIvh7lQY+pQpZyvYg5O/fQHP+oXVM/bB5+2jF+WPhxiLqfcsopnw0f26l2HIf19XXW1tYeen19fZ3JZPLEbuyUHy6+H0aj2+3SLO0yPzeDM+mQTUbIZVJEjmpcPzRZufjMx5L/MgyD9bt36BzeJKmaxHNBZtMqw06JBpBMpokFZEx84FO5e28H2WpwdtpPSk7iWDqdToeDwxITa0AqLNGzNTB7ZKIKsymV8aBHIK1wJmFS6u7QaKqsrjyF09xi892j+EQ0QrcCQ91ElDRURYShTas7RJY1RjY0ujoXFBnbscF1GFgWJjKeNeDqhQWMUZJrt3coVtsU1CHjoYjeazFxJ4SCCpIo4rqc6BQnYgESi1OUOyb6cESnWSGiupR9Ae4etBFsnbMLORbn5zgayFieRG0U4dmrl3n6whLbe4fs7W5ze6/PfELj6uwKgZAfo++Q07IQEgmkg3RKd5kEZCKaQi4SJCKOWUz7SNUGrK9/m6YwxS/94k9jLS2STA7JJsNksgK7LZt2T2fi+ZAZY42GhL0O0wWJ12ttOhMDnRCar0c0IpCKiQRsi8NmlRvbAQQ1iuu6CBOTcq3CYbFMwOtj2g61Sol+s4osK3R8eWQ1wNTCGVYuPsvO9hZauEx5Z4//8fUd+v0m00GLiT3mXP5YOvH2boMRJstnzhNYfAkpk+KvbjcoVxsEZXj26iXmZucYmi71LvTdAHst730nOX/1P/+CUbuK6BvgF3SSIR+1owb17bdwO7v0dZfES58nGgmdOJbRcIja29sM9RGRkJ9AIHzifC6vrGIYBtdf/zbjbp9gQCPyrgSX67onY+QLU+zG80QCBvV6jcPDEYFgGEGJIGsmqWQCvVWi1dYxR10s0+SgYuBTIwhaAsMwHprr9wsfF7JRQsHk8YlC+c4HRrXfy4eN8aMcwT7llFNOuc/Hdqp/9Vd/lV/7tV9je3ubF154AYDXXnuNP/iDP+BXf/VXn/gNnvLjz/0oVml3ncr2NdZm4nQ9DavtInomjhQlklbI5x/dRfNx49WPtji8d514QEA3XTQJBEEkEfPT7LfpqX502yOcSqFFMmy+9g7PL4dJRiO0OiParTb5dJx2o4Jrj1HjKmosi9mt4ppDvnBhmu/crbN+2KcQ9eNgY3sq59aWMEyLjXKdiTdhf3+fZrPOUesAyQcOMgZBirUOtqDSGdq82WoRjm2wtjjDUXNAsd4jNn2VkCoRDQZRJBFPjTFXGHGukKXcHNLtDxm3xyipZbJ5izt7dc7LYSBIpdqkebiPiok8rhCOOaymwRlPqLYVvvLMGa6eX0L0Sbyz10MLJ1CLLsn5K/z5y68xrG0y7A/omTImKoLPZTzqIwhgIaLIKtF4Cp+sUzvawhk1KdBDDVqosshs2s/Qg6P9QzzXJj29RG+whTqagDeh1hpjKn4cz0dEmdAbmuzsHzKTieC6Lr5QhNXZNHFxSG+o0xs57NZGSFqUe9v7mKj4JjZK3ke32ScT1zCHXVyji2LbTOwqTSGCmg8hWR1G5Tu8ur3NqHqPiNdnKAvs77co1RqIUxrT2SSqLJJLaMhaiO1+mHBqnp///LPMzM5Rq9VYv/5dIr4REialvQ0sXwDIEJQFVi4+i+d5J05ht9uldXCLn3pukcmoSUhx6Q0tEv4DOnaPK2vL3Fg/oLZ/G0WWWF6cw3Ec/uIbL1PbvcvFC+fwSxEUoU//qMeW4yBJEvv3bqAaFVKZINOzixRyGcq1DfbePVGC44YJhdklChGXlQtXwIOJB+1uj/bYh0+S6fSHCM4Bi4UEhqXQHnkM6zsMNLj8gCLIh8lqvjeq/Sg+aIytyh6mZWF0qz/yEexTTjnllI/tVP/RH/0RuVyOP/7jP6ZSOT7+zOfz/PZv/zb/5J/8kyd+g6f86PFg1OmjcD+KtZLzo+pJ4pqN5ThI0RnS2Rwj3cDpSwSDwQ8f7IHxpiISwbxGLq5ybaPHTmWMKlgs5sK0O0OKXRhp06xMLZFIpji6l6dnWfT2m+huADl9Br88YWe3joVCfjrP3Nw8dzs1PGOEEAqTyyTRhAiZqEjKEBmpaWzHJRQMoIpjDhoGm/deYSnpEdagWmtyt+JQHvnJBF2W5wtcfeZpBoMR37m+wXfX20wkP8HgAp+/cIbq0T7leovh2CKgacQLGaJRASGYZXp2HncyYf1oQCy3SN9z2KyOQYNitYl/4vKLX7pIQFMoVaq02n1EScYnw/x0Hr+q0e7rSLKfZCyMWtepN+pE3SpPXy6QSSR4+8Ztrt+5x3/563WmUhHiQR/WqE/bUElLCnMLOd5+4zXCtBhrJmpUxZ24NLoDdCtKMpGg26ySm1mmujOg65mYhsFADDF0w/jcMjHa5BIg9yT6oyFyMMXYtRgZJmfmYrhykKE4YSo3Zm52ivWDBoLV5d7mPTa2IizkQiymVV65WSU4GaJJLtn0FDEliBafUD7a58zqMi//5X9nLWmzWggRiQ1YfmaOjX0NNRBi5ewyrUadazsD0jOLBCIxAvkzJ85dNBplPOiR1Los5KOEAlGqPYd6Fxq1Ep7nPVTQ3e/3ERydWDjJaAzRYJBavcO52Ti3i0P8mkYqnUKc2BQPdsmmU9y8e4/Dzet8/tIcKysFxqbJoNcABTZuvEEmIpERGyw/PY3okyg2K/T6fmaysYcc3PsFxrXyHWZk+aTAuK+7ZBYv0+r2GOomYSxKzR79McTiGeyJj+F75lKv12PYbSNncw+9/qCs5oc51R8kzVkv3cAeNDi3VPjEUfBTTjnllB8WPrZT7fP5+O3f/m1++7d/m36/D3BaoHgK8Oi8SSWc/sD3vDeKpes6vcYuUU2g164TCMeotfWP3BjivU1Z9KYfTfXxzPlZBpaP3b7NnVKdkS0yf2GJC1e+wMLiErZtkynM446P8BwLRYKArOAKEtNnZoln55j0DxgbFoFYjnduX+Oo2mVqfhnMHoORiRTOI0tBNFVhONIxXR/OuE00qIHsQ/WH8LqQiOkEYgF+8YvnSUT8rO8UkV0fqWSMvUqPhbUFtECYNzdq+JAp1TtMFbKkkyLmSOD6/iFLC4tomsbO7j7X3rlHoHCFUCpNYwwBDVKFBZy2SzqVJBEJIcoKR70jkoUcOg12jto4E49G30UMJCk3BthinNLd17icMtA8H7vbdcb6iIWUyo29Lh4yfjWKK4WZmpuhELQZ2Ba2P4uujyl1LYaGhTtxMSzoYiPHk9zd3GfiTpgIKtv1Pq2RQGzuKYRum/NTTWaSMolIiISQ5vbGNkdth3A8S686Rh+NiSQLtPptIpKJ3T4gpgVYWV1AMursFGskZInlTIhNZURcMmgMXILCEFV0GQ/LbJdLdGt79PbfZmb+HGemotRo47gu7agfTxSZnltgaXmV3coAf3qO3iTKufMXTqKlnucxHnZJpSUSsWM1mkhYgS4Y+ghBEB76HkYiETwpQHegM3Fh+6hOuzsgJMBE0hBFgXR2CikQ4/r6Pq/eOqR4UGa6kOfCuVV0ewL4iIVV9hst+s0+q4UzCCjEwqGTtt97rRrZdAqcAd1u9zinWtMeW2B8dm6et996k8PWNY76Oo7RRNLCzC+lWFlbAyd40rTk/mlPpbjFW/0DZuaXWJibRhTFD2y29F4eJ83Z6nQZ9Hs8c37uE0fBTznllFN+mPhUnVROnelTHuRReZPbpV3A98jrDcOgXq9j6UNCs8eRsIW5afaAaq3E5n6VpJ1kfvXSR1YbeTAqpijHTWNK1S0GwyHmsE0slsD2MswuPMv/8ov/t5McbVEUGVow2N3iynKaYCRMuzvk1uYW8uzneX7tDOVSiK3yPkfFPttdjcmoTtcu4ol+0hGJiOCRmk0y0scUaz18/iyTUZOvPLNKJBSkNxihKSKrE4fX7lQJh1T2iyXapXsUmzqJsEpGclA6d9AmGUxfCH/hEsuXP8+gVeLevXdIRcKEZ59hLPv45lvbHOxsYLsyl3ICntjl0JQBeOaZZ7l3R+JepUOwZeITJTIzZ5CiOTaaEtcqI/b7Y+KxGHEtwMALIqghpFGZ809NMx6bOLRIZKGsJdgs9UAJUjP8PHNujafOLlJrdbi2vsPTV5/9/7P3Z0+SXNl9Lvp5uId7DB7zHJmRc1Zm1lwYG91NQiRFmo4oO5LZebgyuw96lkGD8U3ig2Qy/QuEHu+DjBpMx+zq3HN4eCiRYnezB6AbDaBQU85jZMY8h0f4EO7h9yErE5U1oYCuagHo+F7KKjJi+/bt293XXnut30Icr/LZT/+cZXnIfC6Jzx/gqOWw1evTd0SGozHxcBxXiSLoEpn5NaStD1lLzWPZJvV6Hck1CHpdtvZLiE2X6VwKq2MTc/qIeoN0wofil1kIRvFaLcIBhZVCkp5us35Ypdkd4AuN8XpsDF3DMIaoiQBeR6LXsoipPkIenaE+JBAMImPh9Qw4bA0ZDE3EkIjliriWh9Ts4gWDThAE1HAUTW/T7WsEfD5aHQMIIj/UP3+UaDRKYvYa//ff/Be6tUMEvY2hD/DKXhZXb9HVbCLZOYKhKDlTJZQsgAgBq879rSKOA7gjcCw2TgboHhW/z0+vC0PDIOJVUQM+qHep1pscV7pY44+RPe6FEAr7KQnGPr+fdCzI2uo1pjNxBoZJtW3SG1iIoTQ+n+/8Xl7NRcgoSzSLm5T37mKNbLLp5JeqgPgsac7NgzKu6CUUvJgn8WW84BMmTJjwdeKFjOpbt2494Yl5Fp988smv1KFfJ4ZhoGmPb3j+agyHw5fa3q+j7ZfRrmmaNMsHTMdCyP4g1hhkf5BYeERZM+h2u+fVMB3H4fi4iNYsYRkaJ0cHCHafyyuLeESRVDpDud5h7FUJ+CS0ZomNDSgUZs4T8Z7Vb9u2sQUv9baGz6fgUcKcDP20S4coskw2m6OwEGMkSuzv7zE7O3fef780Jjh/haqpY5YM+pqF6/WjVbb5+AOFeHYWrxonHa9z8x/+bwx6HWrlIs3OgLIbZkgMqzumOTKIZ5dJ+wMcCDLDkYQfGVcag+hD9EoIis79/QZOp8xMNgqIeCURURiykA8RioTwBKNslHZwnCVWb3yHsRTCbO6zUEgheTzsHRwTDoe5OjvP4mwGy7KotcrAPKXiIf2BSXcwZDqtIkoux+0B4qBJZnoB0SsjihL+eAQ3ECauxrGOtrETaVqGB9t0yebzeARomG2m5pa5detNSl0HJxjizrHOyA3gjc0ST2SYTco06k0c4wgjEMASRcYhiag9QFEU0rEIY4/EdC7LWijC+nEL2/Hgj2ZpNDsM2ydEvV4cf5rpOYWpwiySHKDTaXH/4Ai/LKMLMiszYfKqTE+36FseAvEpRFfiqF4lksgQCposqSI+RaLcH9Ps+YjEk/QGQ5Izq3RdB6lj4g8lqLfrGCgIsWW2mh60wxZyfI6l3GXSmeyFZ4Nt2ySyM7R7AtXdFv1en7FHQczksKwR+3t7LCwuns9Px3EwRyP2y10CpkbIKyD5VQRJRrNcjnU/y6KfDz/bwsKPMzIpFYvo/R4ZpcNyIUMkFKFWK1OsNvAEPOztbGGaIyr1JleXp7Btl44Bx7snCB6JmYRMwO9jqBuUi/fZsCxmZ+cQRZHRaMRoNMI0TYadGnNz83icJqbrJRRWGVodPjsssfzWdTRNu3Avp7I+xoKXykmRz9YPaY7U0/n92Bg971mSzmQpWhbbtTK2VaXR6mJaYwTb4tNPPyE7NUMmk8UjinS7GrYg4zjOhfZ1XT//92VW1v0mPrNfdduvaqzhmzsmr6rtyVj/ets2DOOVtQ0vaFT/g3/wD15pJ14l77//Pu+///6Fz8bjMe+++y5Xr179n9Srbx+WZYFtEfBHL3yu+BTAuFBZ7Pi4iF7dZjoZIuBPE2TA0f4uACtL82zu7NMsH3F9eZH5+fypkVDdpgjnRvCzUBQFfyTNx/c+JOgx8OBwfHhE0B9g+fJN5mZn8coy3W6f42YZK5dHlmUsy0J0HS4tzePisnNwhE+0yc5OcdSwSAVsmsUH1HsGb6zmiURCkEpQKBQ4LpX5bLdBJBzBtk2cwQDVGpFOh/BF0+yXS0iSiCR56Ok2mm4gBRJs7hWZ9jZpjySqzQ7hoI/V2SQBH+DaxMNB4h2To937jEYWHltjYFj8/NMNTHvM3s4RixkFBZ3S8RHmyCHuc2gB9XaXjKJhINAfWjQ7fU7qGtnpOV67HEczdepDAUldJhSN0aocYTSL2Mh8cO+YmZiHdChGR9Mp1jVC8XnSyQgoDtMz88iyF8Mw8Q4k5FCS0skDFmcyxP0JOq0muq5jCTI+xWBxKsxMJojg8dDslNEECCgSnmCM7aMKimdEOpPCYxt0SgNWl5eYm8nRqNe5tXKZUiHK7sEJxrCGT/ATDSWwbIuuZtAaBRgLY7SeQVjy0hiMCAT8jD1+7HGfymDMzGIUx+NnrpBF02p0qwOSrkq14+VACzF/ZQ01N0tCTbCwuIggCLTbbeBUC/2MvaMK/cNPGRs9vBjk51ZwgLlcDLt9QLHoPZ+fe3u77H/6I1YTFlezGRTRptq1KQ1kLI9MtaHRHZWR3DFTCRDsBsFxm+PjDUK5BJot0q332D3qMZtNoEZjhBUXNebn4GTIz+6d4PF4cYJ5ZK/ErUvZ0zkJROTT3YpH5/eF+9QZMTU1ha4FqHUaMO4zGnvxRVKk0+kn7mWPKJLLTxGJxBgd1JlZukIicTE++ovweDzMzs5h5fLsbG+TdkxmcnnqzRCd8i714hYj2yYSiVNu9FEzyxf6PWHChAnfBF7IqP7X//pfv+p+vDLee+893nvvvQuf9Xo9fvCDH+Dz+VBV9ZUc91W1+yrb/lXalSSJfTx0Oy1ymRSKcvpCbLVPjelwOIyqqqdlkTsVFvKfKwGEr67g9Yy5u1vBGCuUj8tcXZzn8uUVRFEkFvbjlz1slI8Ypj4v/iJJErIsX+i3YRinRsHYJCDbCLZBSOijKnECPoVY+HSrWfaoVNpNRFFEVVUkSaKk+HAdi2DAh2JrpJN+FMHBr3iZm0qjSHWODraJBOdQfRK2bdOu1ans3aX2YAMjkSMSDhEP+9g6vk9r+R0uXX2d3dt9tk66+L0CxfYYbWijRqLotS6K2MUd2Li2jTPQSPvDDIwmpitSKe7QqfU4bB7ROb7Hratr3PrOGq1Ol//yX/9vykdbvJHJYrUMBsKpxJ4nMgMREICoquANCRy1xngVH7+9KkAAfG4fY9hgXG7wN+sPuHrlGtfXZpF7IrFsjA8+a/Pje0e0Wx0Er4I3MsPrb71JvVrEcP3EQ35Gtk1NM0g8lI/b8Erc+ekJqhdS+VkEWWXQbdA80fF6IBmWkb1eApLDg+IRQmyVcDzHvQ8/wWs3ycYCmNaIzsDmndczOGaPmbBDPhnkwb0ObucQQXT58JNNKvU+aiRKa+jgHZZYXbuGG9SYjzv8/N4AaywzHU8wNEaogo/VhRlOmkOiIRnDE+XEEBAsP4ascuN33+bt73yXYDCIKIrsbG+xeecXaI0jGs0WYyTmFxep1tuMWnss5kNUT2qklCH9+gH+zNtcWpoDx2S/WcW7tIzrutSPdxm1tpkNNMgF/OCMkP1D9LbJvjYit/Q6kXCIrF9Esepk0iopX5bW8SbDdomuliMYThBLwRuXUrQ0BymUxjX6REMB6k1YufE7zMzOUdr6hGwygix//jh/fH4/ep9KsoLgOiwvzGJZufOCNUJPIplM4rru+b2g+vznv7V0F59fxe/34/V6nxua8axniWEYiHafpdkk8ViEbDLMvk+ieLjHnfvbzK6+Rqpw5anqH7ZtA+D3+1/JM/Cb+Mx+VW2/6rGGb96YvKq2J2P962272+2+9DYf5SvvNXz88cesr68jCAKXL1/m1q1bL7NfE75B2LbNcfGIer3Gyfo2yXiUzNQsqUSMSlMDPOdep6cpAYiiyMrKCpoQJpRZRvF5WbmUO3+p2rZNu1Vn/8Em+9tbeFwTNRwlkZ0hki6wurqG67qniVXFHQ43PmUuLZPJzxAKRwiEQoS9Ns1OA9OcRnmYSPhootWjcZ9RdcDIMrEsmVpfI5JaQFFk4tEI7hianS6qGqRcOqFX2sRn1ZiKKUzFdVxMEuE5FjMBPt77kHTmH7D21h9QP97FHPaZubpCzxhTL64TiSZRgmFCXoerWYmdrS02to9wvCqmx8A2dVwlgmj7eHOhgGjVadRDWNaIgq+Lm/MzNjX0cZ+NYpejWhc1ZXFrBgQBLl9eY+w46PsVvNUSV5eyfLDRxu8Zca0QZTGepPHDe9QPRnw6rBFSoHnSYGkmhazGEESbaFAhPbuG7Fep6H4cKcTWSf+CHrMoily5eg1BEOgc3iZdSOGVRO7XivRsmbEhoQ1M1ICAYdocnDRwzTYLCYn4O2+xv/0AxkMc2wB/FEkUaff75BMqnz7Y56h4gDvocX0pT2ug0NVtikODUGKKcEAhNzPHznqftt5n9dIy1mhEKJogMHTxtP2c1PsU5pYZuy7Vxgh/rkA0U2BpevG0/PjDebazvcX+Zz8gJzSRUyOG3gEdzaBd7DLuNFnJhUkmYkR9LpeyPqqah23AMA2SkeB5HDDAyNCQhBEj22bQ6zKXDZALq+hDkwdbFWqtLql0mrHRJRHzU2/1qdWqqIpIfzCmM3RZvLZEQDk4DQvyyiw8zCvoawMo9Vldu4yiKJSekgT4rERCn8+HmshTrm7jlz0XCtY8GiP9eAx0p9vj43vbmARQPB9R/IrSd4/f/6IosrQwSyaV5JPNCouXXyedTr9wexMmTJjwdeJLG9W1Wo1/+A//IT/84Q+JRqO4rku32+V3fud3+M//+T+TSj1f7WHCt4+zpKbvXp2i1/VTKxVZv3eHrfgSi5dvgXZw/t1nKQFogyGyL0yhUGCnW7nw93LphGZxE9fSWEp6yMb8aHobaxRArxrsPzTYB6X75EMinoyPxYxCu1PE8HqJpQt0S1v0tRa9/gDxYSLh44lWZ4oJJ8c7FGsmXcNldmaB+dlpAGzHwR+fot7Wkb11WtVjvIJDs2fgUySWpkIIgsRxt8dMfoF826RVOeA77/4dCo8kjLVaLXYUB5+dxumd4GhVnG6Zat/mowcVsrk0awtBprM5dEekNewTVAQiUZWD6jGGqTOfVTH1GLrZRBqPyAd12qJB4KEoWre2z19/0OLdt9aQlCCCKNLoDNGHOgurSXyyyMZ2jU6jypJvjF7ps/baTYR4ju39E2pNCdsXR2h08R19gGm7RHMLLC3P4gllWVlde6IQz8rqGvuyzGF5n5ODTXbWj5lNBRAlPz/fqBAJB9kr1jlp6USNe/TGERaWVgmpb9Gr7THotLi7V+IXn3xGu9NhOxInJPZ5dzVItz+DJFg4jgBqFp+cJBdSWJrNs3LtddT4FNX9u6iSzvZBlcaeTqXjxVLiSB0HbfuAYHKGte//A6anCwSDQRRFuZBXUTveJioNmc/EqJSOSKkevLbJQfGYYb+LOneVgdZBFCQEQSARDbE9gOFQR5OEcyNW13VMe0ynbyI4HWKM8ToatmNzXLcZGAH6vR7GCIaGRm0sYPUqrGYDBMYxdg4NRsMGpUqD8dBi39DJLVw9X5gKgo7sC58nHz5uADfbHfaPG0Rnbz7Vm1wozFDkVDnk8YI1j98LZ+ohx5U6HsflezeniYRDX1r67kxmE3jq/T+ybdRo4oIs4YQJEyZ80/jSRvU//af/lF6vx/3791lbOy0Z/eDBA/7RP/pH/LN/9s/4T//pP730Tk74+vK4JF4qGadQmCFfa1DqS2SyOfb2D86//ywlgDMjNxKJXPi7VxI5PtxlMLQIqX4uFZLEoyrdvsZBSyeeTFI63kEAVnIRAn4fzeoxosdDJqFSalWZW71Op9unVKmhlDTkQOjciHhUU9t1XVLpDOlMFimQwOkcEo9FcZwx3Z5Gsdpl7ebbiKLI1v465cMmuWSIpqmQFkoYLQtXFKnXPASDQWQlAOIYwzCIRCLnBo4sy8hKkLm8ysaGRrNbJORPsHJZpTaKEYgHqQ0l5kJZ8tEYYqBMs1YlmUxim0OwR5iOAAgsL85TLx8TVW1SkRGp7Kkiz2o+xC9u38O0x9x447vUak0+WN/BLyt0un3u3juiWCwiY7CQ9jIAerVDEvl55mby/HRnhytLKtGoyFjvEY4lEPxjvKMWnr5L6ST01Ep4S8uXMC2LdL9O9p23kUdNkiGJVk9no9JD6zRYTIbwjesEzAHbd7vkll9nJMUYansUIiK+6BR46+zvbjCT8DJ76yqGadOonLCWCFMeSjS1Frv7Jj6vh/RUkytrlwiFQuztbjFOxJFCaeazBq/fvEwoGEDXNeptnYDfTzwex7Ztdra3zuUfNcOmcnLApZiLJIo06g2iboWwaJP1GZS7AyrFXTxxDzOzCxTrTWzPGIJgO2OK1S7B9ArFo0O6tSNKRweU6x08PmgMROqdHn1jTG0UYnpmnrhqo5ku7fqQsFPnjcUoogCKP0git0hdlyiWawhyBL8gMCX7sazRhXvlbD6dGcDb5X1qJ5/R73UJqBEk9YT791xy+anzRQR8Ht/sXVp+QhnkDPFhMRlzZpZOp4M1/piV3MyXlr57msxmZ+hwYHaeev9P1D4mTJjwTeZLG9V/8Rd/wV/91V+dG9QAly9f5v333+cP/uAPXmrnJnz9eVo4hyzL5NIpGlrzNL75MZ6loXvmKXv071qvwknNYnFuibDZOpURAwI+H4wHSKLIyGjDWEANxpFlL5FElmJ9j2zUh2WY1Botxt4wN7//OlPTBXw+H6IosrH+gMbJHhI2jU4f13XJpxOISgB/KAX+FfabjSf6KD5UKMEF1akzl1HpnTgMjSGDoc7RXoder4uSugSJODe83gvnrygKaiLPQek+kmvwxs1VbBuOal3+l2iehXyMH3+6Q24qx2w+jUcQ2N3ZRjmp4noCWO6YUsuh3hkyFRMwRib20MCvhpidW6AM+ANBgqEEh12RadOHG1/F6InUqzt4H2wT9BjM5uIkYyGatQoVQ2Ep3+cX25u0TS92a8hUIMFUTGI08NDoHKINhgzbPWbnlhk4u1iWhf5YJbxcfuo0Zn46iU+ROTxSOGzX6fcM7t7b5HtX0rx1Y4FO7RjVa3Pc7LK7tUE6neDK5WV6lsTK1Tdodbr8xZ/9V8ZalVrPJRKJE5qK0es0OC7u4YnMc/XmLaKSRnnvHtZoRDyeop1ZILw4jWt0WMn5kP2nBYPSiTChYJeN4i7hSJST4yKD8jqLhSSJWIJGq8PxZp0jwyIVlmjUq6RiGqoaIBFV8Xq99FoNDhsHvH7zJjtHA9aLPfI3oG35SOXncBzndLck5ue7qwn8+nU++ugX2GOTqWQCS4ZkUKZQCNEYabhmFzF5ha1P/i/iQVBDYWwhTDDqJTAzw25ZI5FMoPdFfvThXXz+ILF0nkxh+YJX+dwAtixG/TpvXJklElJ5sLnLvXsfsBfLkZ9ZPA/XeHQefpERe1ZMRva4p1J3j/Ai0ndPk9k8sLq07RDuU0q7T5gwYcI3mS9tVI/HY7yPGQkAXq+X8Xj8Ujo14ZvD88I5kHxPzeB/1Av2qKfMMAwajQaCIFCYmaXw0Esm+0IU4h7KxSHa0CAuqwwNAzxebMcBjw/LHtFsd8hlUuda1w8O96h2TGYjEqmplXOD2LZtfvSD/0Fn7wPyURltqCMOOoSjCVQpSDahslfaw59Z5uob33+qNy8SiZCcWuD+33xMPiAx8gT4y19s0Rvo+MMpMr4AoYDMwNYonRw/sUWeTmdYbzTZP9lAEFS8SoBkIcd40CAWhkQiwUljSCigEYsE0b1Jbh+ahJIpxp44bbdHRK0iuQ7WaEyzZ5PPxfE9rDoZSk5x/c0sY3WambU3eS2ZZH9vlz//3/8/9Ec2QZ+P2YUcO3tFqt0OQ8NkbA6QcHFHI7JRhYjUY3+3xXxSYiYqcqyPGDsDtPohu9sn3FhrsrpwsRLeg3abk4NdOkKXSrmKY+uoaojRWMTjGKzM5wkG/ZjhOKN+lXRY5t52DY8wJpbxEc/M0G41aVWKRAIyXUOmogkUlqaIeUQOjsuIwTTff/f3uHblEvuHxxQP99i7s8PsapjU3E3iiST7dz9ADQawHj6SbNumUmuw92Cd/e17lA42ySdVZHuJwSDP/Ow0K5eW+eTjX3J/5xhtOKAq2ZR7QwRZZW5hltt2gKOtAX/+0TFqLMPMa9/DdlwW124SDoe5//FPmM9E8HpF/F6B//f/+i6OCxt3PyYYijIXEHAlL4FQlLA/wV5ti5nX/hDxxu+gjU5otnQsq0cgqNKo7mKYFu++vkQsPMX6+gb3t3Zwxi7hUIj9PflCPPNZAvDlxTzxWISdvUO8Vp23l0J0LYtM2KH6MFwjm8u/1Hv8WQVgnlee3G26T5R2nzBhwoRvOl/aqP7d3/1d/vk//+f8p//0n8jnTx/OJycn/NEf/RG/93u/99I7OOHrzReFczxPFuvMU2bbNhvrD9i88wv09gnuGPzxPGs3v8PS8iX600vUS/dxpSB75Qo9bYCmjzDlHA+2D7FcBdG1+Juf3GNxYZ4rq0vEY1Ha2gzRS4tcvnL1wkt7c2OdxvYHvL0UIhUPsbt5H0ewkPwCeq9JcK5ALjnmuFmGpeVnxnnm8lP8jS5i99okYgnKjRQRZURY9XPcge+9scq1bIajR7bIbdvm8PAArVlCGmkIkoRBgOtXrhEI+Ckeyezv3UONRAkkp/jsqEyj2UZOX+by1TfIPTSI/ua/u4zqY2p6jb6sYPr95JIqjUYHCtAZjhlLAWR/iEwmg6IoTBdmeOd738Ojr3K88xmHHYeTnogvmCYbtIjE4gwlD02rgzO0GbZrHO3vMmorDB2Jsh5EDCbJJfvsH+r8nd+68YSx9Jc//5TS7h1Up0lYGpIJeRHsLr1xmGG3zvbmPSRzCkfwYNgy2mBAqz9iHJRYCuYQBAG9vsd8WsXopdkydIyRy5//ZAPb6FI8OiY7fxm///R6Pi3JzTCMcyPwzFN9cHRCs7hOWBySUkfMzLh45REeo8GgbrAPXFld4rA+ZKfWZK80ptwR8fn9LBaS6N44y1dyGIkxr//O/8bS0hLj8Zgf/ehHyLJ8YcfGdcfYeFjfPWJ5OsrmdpiNsoGVDRGNJvCKIeSRxmigcXT/Q1IL1+lW+0QUi5srC7iuy48/2SYfDjG2dJoNnRAdfvtyisrQJS4POdn6BaZlsbi4hGmaF45vGCbdZoX5pEoo6EM/6RIM+Ch4vezXisQTyS8lV/foPW5aFrJXYmQ/mdz4OM8rT061+URp9wkTJkz4pvOljeo/+ZM/4e///b/P3NwchUIBQRA4Ojri2rVr/Omf/umr6OOErznPC+fo9/tf+PuD/b1z1YX5q3HGY9gqHrH18QBRFM/bb5UPKDUN7lea+PxBPPIIxQPfuzGNGgyws+Nja/eA46ZBYW6J2NzNJ9QJDMOgcbJHJuIln04wcixCPi/huMJxZ4DFAMO0CPh90Og8d2vb4/EQVX1cz83T6mhkEw2mY14qnSFdXWBuOn+azNf4fIv8YH/vXKM7FcsTos/u1joPNgNcv7ICosLRIIDrjRDzRvFl4ixdSl9IDOx2uxRyaRZvzXFSOqbXqPLxZ/f50VaRYNxiqgClepexXUc2FYpHh8wvnFYI9AejzM/ESSejVHbvcHXZRdOGfPjZLie9Lq43QLNt4ugdfrk5ICqYDDQT0xwQ8k3h9XjpN/pEPV4azTbzs4Xz8fBKIvWjDeKKic8ccHPWh1/2clhtc1SsEw4HqNdb3FjK41PguNKj1BPJr7zO0tpNjO4BWnGfpawfxwE5EGJq5U3KJ0W6nSOWlxfJTxVYnYnTbx2y/1A54vEkt0eNwGRsjCh6KB7sorg2oaCPpdkkWsPG4xqU+xrRSJBG9fhUBtIjkc3l2ZAzuEKNuWyYWDSCKCoYtkhqapErV04NyU6nc37uF7y5sQgdHfrFfWbTAb53Y45+/QQBF1Pwo3qGmCOXN68uMhjBQK/Q7ptM5eP0DYG+MSaWyHB5LkmrVkQAZpMqXtHL7d1dTNPCNgf8949vM7O4QiGfwUakVq0xk5RPDWZnhBqInO7oiDKKLKPIAlSbmKb5pTWgCzOz/ORgn/sffIbHHjCWgmQWbrD2HN34r+rhnjBhwoRvKl/aqC4UCnzyySf85V/+JRsbG7iuy+XLl/nbf/tvv4r+TfgG8KxwjhfBMIxz1YWVQppI6FSX0itJfHakUT/epTAzy9LyJZrxBIYro0YajB2dWrlCYTZLPBZBFEWuXbtKKpNls2ywfO1NwuHwE8czTROvMMYTCNFo9/F6BcwxeDwwHA6wPAI+RabRGYCkPPfFf1a6+vBkC5UuCymJfARCkkizOODO+g7LCzPnBsTZdnguGSISCeG6DjMzBSzbZn2vwn6lj20OUcMR4ukcnlCWG09R2TgzVqyRjeILYjljEpEAe50ApYrF1GnvuHzlGpl0ktIjKg1nxmY+GWc0c5m7H/2I4cCmKyXIx0Rms1G21psYHof9WpuNocVszGUmIhKP+snnwmwdt4iGIrSbVUzTOtckr9bqDLUu331zjgd32+wXW7juiKExxtQcvvP6G+welLl9NCQR8tHsQqnn4bu/9TpLy5fY3ZHY3t7BGjngkUlmZ/lOIc8njMjHfNx8+7cYaH30+h4Rn0ClekIwGKDW1p+p5HJcPmTQa1DrWlxeWiRstAj4FHqin9rxEcc1Ddfss121+MEHd/ApCumIl5WUi6OLtFptLFtAL/ewgrP8rT98+6lz+1FD3jAtPDikMlkq3Q7B6BT6SMTrDjkot4hFwiwuzBKPBKn2BRKhOI16lZUrN/HKXtyxy/rGJgguttkDVyDgi/DZxgHOsMHKlRy1hk5eLJMaeUkoYWLxFN3qkA9vb/L61SVGY4FSrYllu6ipBWRZptXugvTVQi2KR4ck5SGX37mOJErYjk2tPeTo8OCZ6h9ftIs1CfmYMGHCt42vrFP9+7//+/z+7//+y+zLhG84L5L49DimaTIyNKJeD6LHQ38wRJG9qAEffu8Ac9hH0zSKR4fc+/inOK1d8ukIwWgKX9SFYZ39wyBLC7MAxKMR1JaN67rP7KOoBCgVhxzu7JEJe+lpA37ZamB5I7z2/SyDoX5e1e1556MoCtFknkpjh1xUxTYdDhttujpIjLn3yx+xvZUnf/VdJEk6lW6zTRRZpVw6we5VwBkhjQUG+oBEMsKt128Qj0YeGh9H5yobwAWljUh6hp99+Bd4OjsoTpuYWaMQtBC9p4uA+VyEiKqQSsYRRfFcpeHM2DyqFTFtP1bsKq7cZc3fJGiVsHoVVnICkpglclTl9uGIoS1zc20KXzSNHIjR7Fs4bpRWs0O5WiefTaMNhhw3+siBCPVGj1KtTTBhkwzJ9IYa3V4HSXCZXriGGgtj2hahvMx0Mkgmm8Pj8bB8aYWd+x+jDSvEoxK9VoVPOl2Gwx7ZZApVVYlEIhxYIyrlA9aPajTHCeZWrj+R5Ha20AuqIZrNJpKsEE9I7Nw7YNw9xBj0KB6XaBpeogmbSlNjOOhx89ZlQoqHnDfI4XGPoTlCa/WJT+VI5ecpzMw+cz6cq3DsrVOutFnKZ0hnVsnm8vS7HSr7d2noO6wsLxCLBKgkvu7+AACyhElEQVQ2NdTUApFoAncM/aHObDwGgBpNsV/cxONxCfpk9ooVdo9KXF6YIhoKsrm9w6WZFIWFKer9FmphhjeuXeJn9044bLlUhwr7JzVmC1NcDscoV+vnMntf1kv9tNhoAEXufqH6xxclJU+YMGHCt4kXNqp1Xed//I//wd/7e38PgH/5L//l57qjnL7E/u2//beTLb0JXwpFUfB4/RzsV7E6R6g+L4gStuBnYPgIxENUK2W0k/tE3AaXr2bxKRLHlTIj2yUT9dFtVjGnck8t6vI4Pp8PzQJXbzKVimD06wzaZe7vNejICvHlHpaSIphZplCYeW7fzwpp4JHJFKbweyV+fvsB1fYWildBcDqEvFG0w1/ww7/28p3vfh8khaOjI+RRi0JSQfT42Tk8oVPe4421GbLpJACBsY9IQKN8vEsuP0W5dEK3doQ56DNyPQTjOapNjdiwhcft4pc8pEJeRg/DbWyjT7dZJpPNIYkiWqdKt9slnU4zN7/ApmWhaRpzhSmOShKlRgXDhkDIhyjGicVVZgUftqdCx/QyHMvYpojHIxCI5yn4p6iRo6x5ae6dGkuxmZsI64f81Y//O1P+Ph4TDEFEtAwEW+cvf/wxv/N3/1+8+eabjGyHoa5T6nvx+/2YpsnR4QE+QScedAjTZdBps3PYYKti8Nvff4c1oHRyzLBb5+T4hJOTDoFojkHz5InEvTMpt2b5AGyLVqvFwcY+UbeF7BtgDdpEQkHEYJC+7Wd+PkbW28byOJSrTeajBr97PUXHcOiPAowCYbrjEaPR6Jnz4cyQj8UTVMon6GaHoNKjcazjj6bxRmfQ3CqHNQ3d9SOFpwmGogx0/Vz/3CvV8UoSiiLTI4Yr+OjqJo3SAX4xyGwhS63VpdPpM391mYiqUu92MS2LSDjEdDZFbvkGXjXB4ZaH/eMyn9zZxHIlZucXkdQTDuEL5/ajfFFs9PNCpF50F+txacYJEyZM+Cbywkb1v//3/54/+7M/Ozeq/+RP/oQrV67g95+Wsd3Y2CCfz/NHf/RHr6anE76V+Hw+LFeh2e6QFCziiQT94YBPNw/oB5b5/o1p9E6FdMxPU5eJhdXzcsyVfoueZjAw+88t6vIohmEQUiC9epVmeZ+RXWNqZoGFtddp20HkoI9gPM/sY7Giz3rpX1pZ5Wh7mcNGA79kM7QlpucuoXqGKH6VlSs3qDV7/Hz7Qw7yU/giGTbWf8Fa3k+j2aZWrbB33GI8GtKsHNLXlqnWmnSbFUamzkHVoNbVyQVGeMYGHr2LO+xz+/aPKVcavPu7azSOHpD2GeimRdc4XejubG8y9gQwPSF6zSrVroUcVOl1l3AcB7uxzbXZCGowwEI2yJ/X9/ELKb7/W1do1ut0yts4TgvDGOHYDhtlmaWVGD45ilcSaegi17//Wyw+onVcPDokGfLSkca8fSlKpdanVG0RCancvDTDetXB7p1wUJwim05Sa+sE0zOUyyVa5UOOt24zk5Rodsd0jQpB75hoWME/UGg1qvzoR39DLuTS77YZaXVuLqTJhzW8VoVBaXge4mIYBusP7uO0dplOxwn4o0zFBP6PrU/wBP3ohsLubp3pVJhMOoZOkNlUmIA95qjapdXushL3kgj7GRg9EvEoUjhE+aiHIAhfOKfbrSYB7xicEXFVxOMZs3/wgKab4Npv/X0Ep0lnZCPUa5wc7lLtjgjPvk7LFtn+8A6CPQAlSqKwyne++31GoxEHB/tsfvQ/uL/fxB9QkaMF/Gr4Qsz02YKy3W7hHZ7wO68vUq0GqO7ruIJEZjZBNu1lr7RNEbhy5eoL3aMvIzb6WbtYT9Ox/iqVGidMmDDh68ALG9X/4T/8hycM5v/4H/8jCwsLAPzpn/4p77///sSonvClODNyr9x6h1blkJ9t13Bd8EZnSCXniSeSlJpHxNMRmlXvuaRewOcjHlUZjP0cVmuMdiuo4QTh5BLxRBLTNJ/6EjdNE9G1mZubwzU7JKdOS0/jCtw97JLIJyhVizTVEKFQ6Atf+sFgkCuvfZfO4W1E75ioZuAzK6iyj+TULAG/n2TcJaR0Ke1vcPX17yEG0qwfVxh39khGw1xevUSiVmZQ3+dnH/6CbEhgPqnijBWskUn5+BNO/CoLKYmFjIoamCKqWJzsfEKxFEMyDQ6bVVTPkKgSwwTC0oD1vUMcPFxezPPm9RUCqofN9Z9y0tD5/o0CatCP644JqX6Wlhb59KOfUW/3kWWJoTHCwI+pZKn3u2gdhWFFIBmXGYsS6UvfYeVhie8zOcRu7YibV5bRSvOIAYNI1MNcLgxKhHhujt6dJpIS5Pa9bebXQqSmr+A4Dnp1m3TQgzfjoxDz0C2doBs6rmAi2iMCtstxI8h+aZPLizn2D0okAl7SIQ/9bh29Z3Pttbc4Lu9jWhbd6tF5qfphUCKkBoiEVV5fyWG4MqISQtM04kGHgKJgWS54ZPojkfWjNvaww8aBzcFxld5IYvXaDNJwRCicemZY0aPzuVs74js3V+j2+hw3q+BYDNwAJkF+77fe5Rcf/oz63ofko15ikTCJTJhi9QATgd/57g28kkhfH9HoGFQrZZaWLxGPx/EpCp3D22QLKeRIl42DdRRJIFFYQRucLih9iSWMToX5TIRgwAdGlyuLeYamTalZYfERZRvTfH540xmvMjb6aTrWX6ZS41dh4hWfMGHCq+KFjeqtrS0uXfr8Iefz+fB4POf/f+utt3jvvfdebu9eMY+WKH5ZDIfDl9rer6PtV9lnXdfP/5WkJ6dbv9/HtUdcWl7GXV5C04YIAiiyzH5lgGVZ2IKXvj7CF8myVy+iOyLO2KE9hL7tEIhkwRU5OSlTrdboVvYQZT9qIk+hMHNhntq2jS14KTe7uEgEwjEsV6TbH2KgUG9rHO2fMNT7+ANhhpZLWBoynYoQ8EcY6gbl4n02LOvcm53OZDGty7TKRxy1QHUEUmtL+MIpDkoNapUKWt/CsrbxRzL4QjGGRofVtetMZWOnEmWIbGmH9E+OWHxtBdMVaXZN1FiesH5ArVkjPLeMHAhhAfmpGXL5aT7dOiYw7uIbDZiKyej+CCLQsxRcj5exIOJLL2O7IuXiAbWDHba3DlHNee57fYiSRDoRxS96sJQsH2z1CYy7ZGKzpLNh1HkPPTuA4Jp0hgLh6QWyhUUWFxfPr+3ZdbRNg0QmSXbhGl29iC8WIpsL0uoZnHRcsvNXuXbzDbZKHfILl1FVlZ37H5OMBFEUmY6sMrAtun2TwLjF8vI0gsfL2K8zMIdsGl7cQIZsos13VlKEVYXewOTOXpOjUp16b4TRa5BNqIwzIaaSMs1mGcuGZDyC4/FxclKhkHW4tTqHYLVh7NAcGJR7UC6ZRGIJoqkAfrdPo9WjY4nc3e8RTwVxowqj0ej8mfG0uX02DpIcJZsPE0+mMK0R0wgcVAe0Wi1URWDxzbfw+xRkrxcX6HQ+RjNsRg4oPoWA6ifmijTKh+cSeNOFGVzgsFnGsRSa0jyCALbuo1FzUJPLRKMxjmuHCGKUVndAqVpHV2zGjsNR3UQMxMnnp7AtjVarRSgUeqH7OJ3JUrQstmtlsBsgKajJZdKZ7IVn6Jd5lpimSbN8wHQshOwPYo1B9gdJxsYcP3LeZ3zRs+SLcByH4+MiWrMEtgWSjJrIk0gkLzwjXibfxPcB/Opj/Ty+qWPyqtqejPWvt23DMF5Z2/AljOput3vhgtfr9Qt/H4/HF2Ksvy68//77vP/++xc+G4/HvPvuu1y9+mLbnxNeHbIsgyQz1A0ikRDx+OlLtNvtg6QQCoXQEnnK1W3SsSAjO8dGqUyr3WUgRImFRd6+Mo2mdQmaNSzbJSD6SUWDlKun29yPhnKcVTNsHj/A1kf0BkNEj0i5NWRoyowGh0wlAsxMJRgaJidbt0nMF4hEpgGIyKeFj46bZaxcHlmWGY1GxOMJEokkghKidP+HjJGp1+t06yVM+7RS4xCF2t5n1HsGbu+Q0NjHeGyTjIdQFD+h7DKHuztUWgMCqoRhK0h2H63doF0p0+kmScRVPIIHZzwmFElQae5jjxwcwUtdczFGNhkglckxNB2mp6dxxg6jTg2PNWRKtTj2GvSK9wj7RVyfSt+zQCqVZDYbhfAs/cY+SX8A/CrpXJLXp7LousndvTozK9fP9emfdh0dZ8x0YY7d9RZjrY/rdNFsL0I4SmF+GcHjIajGTtUoWi0sfYgYUhmNbJRgjOLJNp1ui+msB48o0dIcpjIpmp0+7a0Kg26TQiqM7BXwSiI+RSATV6nVq3R1D9eWpwiHVDqNCqLHQzgosne0h9H1U69V2NneJRfxMjO/yHEJKtUaoqzSMlw8oSkuZWX0QZt25YDp2TjXomEqAwmvX0Z3DKrVyhOhQc+cz7L3tCS9LJ/PZwBsi0goivfhXOr3ehj9NlqvS3FbIKiqSGqKSDQG3cG5BN5ZeXErl8c0TVYfelmfeO4+PH6302ast4lGAogeL13dxdGqHBRB8Ke+lJf28WMrivKlEx4fx7IssC0C/uiFz8/kLL+K9N/zOD4unstZBvzR0wVydZuyNWJqauqlHWfChAm/ubywUT09Pc29e/dYWVl56t/v3LnD9PT0S+vYy+K99957woPe6/X4wQ9+cJpopqqv5Livqt1X2faraNe2bQD8fv9T21dVlXZujkbpPn7Zc7613Gj3SeSvEI/HiUQi7Msy9VoRPEEC6UsEZyKY/QZL2QDJaIBBbZcrs1EcB/ZbTZKLBfyyh/1mFWf6VEv5bLt3dXWNfVnm/idDKve2SSZi+ENxhrUiCb/D7OwKsZiKrAmkVRfR6iB7xucveNmjUmmfFq+olEsXQkNSqSmGc2/wy62f4mon5BIqATXMWBjjjAVSUpNIPIAVTOAbVdjfrrIfzHH9xmu8Nq3S1SxyhSVwbdROkUxCZdwPsbW1Sed4na4qEI7EaDbaBBSR2UKB6pFGu9Ehp3hJhMEGArIHXAdd1/EMm2SiHhrVLiO7i48hstUjFw8STyrcPviMjrbK0sI1+qgM/Qvk0gpzhfy5XJ5tGYQiMUKhEI7jPLF1rqoq9dQ0n3zy1/gZIAgiu1Wdjb02y5dvcOvSdVKJKEe1DpodorR3H13r8MlHH3IU9jM/nUYSBap9m71SB3do0zJk8PgZDI+p1pt0KgM+/EDD/8YyUVHENWWGhk3QH6V9UMUTLjCVjiHLXtrJFI36HoZhYrdL+EM5oqqPZDTEqF/l7rpLNldg+foC4XCU27t1ZNnLa5dy6PqQ2x85hMUBokegp+msLN5kOp/lqFPFu7R8Xsjn8bn9RfM5k8nQON7GdSxU32k+SvW4Rbe2j1eSmU1IeL0WtV6Rmj5ACuaJx+PPNICfFp6kmS7FUh1XOyafDNFv1xnYLvn0HH4f/GK/yPJbp/fWq+JFniWSJFFSfBfGAqClD5AU/xPn/UXPkudxVnFyIf+5gkks7Mcve9iuNZCk2W/kM/tVtf2rjPWL8k0bk1fV9mSsf71td7vdl97mo7ywUf13/+7f5V/9q3/FH/7hHz6RmKLrOv/m3/wb/vAP//Cld3DCt58vkt16moKAYRhsfPxjAn4f1mgEzoiAL4LrAvUuhmnhU2SKB/fRNA3VJ12Ih15avkR+apr79+5ysHmH1t1tGtU9VpfmSZkOEcdB9nrxBUIMB/3TSnIPjeqzBK1qpcyosX0xHrS6wezcKpFolM9+8n/RG5l0G30k7wjLqDE9E8P2KaBk6R1rqLJJrdOieLjHUAiTXbxFS+thd48+L4ISjFFYe5uTfpHm7W3mL11lJMaw3B6ZqSxpn4aWVFDGfUIBL22g1B5h+3NoYz/D4YBxWKXebNOqd1mZz2F0JI7aJkNRoKt78OoepgWByu49PD6V2+U2/b7GldUldMNk/6RFzw5ytH0XyR09NaFMEAQkUSAoiaRm0iRiEe4fdZBTi+hukKOOh44dIib2mUvEaQsOC+EhPa3OaCiyOJOkURnSNhUyniCH9SHD7hG5iIe3F6PMTCWp9T0cHlcYmFkS4THBYAgxECKQnSGTyZ4n083PTrNhWty5+1M82ATNAOnZJYLRNDF5QM+SKCydhqC02l2CoQSCx8Ua2fj8fqYzaWbSARodjdmAyOWVpdMkxcbz1S4enc8bxV1GegM5cBo/fjZWj8YneyWR8vEBTc3FsHpEt7fw+QIMCNA0B1z93q3nHutpMckHVpfiQGFQs5hLheiORQQPhAUfXUvCF4mQTqdfxq37K/Hr1LF+roKJ3fha7rJOmDDhm8cLG9V//Md/zH/5L/+FlZUV/sk/+SdcunQJQRDY2NjgT/7kT7Btmz/+4z9+lX2d8C3lRWW3HlUQcF33fJs7GQ2A6GVoGDgOIMr4FJm7D7ZwtAor1+c+135+JAkqEAgQCoWQnAHZuEREUPHZbbbufYTlwPzcDJI/wmGtzfzQABda3R71to4/u4b+MCHs8VLd+80Sq1ffoLhzj8hon6tLc3gEkfsP7mP3K7QMP9lCGkHwEFBVrE6fclNDVn2sFgqYpsn29g6C4MGriESyS/zDN3I82Nzj48826Hgy+NUYbkRA9XbIzM8h5kK0tQHlh4vwUnfM0ht/QCaT5c4H/41Wv85J1cXsOtyMOAxGOs5YwPb4WZjP0zAFmsfrzKUTXL5xg6PDwwvVKTvjEGFJYzoaIRV7MqHMMAy05glv31xDDfoxLYs1WebmQGezbFJYex1FUdi59xFziTg+xUtxd51CXKQpKmxu79Hr9Wj0RqRiQfIJGUU0UaN+ZI9NZzhmZe0ql5Ugv7izgxrPsnrzFpqu0x84rK5dx7Isdou7APgUmXqzjTYYMpVP45VEFEVGSmToVvcY2SamNcJqdylWu6QLVwAolu6TjvmxxgL1Vo+u4ZLKzqIonxdP+SK1i7NkRsHjgscF4WJy4/zCIhumyd2jPWxD495mhelUksVsGMfq0e93qA10+vIU2dyToTZnPE0/+mwOGhhE/VfJxwVez6QQBDAti8HQoFd1sG37mcm8v05+XTrWz1cw+fL6+hMmTJjwNF7YqM5kMvzsZz/jH//jf8y/+Bf/4vMXhyDw+7//+/y7f/fvyGQyr6yjE746X9ds98f7pSgKruueJxI8r69nGtHl6jZ+2YMcSrB5sIlpuyQKazTbXXb39rl8af5c+/nc6H1YsMJ1XTY++zlJb5crl6bQ+gHa5UNq3RobGxuoqopHDqLOvMnPH5TR2yeMxxCI55mO6IytIV4pQl/TUB7Gzp5p93Y6HUxrhCBJSKIXSRQZI9EdaNiqjdFvcnV5loPjCo44IpcMMXZttu7+kt/+g/8Vo3uLrGqTy6TOQzBmpnPoYpzFK68TiUTw37/H3of/lYXLKWxFxmNWGXlcPMD04hWy2RyC1SMWi1OrH9MfyUhmH2lkMZ1QaA1GNBsV7IAfw9GZimWZnl0gEg5dqE5ZWL4G23fIhiJEIiFkWXpiLB/1BMoPY4kBVARkj/75tbRNvJLKxvo6emOfG5czZFNJalqRyskxxshlZSbFwBumXttizu/gDwUQpDQLS6cx2Vslja3DGs3+L/H5vPRHXrJdg2w6QbU15KR5hDPSsbslFuamubmUJuQTKdb38MVnIZhl/7AGpT6yL3zBiNsHSrUipb7CsN1mcWGOqVyG1kPj+2keVE3T8Pv955+feY9XshHUYPzCAmRufoGD/T2MbhVZcOmNwHHh+nKWkOKh1xygCD5sQaDdHz5Xwu953lfFo+NPTdPtHxEe6qjBALpu8dGdbcbeMPLuXRrH2//T5et+lWqsX4bnecXV5PJLjd2eMGHCby5fKtV0fn6ev/iLv6DVarGzswPA0tLSK43Nm/DV+bpqwD6tX8F4HkEQ0JonL9zXQmGGIrDfrDLURIrDJF7Ji2L7qFdMArEcS0tLF37zaMEKwzDQWyUuXU0Qj6pEwn5kr4R5eMj9/RPCuTUW164TdBzquy3C6QXy6RQe0cPG/g73tw9xmhLRgAyiFzWexesLclyp0+p9hDAoo8ljfnz3mFDQT3Ok4hO9KALogwEHQ42j4hE3lua5vpKl3dP4yb0dDg/2SU0v0S3dJzzUT8floQGQmr5yvnV/aWWVw61FNitNwv4Ao9AC+UySig6SokL3gPnpJJenbvHZXZk/+z//f4yGOr/c6pOJh1HUBKJPZKfSJBDNkVm4Qn7q87yIs+qUhmGAbRLwR545li+iZTwajTiu1BmUP6NfPWA06FGuKQzGJuLY4s1LMQ6PToikolhSmLK0RiTYYXkqTMfw4oxdRuYIyxFIJyK8884t9KFOr7KD4jkh4Ve5dGOGO1uH7BQH/ME7b2FaI/qtItGgSDbq48HxIWpihhvf/1+Yni48YcSdGXjza7col0sYnSoPDjtPeFA1TWNzYx2A4uZtqoenRlsuP/VM7/F+rcimZWGfhQzNZClVahTv6dx7sMlyWmYqHWY89tMzDUR7wMH+HrHY60+d/1805iura5ROQude4GK5jiIKXFnOEFKDuI71yuXrXpSvUo31y/Isr3g6k32lx50wYcJvDl9JvyUej/PWW2+97L5MeMn8z9CA/ar9+unHf40kCg/DB16srx6Ph+npAiecGjnzMzkQFbzhDEtz8+yvf4JumPj9n2/XP2rkGYaB4IEzNS3RI5LN5hh7vIR7HdKFRWLxBD/+y/+TiNtgZMscDtpEElnEsYnZKWFEY8TT6dMCH3v32KjaxBJprsxk2eiHMDsn9Lo9nFGMXLZAvWvSGnqgZ2J3Kty4NM+tywuIogefIpFPRzF6tVODiKdviz/q4b/6+vdoH9xG9XsIBgMYNlT0EZZlMJ1JE49FsG2bdrtDSBpSmI8SiiSw7DFe2YsSKTCXjJHMzhCLpy4sYM7GKhKJUJeUc0WLp42loihP9QTuHNXxJk8XNpVyCY+tYZoaKVVEicRY396lZqhcuzRHIiTwP0pdZsQQqYRMq9VDsLyIbhvRH0HtDdk5blJt63znrTeYyWe5f/c2V+YziCIctU4VicbdY9qHW1TzHsLpGbzRKUqdOpZhUu2YRC8tsvpQY/tpnBl48Xgc01y+4EG1bZud7S3uffxTnH4ZKX2FkDQkE1Uole6z1e8/03tsHpfQNI1rs58b3Nl0koW5Agebn5GNpal0xiB68UVyLPgUjG7tmWEaXxSTHAgEzhcJnU4Hy/2YlawP2R88/f7D5MAvKjX+beFZXvGXLas6YcKE31xerijihK8Nz4u3/J/5En1avwJjH6pHxycJqEE/sux94b7u7e2ilx+wUkh9HjddPaLVDH1hElQkEsEfm2L/5AjZKxHw+ehrAz57sIduRtBqh/zFpx+gl+7w1vfXSEYjaEOD3ZNNjqoaN5czqOk5jnt9cCzalpdGp8dvvzPDcDhkc+cI2ussZvz4PJDyp2jUuqRmvos/oFK+89+YnUoyHo/RhkOqTY10vkBnNGY0Gj1hAIiiyP7e7gUPvy+Soe2E2Ll/l7HVp2+J5JZuoTWPKe70GRlzdDUDvbrB5ZkImZBIYSZLWxsxREX3hIhkrxJOFShWt4HT5Lmz2PHo7E0ikQiR9Azl4ulYyh71wli6rku32yU/NX2+ELBPapTrLQQBct4TPv5plXq9xtvXlmi1k2zc/hlxH2ieNNWhwQ2vzEc7NfwBlblMgJmMD8G12W24/HBnRCwucWAMcP05cvN5rqwuYVqnCapqIIIgQLu2hT1sszKlUi75URgy6pygxAvMX75JudZgNiJx+crVF96pedyDerC/R2v/UyJug9nFBHf74GhVjIBEIRNlo1RD8AhP9R6PxiKyxz318D/E51NIpPPsrH9GLJUnlYgysh0G7TGpeA7HM35uYuSLxCQrioLP50MWTo9tjT///YuUGv+28evwik+YMOE3k4lR/S3ludnu/xNfok/rl2mN8Mse/BIXVDae11fbttne3mLz4x8yGzJol3qMjOx5+MJ+rcjarXee6e2FU0/f6o232bs94EFRI+AdcFiqUWvq3HztdRanwwyrD+h7hwx6HfLpBHFZpT/UufNgi7n8NS5fWsR1wTAtcsMB7d7PqdZbCMMyl9ICsal5LKPP/vExupxl8dIafUlmdnmFXv2InUqDaM8BUUZNLeALhOh0POfJcI8aADvbW0/x8P8ISTytxFc5OeZgbwuAYadCTahQKx9jjCUWUn5sO0m10WJWlEhFJDYrfUoDl0uX0qyurrG95eHHn/3iQuy4nBrSarXIT01jWhbHzTKV9ulYBtMrOI7D/Y9/ciFkZ+3WO2xurJM2e6SjPtSgRG9gcNLYZqD5uby6jCwJdEtbfG9mAeFukZEYwBUkvv+d1wgFfZQaVYa2yOxsDm8mwtvv/h2i0eh5sqNumKd6xuJplU1nPGIw0FhbzCF6vKjxPOZYwje2KRUPkWUvHc0mNbXylef92YIwHfPT1GVCwQD0IRHx029VicWTKKKOJ5SlWD06n8NnC5BkfgmjW33C4M5l01iBGQ47AoPxCEQZf/w0RKM+lJ6bGPllknzPQkXOPNXw5UqNT5gwYcKE5zMxqr+lvEiM69elX4rsRbfGuK6A8kjC0PP6erC/R+vwLiFRZ202jiAIVOt7lIBMNg/V5lO9vY8bHEvLlxBFkfrJLvVuk87Y4Oabl7l0aZmBbpCMBMn4Zjk6LhFLJIioKpIHeprJyON/JMHJpV4fMhiJdBplVrI+REPm6kwcbTgEXxxvMsX8/Dz3D3t4PJ7z8uaBmJ9ENII1sp+ZDPdFHv5gwEe7dkQuNKYCFJJBIt4+jXaFUsuisJrE4xGIZBY57oqMLIPNkwG+6cvn5cYdxyHic1m7vkYqHmX3oMj6T/8PtoNJktkC4fQMi5dv4fV68fl8FI8Oz418r6SeercPbzMYDNi6+xFCe522YCCKIoIvxtg2qZwcks5kSaVSeASoloo0TIXOwQBXG7CY7dE3OhzX+3SJsiB78faalPfX8SysMb+weL4DUciAP5zk/v467shAlP2MxwKllsbS8iqVWp3NnUNa7S675R6zl7/D2nMKt3wRZwvCeDpCs+pFN05l2HyyQr83oNnpghR4Ipb50cXc/p7yxO5Js2dx453fJ0yXRNRHIhalN7QoN/pECy8mLfdF3tdHQ0WSsTEBv4+WPngl8nWP8nVNkp4wYcKEV8HEqP6W8uvUgP2y/fJFMmzsfcZCYUQ8elr6Wxv7MWwBbaCjIjy3r5qmcf+Tn6GOG5j9NvvbNXJT06SiASqtKl5f8IIx/jyD48zTV5iZpVqtEgx8wvXVLNZYQPZ6QfSSTidpDx0OGyaBrkNn6KBOX8fji1GrN+n32tRKR5RqXTRDZGu3xEp2Gd0ac1CqI3lEpgozaLb40PA6NTDS6TT7QKNWpHHcf66c2Bd5+NutFmavzsJ8hooNyWiQqBrFdEsU13dIZbLkE2GuXZrF65XZO66iRFRuvv3byLLM/Xt3ufPTP2cu6uD0de6VT1BcjYxfp9pYx6LF9sF9GrVb/O7f/gNGoxHd2hGFRJBBv4PWqoAzwugb/Nl//xuczg5vTrlEYyEkyc94bFDquXxwfIJpmCTCAXrGiHsHHSRfmE7tkPLWBt7BMdO5NAPDRrZPaNhVArFlFtMSzYcx9o+GPDi2j6Y4i8MIc1DmQcmgMLuA4zgkfSax+RSNZIL5pRWG1pCjw4OvnE9wtiC0HYdIIkuldgJAfzikMxwxaOtEZ1cuxDI/vph7VrjG2uwcR4cHNGtFmid9bEFGzSy/VGm5s2Mflw+h0UFS/K9Evg6+vknSEyZMmPAqmRjV32JehQbsr+J5OnvRDlolau0BB8USoXCEzPQ8l17/PeBU4/mL+rq9tYnV2Gb5aoF2IMugvk31aBc1NUVHE2k7ddLLb71w/87OKRKJUA+o51vkiiITSWTZ3buLT40zf+kG/aFOu9rl1junOtcf3PslVuO0KuPa1eu8GfTz//z5X/DffraB7A7YMlrM5FNkPBF6rsigraPm5pFl+UvJiT3Lw9/VTPo4RPICggDCw6RLjySzNDdNNBLil0ceErPXiUUVjlo9hoM6pY5D7vL3T6tL7u3SPvyMnGpzfTGDNtTZun8XxaeQDEIkAXMrSWodm3vF22xuFJiaLoBt0u9pOJ0i+YRKwBfB2qjiVD5GEj3komEEu0ulXmIsRRhpUGmI6DboNhyWWrRPdliam+LaSgQje5nD/V1ajRLZRIypfIjN6oCgo+PaJoVM9DRee2b2wrjdeLh4enD/HnZzl0AgwN72Ona/TrdvIqsxes0KrhSkVT74yvkEjy5U88kQPT0Lffh4q4E3MsWV2ZtPxDI/fpznXfNHP3cc53yOvCzOjh1PJDFN87mVGp/Fi97/X9ck6QkTJkx4lUyM6m8xL1MD9mV4ns5etEuZCDfnb9Bsd9gtNgjG86ysrgFgmgvnOtVnx320fcMw0DtVkvEookdkvpClJrvsHxzy0c83ERIrvHP15gstHJ52Tp2hw4HZIZM83SKPhEOsk2DsqHjKAyr1Nq7rkvdV6PQlRqMRr73+JtP5zLme9ML8DHdv/5LX31xDEDxUyhV+9ItNlOnX+Z2bN5+Q8HqeJ/1RI+bRnQefIvNgc5ftwxJewcH1iJR74C02IQM+v4phmpzU+ixfe4OptbfoVIsMHBGCOdaurrKyunbucV6YTlJ2e5iWjU9R8CsCw06VcDyJIygoXolMUqXWs6if7DI1XcAcQ610xOVCiEhIxRpZDLU2hVSQSrPP7a0yiykvUa/DdrXPTtkkXHiNN9/6DqORzeFxjYJq4jVqDFyFxazKeJhgp9Smc9zBr86hRvxcWcqhPYxZxu6fx9g/Pm7Xb9xkfy/E9t46n97dZS5sML+4yHQ+i2Cb7JUrlJoGKzfe/sr3wdlC9ahWxHL9gEPh+u9y7foNAoHAF/38C6/52eevUpFCfqip/mXG4Mvc/6Zpfi2TpCdMmDDhVTMxqn8DeBnZ7r+q58myrCdetLlMCkWW2W9WMc1lFEU5jW+uVZ/58jZNE0V0iU7NUm6VsW0Hy7KxRg6N7oDpQvgLCzmcGarHx8XPNYMfKfHctkOMOu75FvnaW39AfmqazY118o7JYiGJGgxQqtQ46R7AOHxuUJumSTKskM9PMyCKqojEZ+IEp71IkQKFmVlGo9EXjtfTjBg1MYUvs8p+s0Tx4D6OVuH733mdQMBH5XgfbajzCy3AWgZMR+RBUaPjJli59iayLCN43NPCLP7A+RidhZUk4wmGwyzF+h6pkIJuOuztHxIUeiTSOarFPYZCBMUXxhFP5SP8kSx76x+Qj0hY1pjuYEC1PSASS3BQrGD6BATBjyB4MB2TseswGpkIQK3ewOqVWMkp+NQAQwt6zQqxgIe1hRz7NZNIJExajROPRdBqw/OY5WflA5wtIkPhCLsbt1maE0kkTytXxqMqPW3AVqOHIAhfecfl0YVqvV6n9vHHrKyufSmD+uuAaZo4jvPC5/9l7n/Lsr6WSdITJkyY8Kr5jTaqDcN46R6h4XD4Utv7dbT9Re2apkmzfMB0LITsD2KNQfYHScbGHJcPiSeSzzRkdV0HoNfrYZsGghhFM+zzvwuijG12aLVahEIhDg8P0Kvb5JIhAv7TeOty8T4blsXs7By2bWMLXtRQBHMs8eneHk6vRMjv5+at11m+ukz7ke8/iuM47O3t0q4UwTWplY6Zm0ohyZnTGGp/kExizKjjkplZxnVdIpEIsiyj6zqW1mQ6Ez8fg1AkRjyRolSqEE/l8coyg4GBZthML1yiMDuPZdmE1ACKLLNVPD3PZ3n2TdPEsiwURaFcLj05DqUN/Jll8guX6fY0FtZmiEXC1GpVgmqES4vzbDVOK522PQnUSIyZ7Axjx6FTvM9MMkTAP3VhTLPZHLbgpd7WSGeyHJgOH+1t8+FmE6s3ZtGRmYtEcVyXUr2J5ffhlz3ouk42l+cjJ8pff3pIQAJj7KHe9hOWbGxBIRYO4ItGkQQBqRNgKufQHZv84pefMjQMkqkMplPH6w0TioTRGzbFVhvJ7yecTLHbFJgPhWkOHBpD8DZ1QlPzjEaj5y5MRqMRY0FmY79MtGUgyz58sgePKBMIhdlYX8c1u2BbIMmoiTyFwgyeM8Hyx67Fs+b22XXUdR1J+nKP0i9q/1Xd66f3wB7DThXJtZ95/o/39UXv/+FwiOM453MqEgmdt9PtatiCjOM4X+m5e/Ys+Srj/Ty+ic/sV932qxpr+OaOyatqezLWv962H90JfxV8643q999/n/fff//CZ+PxmHfffZerV6/+T+rVN4tTz5NFwB+98HnA74NGB9M0v9A77PV6QZKfKCAy1A2QTr1WzWaTVuWQhVTo/GV89t3jZhkrl0dRFNREnlp1m2DAR0gNEI8XQBBR0/NkUgl8cv/8+2f9chyHX3z4M3rFT0mHZQTBQ9BuMNbGFE+CzM5MXTgn13UJBoPnv3/aGCiKTCKTZ3drk3qrTSoeZ6iblNsmXlnAKx7C2KblkXClAGNf6ryAyKM4jsPxcRGtWQLbwhoLtFpNbi1nnjoOqhoiqIhEQiFqtSpmq0g2rOAaEr5aCzhVJ8nO5kinM+ytf8p08hljGk8gKBF2jnbIJlRMa4QXi6WpOON8nAE6D3ZPCEbSDMcqlXqRuOvncOsOPd1hKhEk7KZIxwOUGz2cfhlrZLIwHScbFyiWO+y1xmQSUa4Xohy3TYKeIVq/geX3UeyOSYsusxGZgRxht9lg6OhcWp3Hn8zSNC1212vI8TmWpi5TKMx80XTl5OQYv8cgEw8TVPwYpk61qiGEC6AoOJ1DZnJxAv7o6QKjuk0RmJ2de+JavIjR+WX4qu2/iJH/IhwfFzGbB2RjQeLhJ8//aXzZ+1+WT8+p/FD3POD3nR6n0UfNTEqCT5gw4dvLt96ofu+993jvvfcufNbr9fjBD36Az+dDVdVXctxX1e6rbPtZ7UqSREnx4TrWeRU2gJY+QFL8z014OjMgI5EIo9wcjdJ9/LLnXI2kUu+gjUOU9u6j9ZqU9ndIeJfJJsPnnkDZo1Jpn0rkiaLI/PwCJVnmaGedRqtDcjpEPDNFfmoaURTPvy+K4vk53b93l9buz3l7KcRUJkGn1+fTagOv5WB0g3iFHK7r0ui0GAvecw/12e+fNQZT6RgH1QJN3Uu/dKrsYchZxMEmmSlIxSPUW11u7+wTWv4d4vH4uZfurO2d7S3sxjbLmQhqMEypUqOyucloWkH1Jc+PdXZePp8PSfFh6Bp2r0IuKvFga5ejvXW8cgoAUSti1QIcu2Mkd0QqlkCWpVPjbDRC9YnUTrbQ+n06rSonR3t8ahmYwx6ZZIRsNsW7ry1ydFLnoFhk87BOJA7xcJh3b81jO2N+fO/nrCzNkoit0awc06pXWcyHqGlRDE3BHbeIhAN4exZvXy1gO2N6QpygGsI8OsJ1TNLzNzEMg3sHbfq9IcQucfnKd5hKhPB7Bayxh+Rq+oVCLGzbZnNjnb3bP0Klh9UbEM7NMJeZJpXo8ovtNnIsxMrsDMGAD2s0IhUL4pc97DereJeWqZRLF67FqQrNNjVZfiLM4Wxu+/3+F74nH7/Wz2sfTpMjX5aKhmEYGJ0KhfTpAkv1ScTC/gvn/7T7+Kvc/6ura+zLMpVaEdqn90W0cOVXUv/4KuP9ZfgmPrNfVduveqzhmzcmr6rtyVj/etvudrsvvc1H+dYb1b/pvAyd2Jclz/c0NZLOOERM0phLxPBmssiDI5rFdfa9EksLswB0un2K5TqW+zGy4J4bFivX3wAgM+0jm/7c+DzTt4bPb6DGyR6ZiJd8OoHXK5FKxJiemuKoWATTx+17Gwy7DRqtDnJymXC5RDqdOY87BfD4Y+wWdzFMC68kYTs2tbbO1de/S+FhMiiA49j4LQndGXJUG4AYYPHSGroinMYwP3Z9Ho81z6aTJONRaqUihcLMuWfv7Lyi0Sj99Az7279A6HcYdExKB+tMhSE5m2UXUOwOxrCD0zmt8Nfp9jB17Vz6bvuwxFF9yI0b15gN9Hj9zSzleoeT2phMKk5z4GJZDpeXZ0gnojS7H7OykEcOJIlGwuiGRSbiRbA0MtlVfIEQ/eGQa7MRyi0LS1RpHt1FGvUQy0XqvTFSMMat77xJPj8Fvjh7O5ssX7qEz6dSb7VptLq8sfQml69cxTTNL51ce7C/d65i8tryKscnFY6qTSpti2BQxVViREJ+2q061cMmOCMQvcihBI7lp9PpvLQEu6fdd1+lyunLVNE4i58P+CMXPv+iWOevcv+/zCTpCRMmTPimMDGqv6W8bJ3YlyHP9/iLFmDn3kfMJWLnRsb07CLlvXsUD/fIpJKMbJuff7aJIgqsZH2fv9BL9zGTy2RmFqk2tpG93fO/7Z+06IxD7Nz7CGwTzbCplopMhYJoQ4O4fLr6XZibZvukw/3dNouayUw+yWu3rhMMRfnk3k/Yxk8uGaNcbyIIAslYiAcbu/zkgyaZmB9BDpFeuMHa7Ny5mkK320V0bVZWVgAX07IeFrQRuLt3arg8Ov7dbhet08L7iCKIz6eQmZpl/d4d8rUGuXTqCSNmfmER0zT56IeHdI+3iHkccvk5UpkYux1Ix4JY9hDBMfFFC3x870MSQpP5qTiGOUbvlgl5g7RqJ/zWlRzxqErQL9Ptdskm/LR0nd1y57SP2gBBcAGJQPQ0fnY8dvEFQgwH/dMqmF4JPF7q7R6IYS6trtKIx9javI8mmdhqgYXVK+e7CXMz05x0BUp9CU93AFKI6ctXz+fTl02uPTNYz1RMBrpJLpumMXAp1buMXXBshc2dA0K6w+WFLAFfhKFhcGfrHkU7R27p1q+cYPe8++7LVjl92SoaZ7KMj4dgvUhBqK96/09Kgk+YMOE3iYlR/S3lZevEvgzP0wV5uEjk1Iv8mJGRn5rGGo3Yu7PDJ5sVvP4QY0nljatTTxgW27Uyi5dv0ZHlZ3q/1WCCZrtD46BBrevDi05a00lEVUq1JnVdYmZhnu/cnCeXPjUYi0eHRIUOumuiuBIJ5whFEhj1wtzIjBhEA6ipeQrTeaqtiwVFLuhJxyLnXubWwy1wn8/HaDTCcRx2treoHW9TLm7zy94hhblF5mdPjc5wKIjhz3PYcmloTxoxoiiysrrG+voDTjZ/STYq0O400T1BCKwQiSeotIaMxwIrc/Mcbt1h4OocNR2G1phIYpob2Qi3Nw+R5dPS7tFwCCWg0u0OUX1exv4snx01KFUatNwEYihH5qHx7/MpSP4Ie5UG8vYOkj2gcnLMvXqJpbXXmFuBYChKJLvCtXevEFFtgqEojjOm29MoNbRzD3+r1UJRFOLx+BPz5EXn2JnBGg1HWB86HGzeY2wOED0g4UERJC4V8ty5e4+DksDKbJbRyGH7oMLu/iGaoLH34BPa7RYzSZlUMn7e9rOMTsuyLvwLT953jVaHva1fYFoWi4tLX6rK6ctW0TjzOJeLpx5n2aO+8I7TxPN8yqRC5IQJE57HxKj+FvJVtplflK/qeSoeHWL16xe8d7n81BNGhiiKxOIpZlfDLF5+/fSY6x8RCYcutKcGA2A3nihFDk96v3OZFAtzs/z4g1/Sa8tsWBrH1SYDY0x6ZpWA0cE2h+eSfVqrwnQmymHdoNuscG0+gzMe8cs727xxfRnR42W/ZRCLhJG93gtj+vhWuVcST8t3t3WiszdRFIXRaHQu57eai5BRlmgWNynv3UXXDRiP2NrdJ6jm8EoSnlDmqTHFB/t7TIXHuJeWCNsVdK1BZ1SHeXBcD9WuzdWbpzsThVyaS1OL6IaBbVs0TnYJ+sa4LjQ7GmrAz9AwSGWmsAQf1cMWgWwUXybD5UtpJEnCbOzR14b4vB60wRCPHMTwzbKzd0wmIpEvzCGFMjS6A/7qg3vkZ5aIzt7k+sNqgU/zcoqiSCh0em1/ld2Vs8XMg81dYl4dXzrN9tY6Y8eio1kMXR+zwT5Rv4igqGxWLaqVI5xhg+urcwhelXjSw7A95MPbm3zv9cvPDHM462e9tA/A+mcfcZLIMjs3f37fhUNBDo5O6DYr2N02d35SQuDvoiamKFY3zufw84xaWZa/lBH+IswvLLJhWRw3y1TaX37H6TfV8zypEDlhwoQXYWJUfwv5stvMvw70+h5LUxe95mV4ZqxmauoK6XT61FB+pmHx+QvedU+l5J517sGgD0Uck0/FGfRECiONaDzO3OU1GrUazeImstdLNJ4AZ4Q7VhiNPfhFBzXgY2iM8Tg6kkckGPBBvYthWk8d0/mFRbZtmx9/9gv09gnjMQTieULTDo7jnBruzRLLDxc9kbCK7PVyfLjHj376EdGwyurKEldWl2h3++wdr7OvKFy58rlazdnCaWU2Qyr8Dq2TDbxOn6ExxgTuF4ckl7/D6uoa/X6fjmaytVUmIFrgjGi12hx1m4w8AcrNAe54jKaPcIM5RG+Ym99/m6npwrlHznEcNjbEC8aYL73CqlSiEJ0i4PfjU2QURaZcrbNVNlm+9ibhcBjghbycv8ruis/nQ/BFufPhX/HdlRgz83l2d7eJ+gWuLk4RCYcJJCTaxxoDQ2BqZhHLGrFyJYdf8VLquOTSSQI+Hz+7d8Jm2UT26E81Os/6mVED1Dowau6ys/Uz1j+bIuQTuTx1lYOjEwb1PeaTKko2w53dGp3D2yQWXieYv/JCYRSKoryUXIZHEUWR2dk5rFweURQnHtcXZFIhcsKECS/CxKj+BnC25XhWuviLeFpJa/jVPFxflbOt8WxCveA1Ny2Lrf11rr/528CzjYznJUmpyWVEUWRne+vcg2Q6AvV6/cIWvmmaNCvHXFpe5Oq162w8uMs7N2bxKV5KnSGZqRmaxQ2OD/cIqGE6Q4tqZ0gss8BYb6INDZyxw1j0Y48dtKEBooxPkZ86pqIoIkkS+XiA1MI1ErEoI9umWN1gXxQJqiGwLdRg+Pz7hZlZAmqYzWKXN9+4yeLc9FM8nbCyunbuUT9bPETCpzHi3WaVkXCaCJm//D2uXb/Bnc9uY/SqHOzcQys94MbqLK9dXkTxmPzwqITuy1Kxk+zt9wiFY2TiOeLZuSc8cE8zxgzDYKd5RCKWQH4kRjcRi6K2m+cLnTOe5+X8VeKHz72I9SP0gcbtzT6ipNDomqxez7M0m6fb7hCPBJnKJvnRnTKdfg9FAtEjUG1qqKkFZFkmEg4xnU1RWHv9fOfh0eM+ugt0UusAIpdyAfzTOe4fdSk1htx/4EEYj5hPqsSjKt2+RjQaI5ZPcdIscfWN758ntn6RUfsychmexqPKNhOez6vc+ZswYcK3i4lR/TXm8S1HW/CiJvLMzc1j2/YzX8gvS63jcZ6laPDoZ4///8yo9vt95+dULp3Qqh5TPmyCC1MLa6zdeofRaPTUc3qWYZHOZCkWj56oitgsa/zy7hZv31xDDQao1JuUal3Wrl5HlhUCskQsHEIQAKdLPpsCBG7f28YKNuk4KQQMFuJRtL7A/f11FEkgnF5g/6SNabskCmsMhvpTx/TsJbxYSJ6/hM/YrxUJqpdBkp9c9Ax1ZMVHPpN6pqdz/6H02uOx20sLs5hTOXaLNboN8AeC/OD/+f/itHZJxQJMqybBtRmqzTZ//ckBhUKB669/D8Ob4NK1t/D5fOi6jiAIRCKRZ25pP2qMua770hZvv0r88JkXcTUfIP7aJQKizmGlTzOawutT6fSH2K6AbljIwQixfJBKX6JZNXBdl+nZBfJT0xf6HolEnnq8s8WMJKpo3SaQJhwKEBQlMlEHwR/jwdYeuZif1Wyebl87N9rj0QgnrdNzeVb7jzOJZX71nGmAe73e517zr9PO34QJE76eTIzqrzGPbzmWGx3u3/sJ23c/opBLPzeu72V6uJ4WTxiM5xEEAa15cmrwI6FZEFJAdO3zvgXV03hZXTcgGqBcOkGv7xGRBeamkszmFGql+5R49jbqswyLZrN5IYwCTj1I37m5wk/vnrBZMZEFHXMsIsYXSSViKLIXRC/a0EAUAVEm4PeTTSeZXwuxeOV1VFVlf3+PcrOMYPtoirMIQCYWpdzo4Iqg2D72m+5Tx/SLXsIAaiJP8WFxjLNFT601JBDP0x8M6TYr557OaqON6PURifo52VsnnckSDoefWDgNhjqaMQY8GPVdIm6Dy1ezOLbF/fs7zK4ss7RQYLNssbxyGZ9P4e7eqZ53rVo5v77FF4wXfZmLt8fjh8/0tAdD47kGeqfT4WRvnUs5P7lMCtscotf3KKRUTqotOpZMtTsg4PfjaCIedYprr+VYvfEddncWcFq7FxIov6jvZ4uZVqcL48+L+AyN092Lm1dWqHZsip0md3ZrRKMx1NSp0d7taefncrb4fHQsnzdev6mxzK+Ss+das3wAtkVJ8T113n+ddv4mTJjw9WZiVH9NedqWo2UMiQodTFfi0tTiaUjBM+L6XqaH62nxhD+//QNsx32Y0JXgzv1N+nvrpC+tsbKych5zqMcWAKg0Nbweh1b1mIgs0DVckpkpcpkUitx9oW3Uxw2Ls0pvZ2EUZ0TCIQq5i1v4xaNDSqX7FEQRfzh57n1OFFbQBqce59T0aRw3cCHU4cbDl6ZhGNx6aBB1u12i0eh5zPDj/XzaS7jR6qAZNoIgUCjMUHtMtSQ2d4twwWFv92PsbhsxmeTT+zvsHxzTsSS827t0DYGx61BYvMrM7BxHXFw4idECaCfEQgq6KRMLq7iMiYZDtOtVFleSqL4xLp8bBdVKmdFj3v4XjRd9WYu3s/jh/eM7nBwXGRtdhgONUsciuvDOE+V7zwyik711yjufoAwTDAZDZqZzVIFW9YS27sHbl1hcvM5CIY/jQrU1JJ6dIxwOc/3GTfb3Ql+q72cLidr+pwz0EfhBGw4Z9k690c7YZfHSGp5ADL38gFg+RTwaOTfYg+kVikeHNEv71EoHaL0OfjVKvjBHPDc/SXz7NXL2XJuOhQj4o7iO9dR5/6p2/iZMmPDtY2JUf0153NtpmibDTp3pTJR6x2TsuufG9vMM0l/Vw/U04z7o+ohKQwwEggE/4/EYwR5wcymF7gyBz/u2Wa0C4E8tsFU5oHzYZG4qSTIzxfzs6Zb7V91GPfVuPiWM4ilb+I8af84j3mdMP52neJzPtoQfrRYniuIFj339GR7dx1/CPkXmweYuu3v7BGI5DrfuoCbyrK6uYT+26HEcB9u2uXNcov7hBn4GBIJ+plNjgtKYYmtEhDaD0n2O+DwBsNPpnO4caBrHxydEQip6+9QjH4+qJNI59ne3kUpVRm6Eoa5Ta+v4EkvoncpXjhd9mYu3+YVFfniwT2P7PpmIhC8YZnY2jEfss7+3e8HQOdjfo33wKVMhEXUqTCIwolvfOx2ThVm8viDXxSnUxBSu0eOoaT1VlvDL9t0wDOKJJKZ1hVLbQgD2KjpT+QK+QOjc0JpfWGRfVTmpFTlpfW6wO47DoHSfwKjHfKCNmvDS6HdgWGFQGk4S335NPPpck/1BgPNqkU+b968qtn3ChAnfLiZG9deUx72d1mgEYxt3LJ4nycGrj+t7WnESazQi4PUgCGCYDzV6nRGpeISj2uC0GIgsn8veARRmZpmZncM0LGIJD4Wp3Lkh+lW3URVFeWoYxeMepLOt9sLM7HmC2KPe50eNqedtCT/NY7+z/yn9fp/LV64+8yVcPLiPo1W4fGmepaUlWj2dcnX7Ynz0Q0RR5MrVa1iWxZ0f/u+sLSZo1ZsogobrCMwWciBYxOIBTmpFBvkpyqWTc0NfG7kPr5FNJJGlWN8DIBjwo3mS3C2aKFEZb99LJL9APJFkv3n0RKiKJIponSrdbvfce/9F1+JXnX+j0YhoQOTy99++oCbSal/cydA0jfuf/Iy0WGc0kun1ehg9g1w6Qa16QjAYoNbWmVm6SjaXx7Ks5ypdvEjfnxYCNb2wwkmpDLEFOiPodDwXpAIfN9hd1+X+xz8hH/PTKZfJZ6NEQirhjsZ+a0g6lqH08DwnvFoedVpY488/f9bzdBLbPmHChBdhYlR/TXma3nFPH9Hu9pieX0FRLpauftlxfWdGxNOKk8heL8PRGMMW8CnyacKa6KXe6oIYeFhB8KxvMqDjOA7tVhNdH3Dn9jaloz0yU7OkEjFKDe0rb6M+LYzizLB5EW3ZZ5WFfnxLeMM0MbrVc4+ubdu02h0GzSOqezsYvSqpqaXzts9ewt10Bk3TWLk+d15KPSKc3naVhwaU67pPJIDOzs1zmJ7hs90dDtc/JhcaI/uDJNM2cnhEcmoBbIOtzQ08/aNzQ7/S7PPpYMjdrQPeub6ANZrhs6MjGs02cnKNa1ffIJvLEwwGzxNLH1282bbNwdEJxYNdql0LOajS6y59oUfuRYpifNF3zgydx9VEHjd0trc2sRrbLN3IEQ2pZKMSd7cO2S33aQ4HmP4ZphZO54Cu6y9F6eKpC6qTE8DD6rU3n6oUAhcN9rNiR7JXAWdEwHe6I6A+lGiURAls44mqmxNePo86Lc481fDFz9NJbPuECROex2+0UW0YBpqmvdQ2h8PhS2srnclStCy2a2Wwh7TGSRB0FnxB2j2doW5QbvTxZ5YZjUaMRqOX1ufDwwP06jazyRDRK8t0ynsc7jyg3u6Ty6ZpOyHsMTQ6A0TRQ8eU2D9qs7CUZmA41Nttyo0+SqQAnRMOD/YZd4vcupRDywdoVsusr2+yFZ1l+eprpDPZL3UtTNOk1+shyzLZXP50S940URQFWZbRdZ3t7S16J+vM5OJEwxGGusHh7m1arTaFmRmA8++ftdksHzAdC+H1+Rm5EPAHScbGbB7v4RVchHQSzbA5PDpBbxVZyIYIBSzCfptO8T4blkU2m8OyLBRFOTUivSKKL4hmnCa2DU0bQfRi6B0+u30b1+yCbWGNBZRQkoXFRQRBAG8Qr+hyaS7DlRmVgM/HzkmPo1KdQLGEJaexqkUKcRFB9GKNBbyKDxjiikE2KiNkIYCUuszsfIKFxcVzY+HR+eKLZtkrbaNbY+rNFp3yLqLrMF/IERJ1Gvu3MS2LVCqNZVn0+/3zcXMch+PjIlqzBLYFkoyayFMozODxeACe+I41FhCUMFPT00Qip4Y8nHoDbcFLva0RiXxe7Kfb1bCF02M1m020VoV4IoXlKpiuF28gyvKyzOZxl3hqjpUbb6OqKrquv5T78dF5IfuDWGOQ/UFi4RFlzUDXdQKBwBfeg7ZtYwteesMRluCjoY0IBb10+yNsjx/NGJ2f56NJjC+bl/mM+nW2rev6+b+Px9h/Fc7mfSxi4/cpdLujl/I8fZTJWD/JN3VMXlXbk7H+9bZ9ViTuVfGtN6rff/993n///Qufjcdj3n33Xa5ePS2mcRY/+6iB9XXA4/GcJ8yZpknetmk0GpT7DcrtDkgKamaZQmHmpR73rDjJdDJEJBIi4FfotFo0Sxvc3T4mkV8iNXuZqVSKj9bXMTpVXMZo4yhHbQdDbCJ6A6iZZaLRGMXjEwbdOgsP24vHo+SyOeqtNlVNIpfLnxtgX8SjBpo+GGC7HhK5GRYXF8+vneM47O3tsvnxD0kFHGquRr8fRxBAaxbZ+vRTtmJxwtEYycwUkXSBQmHmPPEx4I8yekRiOeD34fX0GDkiQ93AY5hUy8fMJ2RkWcQr+0jFYwh0+eijn1LNZgnKIkgyciiJI5z+LvKI91U3TBqtLmnHJJ+O0O4M0RolKjsfUz6cY2b5KtbIwusa5HIpzJGJItoEfR48Q9jdKyKngzidQyKWgt4qE4imCIRPveHxWISZpSvIsvzceW2aJtFoDMuaY69W5mhnDz8DBMdE6bVoCR4sIcBJQ0NbvIw97CC59rnxPHYczMYe08lTz/5QNyhXtylymuwJcHxcRK9uk40FaDb7HG0/oFat8pkvwdT8KjNLV8hPTRMIBFATecoPw3kCft/5wlHNLCPLMv1+H9njEsrkKbfKp9/zKViWQ7OjU5grvHT95UfnxaMoPgUwXtj4OgtXala38YgBKo0avb5Oe2BDIEWza5yf59lCY8Kro1CYoQhUaifQ7iHJvlfyPJ0wYcJvDt96o/q9997jvffeu/BZr9fjBz/4AV6vl0q59EpKz76KwgqaphGLxfB6L7+SuL6zPjuOg+SOSMUSyLJEsXZC0qsxe2OWjeMh0wvzGLZJo91iOuEjtbRKIhrBGtnsFhtIsenzGONOpwOA5DqkYjFk+eGU80kEfV76DyXdXnS8dra3MCobiKMBkjHA0QdsHXxKq/EOf+t3//bnxWCKn5GWOtyaz+G6Lj+/90vssUsqpDAtlbmUDzJ2G7iOF7thUJNlpgszlBQfrmMherxYoxFenwfLsQgEI0hqgk/u/gSP0aJTO8Rt+xl7AsyvvU6zUefO7U+p728Rca+SXVwhlVAoNQ7R7QCNdh+/7EENBugaOrVGB3fssDKbpNXuIPSPuDWjMki5bBwfUt8xGRt9gmoYn8+h3dYpt4fIXi+uIFJp61zP9hBVKMQ8+BSX48rmqQQdQSRZIZvNfnHBlLOiOWOwkBnjISwOyAZ1ptJhxmPYPSnx3z/awrX6vPPaFVKxKNpgyG7xPifNIb99c/Y8yTEW9uOXPew3q3iXlnFdF6NTYSEfodXu0Dq8zSV/lzev+jju9hkZOxxv6ig+H9lsltXVNfZlmUqtCO0uSD6ihc/jlCVJoqT4mIoqdH0SlWYVWkN6+ggxUuDqtWtPlHN/dG5/Fc6O6TrWeTIbQKt9akyHw+EXbv/s/FqVA6rNIf1Kj4AaJp/KEM09WXTnVRZo+aa1fbbQ8Pv9L639K1eu0nrotHg0KfllMxnrJ/mmjcmransy1r/etrvd7ktv81G+9Ub18yiXS/iM8jeu9Oyrjut7NN4w6PrQWhXyCRXHgWjMx1whT6vT5f4Hn3H5nevkMqkLv99vdp5sVPL+yjqvZxn77miA16qTS0YI+DJ023U+3vuQzfwUM7Nz3P/kZ8TcMuagwc5Wl3gyQ1gcoo1ctP6A2WyU5dkpOj2No2aDVCFOvVakMDNLMJ7npx//NQHRRvF62LBMtLGfS6//3ulpiALBgJexX0LGpu843N3cJxMYERnXmLuSZno+SqVzRNcrUchEMWs23sQy+80qVJvYgowYnSXvrSKJIt1mhULUT6vbp1mvoTW6EBpxUu6TXUowNRNhcfkSAtDsDtCPNBiKXL1UQNPiHJe3CXgMjG6dvf0a8vzfom84z9xKNAyD9Qf3cVq7zGSj9HsatdIRpYMqd7Z2iSzKzNyaIxw6faA1u0Nco0xEMgj4FWTZS1yO0B8M2N7ewStdjLdWgwHMozLVavX02j4sllKvFEnIBgv5GD6vgu5oBBJxdpomrcoR5tIyiqI8NyHsLNegVLpPOhYgEJhFGxiMBzaFuZtPNah/VZ4lqVZpaoDnS+1uXUh4u/42giDguu5LWyC/SGz7hIvIsny+ozNhwoQJvwq/0Ua11q6yPDcpPfs4jxoRUXWAZegYpkKlYxBJLaAoMrJXwmMPTpOrHuFZ2fNqLEuxunf+na+i82qaJuagj0fvspBRkR8aUFOZBOW2Sf1kl16/j9XYZu1GDiNeoFs9pFLcRtNtDFdC1///7d15eGN3eejxr7ajxVpsyau8jT2exTOezGSSELKUgYYQLmVreymkQGjppe3tAA1tIXBLC+WW9RZKKcPWJ6XtBZrepwWay20KBCYJkISEmUwymcziGe/7ptXSkXSkc/9wpLG8yrZkW5738zx5kshHr356dcbznp9+5/2l2N3SydjEFMHpCaYmg6RSGpNaJW2d12MwGDCbDChmAzYzmHQDqmYgkUiQik5x85FOLBYTF16oZGrgeVKzE7zQ+wKGtmrUeIw9u49SV12FxRyld3qcuppqTHqcxqZmbB17UFWVdDqNruv0XYjMbSKSTjEViJGKjFHvMlBpr6TC52V4ZJJLwxEc5gxtjV4yGRgYDxPVHFT53HgrPdT4qnh8ZJjBnh5cdgNJHCiA2zi7qA1d7ubTwcv0X3iGXbUKfbMTuEyzHGj2UOeEKz3djI+P0T/qpt1sJhiNMzwdw1Fhx24xzHWheZHX48ZohOlAEJerIvcaz527SH//OAYT6EaFifEJKq1JtGQch8WITbESiyfAZMFX6WQwFCcZj+adMytdODa3tPLTvl7OPfEsRm2WjLmCuvbDHH5xuUkpLNVSzV7TDtG+dcUr9oVxITflCiGEKK1ruqgmnZorAueRrWfnZIuI4aHLDIyqzMR1mlvbc72lkymNjLkCLZ2/9nO52efGpmZm7PYN9XnVdZ1ANI4SCeJsa2FWS6Gl06haHEeFi2RaJTw5RLW3EpPRjN/vx2I2ow72c+ZSNxZXPXX+XYRiSRyZSXx2A9aGSgwV0N87NnczZTzAzUc65278S6WoctmJzsY529+PGY2AQSMWnKTn/HNExi5iN6XRorOkEw4sZiPh2bkWg9mODtOBIJgrcjOH2ZZwQG4TkUBwFmNshL31ZsiAx1eDvcLGkc42hlUPg5qJnufHyWTA4W3lwM1HUEPjc98kOGxUO03su6mLWFzDMmsnAPhrPEwuuDjMdrDwu0wY62w0e41cOP8czoZGPK5GjEYj7c01qGEDjz/XR8/QFCaTmXhGIaMbSGQMKJar68JTWhp7VSOTQRW3K4SzwsFz5y4y1HOerr2d7NvbQHQ2Rmg8xpnzQVzmDCEtxeRMiGhCx1nVSDKZJqHpKJXOgr+xGBzop1qJceCW6zCbzGhpjYlAjIH+vpJ9w7RUS7V4PE5Pb19JXm+tlupOUg7fugkhxE5ybRfVpo0vSdipskVEc0srdk8d2vQVvFVXt3OeCMSpaz/MRCCGVQmtOvtsNBrX3ed1/izcbGiGCxcukQkP0lBXSyqZIBgOk3Hvxlyt4LIZ8HhaGZwaAMDrrUHDQvpyjMqGPVQ31HDxwhN0+RVmM2bStkqSKRO723cRnhxCMWdwVjQQVa/OyDorHFgMIQZHxrEEp1AMSdyZCW48VMNMKM5YzEJjrQeUCkZHx6ivqyaTMRCOp8gEVap27V/yvWYvKLqHppnqfRavo5baBj9Wm4Px6SgNza3YU06aO2/KPSe7oc3l7kt53yTodishNU2Vr5ZAAOx2G4TCuYvD+ZtdOOw2pseHyOgJalwW0skoyVSKVCqDp7oJQzrFbHSauppGar2VXBkOEhtLMRpIEosnqLBZcp912/4jpNNpnusfIqkOMzY0zPX7OjlwoBOTyYRX8XDjob08/vwwoaSTgeEBBiYidLS1oOhGTp3vJ2JuZF99S0Hnw1KbEQEF78q5UfNnmLN37W+1pXIi37oJIcTmu6aLamdVHYPjcx0EZOvZpVmt1mW3c+5s3cVAfx8XBq+Qik+hOFzUNK08+7yer73nz8IdeMX1fGO8l6fP/Jz9e1M0N/uxO6sYC05hrzqA22WnplInZDHPrWGeDBGOazTuv529h25gcugKo7N2GGeuE4mjGm9NA40NdTxzaYJ4MsPFixfJpFTIaMyYDWimCjImH0aTmVk1RTQ2TaXDhLPCzmQ0Q12NkxQmLHoGXXFxtjdIIJLA5O2gedeRZfORvXDx+qr54YMQs4aIag6iESPOmnZsDtfchiLzdobMWu6bBG91HT2BKeJxNe/icP5mF4piweOrZ3zkIhnNQDoRZnQySDCWpn33Hl6IRRmdiXM5oNATSuJw7+LOVzYzGjXRM5lkLDCNhoVo0oEjMMLU6CCBmSkSmhGrQcXhyL8g9bhdNNXX4N97lOGhw1w5/ww/vXiBWHQIxeGhZZ+TTDpNOp1edanCwp1Gs67lb5gkJ0IIsT1c00V1Q4OfZMIrW8+uYrndxLJ3LRuMOhh1MOirRFq7hbNwiUSCW65rY6TKwHA4Q8zow+110FLrIOOwYq+sZ2Sqm+a6SupqqpkOBMkEVZp3HZnbjKV1FyaTiV3VRird7rxd+6wVbkKhOFcuPU1nux+vz8lsOMCZSwMY/C+hvrYKLaLROzCCLaWj6hr1NY3cVGNi1uTh+UuDZCq8tLcdpv1gI/v2dxZ045zX6+WG215JsP8Mjip7rpPKShd4y36TkJnbHm5sOkpFXUeuJ+fCHTrbWpvoBZ4ZCTA0OMQBq0pz625sNgWzxcarXvMG/PW1YACPy4nBYOCZ7inqdx+ksrKS4aFBbFPdGFNhXI4Ah3w2RmfiXBmJMz14EcViofnFnQGz3/54vV4aGhqwOxxMeqz4a934a6sJzSYZneqht8e+6lKFhe8j61r+hklyIoQQ28M1XVTL1rNrs3CWOTuDvK/eg8VcwUwozGT/maKu41w4C5dMpTCR5rYb9nO6L0Z9czstDT4MBgNne6apb/Azk91hUYuAuYKqXftzF0oej4fG9k6CI+dwVaQxGAzMBEIMjoew+TrwpUcwtncSTCUIjscxmxw0tO6jd3KS3uEpWtwaTocVM9XYXRYcdhOqpuByOlA8jbTd+BqOXH90zedRduZ5amKQqaHIshd4C7s7LPwmIanOtQsKajaYGeHy9EDupjWnr5HB8QvA3Cymt6qS5r1HUZpfittjJ65nCM4aMHl309hQS021N/e6M4EQmK24XC6sVivx4Nji7badUSYiGpF4inR/D1Xe6kUXB6qqogbHuG5fy9XlG+a5XI0VsFRhuU4chXzDtFM7Y2wkJ0IIIYrnmi6qs2Tr2bXLziA3+yqYjQSJzoxBOkUqluTcdCy3mcdGLZyFUyyW3JboitWFz+tB13VGxydJZixUVFTg9XpXvFBaqpODx38Qr6+a3ukBDh3cR1RNkUim8LrsXOkbxNJ/hQZ/ExWZEHhdBCaGGAk4GJpOYFBcaBaVmn23c+NNL1lXt4XVLvBW6+6Qfe7k5CQTp05RaVbpqPXgrPDkblqz1e2nwn8w731Xtx/lphe3dM++7uBAPyMj5+b6h88r0JzVcxuTZC90ltpuu6HajW71cqVvmOSlUZzu6ryLg+WWKjjsNgiEClqqsNznt9w3TOl0eq53+Q7ujLHWnAghhCg+KarFumSLo0g4Sjo4iN/nxGHzEIxEGXq2m4sXznP90Rs2/DpLzcJppgrOXBqgusXH5Z4BJoeuEI7GcNTvZ3Cgn7b23SteKC1XwKqqmivgFXsFiqKg62nGh/vx11Zy5PouhkcnyJhHGZ5JMDwVo3XPQWoaWqlr2cP+/Z1rLtKWmnleatyFdHeYv3Nivc+5+Ka16RG6bryd5iUKd5PJlPvv5Qq02rr63OtgtpJMaWCyEFNVPBYn0ZiKyWLH31RPxl7H7oM3LFoPnn3u1EyQCocdm1UBjMQWrAFfyVq/YRoaGkSb6t7RnTHkWzchhNh6276oHh4e5r777uOhhx4iHo+zd+9e7r//fm64YeMFm1g/q9VKIgMTIwMcaHbheXGjEJPRTLWvCjU0MVd4F8HCIi9tbcDc5OHU+bOYon3UV+hU1zRSU6UTHjpbcLG0sICdX8BXV2Vw2G1MBWeYmgly9PrrsNvtdLS3kmhsoK1jHy/0BWg7dDN1dXW5OKqqEgqFMBgMS95gmLWW2dO1dHdIJuda+tnt+cXp/JvWVhoXLF+gZVsBZvM01PcM6aSRxNAUla5ZpiIaVNQzOBbCVt2x5OuYzWaCsTSXn32SOo8Fm8MFtioMFju+1uvWVAgW8g1TIpEgOj3CnmukM4Z86yaEEFtnWxfVgUCA2267jVe84hU89NBD1NbWcuXKFSorK7d6aGWrWOtKbTYbdk89PeefoL3Wjt2qEY2pDE5FqfO3ENczuZvkNmp+kReNRhkbGyXW+ziGUD97/Xb27KqnsrKKyeA0CaOR0AaKpWwBPzTaD1NB0lhQqvfg9lxdX2y1KphicZyV3lxBrWkal7svceHZnxOfGcFgBHtVI/sP30zHnr2LCuW1zJ6upbtDdqY6Hleh8urym/XctLZcgaZpGul0muHpGLPTkwRmpskYLdQ3tmJKpDGb4jRYhnn+F4FFFwp9vT1UmaPU7m0jo4aJzUYYmZ7F3XyEG0uwVCGZTIKWxFnhznvcYjYRDY8RCoWora0t+usKIYS49mzrovrTn/40zc3NfP3rX889tmvXrq0bUBlbaU3uclYrwPfu20//pd28MDKNO5AGk4Knph2P28VA0JjbIKNYrFYrgwP9zA6fw54aY3+TmwOtTtKxKRI2K3U+F32TYZKG8Iprc1d6X/Pb3CUSCbxe77JrjOffBNbX20P36R/jY5q9XT6MRugdHqDnzGwuZtZaZ0/X0t0hW1SPTUdx2pYf70b09fagjl/gZUdasZh3Mx0IMjwRYSplp9Gp0d5UffV1510o5GbcG6rwVu0imUySSCZpCMUYj5rRNK3oa5wVRQGzksudpmmMjgwz1H+F4Ykkis1FONSxo9ZXCyGE2Brbuqh+8MEHueuuu3jTm97Eo48+SmNjI3/wB3/Au971rmWfk0gkVl12EA6HSaVSzM7OEgwGizrmWCwGkGs3t1mxk8kkyWQSRVFyhdV8gwP9xCd7qPc5sdvdxOMqYwPniMfj+Kpr8uKm02lGhoeIBsZAS4HZgrOqnsamZoxGY17c3QeOEh69hN2pUOl2oaXT9I5Fsde0E4/HiUQiALl/b0QymWRypBdPhY24pwo9YSGWMeJ0WZgOq/js1YRiMVJmI4lEYtFnu5b3lZ1lj8fjeH3VxOPtXBwfB20KzArOqna8vmqCwSDJZJLhvm7spgytDY1YnXMzxP5GG+pYnJGBbtyeytznEggESCUSpA12gi/uwAiQNlhIqiEmJydxOp1541FcNVwe7qFeTWO32+Y+v+mrec5evGTzbHQ3cnE8uOR41ysWi5FKpZgc6aXR48So2EkDlb4aUrqZwbPdVDXtxajYiaV0jIqdKk+a4ZE+3J7KuXNUVUkbPEwEomiahsViwWi2k0pElnzfG5VIJDBX+Lg8PEC9miYcChAa7yeZ1tm/fy/VVZbcn4NsC8BCFfPcXmirfo9s59ilyne55qMccw3lm5NSxZZcb27s2dnZosecz6DrevGbCxdJdgbuj/7oj3jTm97EU089xb333stXv/pV7rnnniWf89GPfpS/+Iu/WDX2m9/8Zu6+++6ijlcIIYQQQmxfb3zjGwmFQrjd7tUPXqNtXVQrisKNN97I448/nnvsve99L08//TRPPPHEks8pdKb6ySef5Lrrrsutp1xtprdQ2SusYrSTKyR2/gx0/gxmbvONaJTBi2foaPJgsVz9ciKV0rg8FKKmdT8OhwOHw0EymeTK+Wdo9Bhxu6/OGobDUYZDOrs7jyyZn+XyF4lEOH36NJ2dnVRWVm4ot8lkkktnT2FMTDM5PkRyNoim6ejaLBnMGCqq0SuaaGuqw6in82aiNU1b0/tay+eYTCY5/+zTpKavsLfBgds195xoLEbPWByq2tl/6KZc/FgsxujoKOngwIqf23KvtdJ5ms330aNHcblchSW2QNmZ6pG+C9Q55674o6FpyGgEI3H6xsLc8bKbqJ3X33phfp/6+RPEBn7B3uYqqtxOAuEol4Znsfu7uPmW24o63uyYYe5znJmZofeFU3S2+nBU2HPHZP8cNO87sqaZ8lLnOjvuYsvGNpvNRfmdt1TsUoy7VPne7N/Z5RC73M/tcootud7c2BMTE+zbt69kRfW2Xv7R0NDAgQMH8h7r7Ozk3/7t35Z9TqF3v1sscz2NnU7niv1/18psnktpsb/GXiq2qqokI5N0NF5dm0ulA6fNRO/0FHb7fqxWKzabjfF+GyY9RWXF1ZN0JhBHsdnxer0oioLT6SQUCqGgUe+b2846y2FxMRmaxmq14vFcXde7Ek3TuHLlMgBjvS8QcTo33B/4bMZIpO95rmv3Ek14GRsb43z3MBnfdexvOUydPcEuv3XeWuIeZux2amrrln1fQxOji7pirPVzDO/aw/mJXvqHhtnbPLememR4hlndx56WPXk3w5nNZiwWC0MGGA5MoITCczsOthxcc26WWx/ucrmKfkNvNiepZBvnnvoBlUzn3muvGmXElOFKTx/Vbnsu/4FQlBr/QWpra1FVlUq7EW9zC3EtRnwyBCaFer+fjM2E3W4veueK+Z+jzWYjMNqDzQKVFVeLyOyfg+xfaGu9ibeUuS7F7xGDwcDQ0CBqcKzofbtLOe6sYud7M39nl0vsrHI7t8s1NkiuNyt2qZd/bOui+rbbbuPixYt5j126dInW1rWtfVxJIf1/t6tCu0KstuPa/FmqYm15rGkaj578EdN9Z7DW7scQG0PX7YQTwXXnVlVVrMYkFc27iKaT6GYTvsYObvbvJW6pw2Y1savBu+TNfzW1dYvel6ZpPHfuIv394xhMMDnoWvbmzdVu2mxr3006fQfnz/ycHz0/jNEI9qoW9h+5OS+epmn09/cRnR7BrKfAYMDoqi94S/P5cZa6GPT6qteU07W8x6wGfyPnzE7MJpWZ6NwNqg3tXbR0OnjyhTEujiVQDPFFG5AkEglMusahg/vQdR01kcRmVYgl0lwaDBa08ctGLPfnoHd4hmDGxeXnn96xm8PMNzQ0SHy8m3Z/+f3OE0KI7WxbF9Xve9/7uPXWW/nEJz7Bb/zGb/DUU0/xta99ja997WtFiZ9IJAru/7sdraUAXmnHtfkdOoq15fHFC+cJ9jxBV2s13Qlo9ZoJhCZJwbpa3mmaxvkXzjHU/RydDTYwmjHYK9nV1IzLrvDE8/0kYymcFd6852UvMIBF7+u5cxcZ6jlP195O9u1tyCsu6hv8udct5JsMk8nEvv2d7GprJxSa2yp8qT7Nfb09xMe7aap2UVP1YkEzPsDIsGtNBc1yF4PxeHvBMebndi3f1miaRlN9Dfua2tHRsb64fCCZTFHrjVPTtAe3273sxi/R2RjeKg9W69zF3FQwAGbrmtr9rddSfw6CGRdV5ii7fFU7vshUVZXo9AhN1a6y/J0nhBDb2bYuqm+66Sa+853v8KEPfYiPfexjtLW18fnPf563vvWtRYmfSqUK7v+7Ha2lAF7LjmuFbnm83MymqqpMDffgr1So9XroHgW3y4HTonFpIoxuiqw5t329PaSmLlPnUaivsmKzmukZG2V4CGprqrHYXBhgxQuM+e8rMTBKf/84XXs7OXBgbifE+cWF11eNoihr/ibDarUu2/c421KuodqFx+Mik0ljMpmorbIzsoaCZqXNYC6Ojxec06xC3qOqqkQiEaxW69yM+os7KmZff+Gsf8jmIrygMF/ufB2diuCs27OhP2uFzrIv/HMAcPn5p9nlq7omisy5b7eSOOyVeY+Xy+88IYTYzrZ1UQ3w2te+lte+9rUliW2xWIqy1GErFVoAZxWy5ny1Any1mc1EIoHFlMZR4URNXr1p1Omwoc5OY7Abls3tUsVRtojsaKlhxmVhaLQbh1ElGYnSf6Wf84qH6n2/RFNzC4PjF+Zea5kLjOz7Gh+fK/727W3Im43NFheJRAJd1zf0TcbC95JdrmNVnPQPDBOaHCSlxklmDEzErfjbD9DQ0LDiZwOrLPvRplZ9/sIxrvQeZ/2NjI4ME5oYQEuoYFbwNezC6WtkcPwCaiKJxWym+0ofE0OXl5z1n3/xsdT5aq/bQ3Nzy5rGnbXWWfas7J+DUChU1hfWazX3bYFCLK5S5b56s2Y5/c4TQojtatsX1aVktVqLstRhK61lBnqtlivAV5vZtFqtWO1ujHiYDoUB0LQ0I8FpxkMaXUd2L4q7UnE0v4j0uJ08PjLMYE8PFc4KkrqFpoZG3Ka5Hp8V/oOrXmBkZ5MnB11LXlAlMoZcl431FFzLvZcGfyOYrVy43MvMaA8OLUAgFGFicpLJmBHFZuf6l76ioIJw/sVgIpEgmUoxG5sreqHwDXdWW5d/6eIFjJG5ottgqiQWV5kaOYfZ18FU0sELTz6LFg8xNj7BgX272bdvL4piWfbiY6nzNZVKFTzehTZ6T0Sx7iEoFzabDafPz+h4N3bFWJa/84QQYru6potqWPtM73ZVaNeTjVptZjPR0pr7mj88FCJjNoEGL/RNMhmIUr3npezf37ko7krFUVNzS67wqXDYqHaa2HdTF4FZsMVNvOSGI8zG4vROj9B14+00F3CBsdRShGAozKnnu0ngwKRnSGYMzExP0lKtUDOvTdzCgmvhjPRy72UUsHnqePLRH9DhmcVpSWK1BWltMRLWbMxGegj2Vy0qCBfGz469d+g5hocGyaghYrNRRoJJXLtuXvIzW25pxEpFZSJtxBAeZ1/93GcdVTU8igW7YuSxM6doqnZw8NbDJBJxBi49h91qYGBolI721lxOl7v4mH++rreoLuRcXC0HxbqHoJw0N7cwCPROj5f17zwhhNhurvmiupQzvTtRoR1HshcrkyN9oMZJuXfTeXA3+/Z3LpqFXa04am5pzRU+lc5Zkmoc3W4lkkjjdNfmliCgRRa1xltofnG18IJqaGwSY1rntiNNmBU7sbhKcDzKL85e4uYjnYsKLpPJxOXuS3kz0jZPHbMzI3Qs8168/nZMJhNWm5WpyQl21Tior6tBN1j4RW+EqgoTwRcLQpPJtOzsfVv7bh7p62XshTNUVhhwu6tobW1EM84SZ65lYCFLI1YqKu2VLWQiY3Of7Txmk4n4zDA1e66jvnZuO/fYdDV2Q5zp6XESjQ1YrUrJZ3sLOReBVdvH7ZQL65XMP++NRiOtrbuwdOyR33lCCFFE13xRnbVZM73lrtCvy7MXK25PJRNPPMGho7csewNfIcVRtvAZHrrMwKjKZFRDt7ipIMDlF8YIx5KEDDV03mRZclZypQJTa2md2248c4p9DS15s7IvPbKPn50dXrJNXG/PlUUz0i9ceZZAeJYjbYeXfC+aplHl9eKtNWAhRVubhwq7lUA4gtEAFQ47waCKqqpMTowvO3tf3+AnMj2Cx6VgNGTQ0an0uDApFYzHVJLJJBcvnCfQ/yy7m6vxVS2/NGK5orLB38iFM4FFn/VMMITBCL5KT+6ccHrrCY1cIhKdIRyZxRSLl3y2t5Bz8fLl7lXbx+3kC+ulzntbZT3NzS3yO08IIYpMimqxJmv9ujzbA3ulHdsKKY6yhU9zSyt2Tx29zz2G1xCksaYKh8VErxpnVgvzxM9+QqXDRGI2Qko3Ut20m/37O1dde2uz2VCM+qJZWY/bRXNDDc2dN+SWXlit1mVn19ubkjz65AgzwRD1tdWL3kttbS02Tx0zoQEMGInGUyRTCXoHpzBXNIHRBC82vl9p9n58fJypyz/nukYzHruFWCJA3wsTVLVeD9i5eOE8Q+efpMGpMaKHmZ2tp621Kff81dY5Z382/7M2mOZucJsIxLFXNZJMabn3529sIhiKMDI2gXUkiuJwlXy2d7VzUdf1NbWP24lF5lLnfc9IN4PAwYNdWz08IYTYUaSoLnOFthIrprW03ItGo6vGW0uhbrVa2btvPwPdZzGZQgRjaWJmEw3tXeiTIfq7f4ajpRVjahY9FuH5K88w0HcDPpey7JKMXHG1QmG/cEnJcrPr1d5K7E4PPYOTKBbLovfi8Xho33+YwfMxwtNB+p+8RIU5SUpXsFb7eObcZdqP/PJcsGVm7xMDo/T0D1BpidHk9VHj9aAmExgHA3Rfvoil4QjJwAC7KtNct7uORFKjZ+QiZ2MxOna15JbJrLTOeanPWksEwWzF13Y9npb0ok4rGYubI7ffQGNT86adjyudi9Fo9JpuH7fchV88mWFoepREYmNtDIUQQuSTorpMrbeVWDGspeVe8sV1rYMD/bhcrmXHtlJxtPDCIbv5SHNNKzo6VS47mYzO8NAQhmQEw+woe5urUZQaBkYmeOLcjxl3+znQmH8T3/ziyuPxLDkrOxWILDkDv1IR7m9uw+nzL3sjWOuuNowmE+eSRsbHZnCZDdTW1OCurCKW1leNH01oGBIBOtpaiSYiVMQTOGxWPE6F0b5RWhqO0Or3MTsxQzAUJJNOYYqN0dM/SGhikKCxgU6LhULM/6xnZmawWq14vV7S6TS9JtOSn9dm7kK40rl4rbePW+7Cz2G3wVTpd7AUQohrzTVdVBc6k7oWsVisqPGWi93f30d8vJuGahcOu4dYXGV08BwXkklaW3etO+5amUwmUqlUXgeH+WNLu51MRENExnu4YDKtOLb6Bj9e39yNb1arFZPJxIUL54lOj4CWBLOC0+entrYOzWAhEk/hclWQzBiJRGcJhqPoRhO11VWEYyqzozPMBKZIBcbpH5rg525oadtNXV09RpOJUCiKZlBIp9NEo1Fq6+oZTCbpnhhFSwbApFBZu4fauvolzxNbZT09I93EkxkcdtvcZzAVoaJuDy2tu0g2+HPvRVGU3M6Vc0V8JQ3+Rg53vAGP24UOWBUL8XiCoYkhamrrlo3vqKzHPNKH2+cgrfnoCwchqBGctWJwVAEQiUSZCczSM3qJClOC6mofDofCbDyBwabS29uz5vPEZDKhaVouFws/r/nvcS2K9WdmqXNRcdUwONEHkJdDe92eRceuVfa9xuNxzObi/iotRk40TUMzWJgMRPF4XLnHZ8IxNIMld94XUyl//5Uq35v1O7ucYm/3c3snxZZcb27s7A3spbLji+oTJ05w4sSJvMcymQzHjh2jq6s81xQmEoncWtHsX5YeZW7mcWh6lGSDf8U1zIW+RjKZzBVL6x1bJJYEoKbSwUwBY1Ne3PIarhbnTdUuHPa5Hsmj491MAE6fn8nRbgAsBgfxeILxUBKnSSGdjKPFpjFqKvZMlI76CphMMzk+gt2cJqVpeDze3E5+2dfLdkVINvgJhUIoioLH41luqLnWZEPTozAVBLMV57yNTOa/l4VSqRSKQae22odFuTprbMAAU0ESicSy8Vtr65ga6WFgfIQ9zdV4PG6C4VmmEiHqGpsBiEyN0OH30DPrwpCC3qEJxlM+bvmlA/iqPIwW6TxZ6T1uBw0NDYwCQ8GpJT+jncxqteZ6UsPVi4rJwCwO365t/bkJIUQ52vFF9fHjxzl+/HjeY+FwmJMnT2Kz2TCbzSVZk+x0OosWa6F0Oo1ZT1FT5UNRrn6EitHJWGAak8m0rtd3Op0bXlaycGxaOgNApdtBOBYueGyqqqIGx2j3X10PWuW2Y1eM9E6P03n9LfQCU9OjBKOhuZsAd9/A1OUnGBvoZl9jBWMzY5i0BJWOKhpr7CRNVqJJuHzmBRrauvC37Wf/Ei3+4OqNlSuNVVVVmpqaMTS3oOv6ms4hk8nEjNWGnk7itF1dmjATn8VsteP1erFarRw82EUicbX1ma7rJBIJdnceoe9shEvDIewWA/GUTsxYya49+xkZHSOdTmJEx+8xU2Hzkeo3kjF7OdDRjMFgYDK8sfNkYR6K8WeoVH9m9uzZg8VyoOidPTRt7kZNu91esrFvNO7+/Z30KgpjE4MQmPtz4mqYu6go5e+oUsQudb7LLR+ljF0O5/ZOiS253tzYoVCo6DHn2/FF9UqGhgYZ6zu/6WuSN6qUu8CVaoe6eFxd09hWa7OXSqVys8omkyl3gfS9/5vizJP/ippIEQ2rGI1m4skZrA43GWOQQNRBUk1hzCRQg2P09ihr/sxXuvAo1Fp288wuhbl44TxTwz0oRh0NE5kKP7rVQCKTwuZ10dy0G8VqY2R0DE9dG0OhEcZGVbxuK4279uBJ21ATSdLpdFHWFG/luv612omdPQpR7B0shRBCLO+aLqrVqV4O7a5bV/G4lUq1C1whO9StFnvh2NKGuaUNY9NRvC2Fj62QC4dUKoWiKHlXs6+88y7+IzJFNDZMTyhKnRLj8N5G6qvdnLo0ztT4WTzeNm4+2Ewypa3rM1/uwuNCIkFTc0vBs6GFdlHRNI1HT/6Iqe4nqHaamZpNEI+rWCxmNG877Z1H2be/E4fDwcTEBDDXhaSuo4nLlV708DAOu4XJoM7YxBThWJqqXUdyrQHXO8u80Quw1WxFZ5ti2W5jL8YOlkIIIVZ2TRfVNVUV6y4et1opdoErdLfEtYwtqc591WKvaS9obPOLkdV6EEcikUXjqaio4PqXvpyxS08xEwjQ4o7iq3QwFYxiMuq01VYQtjqwWCw4nRXA2j7zpS483MYKUn2DvPCzhwh37EGxuQqasS1005GLF84T7HmCmztcpLUk09okCaOO4q4lYwmRnrnCyLCLjj17c8tWxqajOG0m2tvauXAxxfeefIY0Jupm5npMV/jnNoeJTg+va5a5GBdgyymnGfCFynnsQgghNuaaLqodC77+Lqf+taXYBW69y0oWzsrNH9vk5CQTp07R/OK228tZqhhx+hqx1e2nd3okd+FQUbuPdDrNuVM/RUuoYFbwNexatO301NQUWM4TNVp4dljDaHKQMUF9ix9LsgI1kcRqVfI+8+x65ZWWRSx14dE3MAyzY+yqTLPX78JgMC45Y5vNUzqdzrtJbKWlCaqqMjXcg79SobrKxWB/D/uaqkjr0D2u4nBUYnOYGO45T21dfe559pp2eqenQAsyGDDS2t7Bob2tVPu8JFMaPz/zKFpa57YbDqxrlrlYF2BLKfUMeCmV89iFEEJszDVdVMcWtFYpx/61xVwrutZlJavNylmt1oJvNFiyGBm/QIX/IF033p67cBgc6M8dZzDNdQSZmle0ZMeUiQexWC3YKmz4W9rx+XyM9l/EZNEw6XZsVoVEIsHY5DRxzcDQ0CBqcGzRVs7zqerc9uFJ3ZC78FDVBKHpMapdZuK6G5ezIlcwZ2dsTSZTXp40gwWnz7/sTZLzJRIJLKY0jgon4UgU0hoOmxMdnVgsyFB4Ek9UY2B0hmQyRX3rHoC5nSft++e2X9dPsa++JTejnEgkqDTHUDFQ4bCjKJY1zzKXal1/KWfAS62cxy6EEGLjrumiejIwy0wgVLQ1yTvBWpaVFGtWbrVipLmlFY/Hs+i4qKrhUSxzHUFeLFqyRfd+v4dK8wGmB88THruCxWLGYK3kzKXzNLTuZWhogImRAUYmQkwmK2gc6+OlR/bhcS/eynnhxcP42ATBsRg3HtoLGIiEAlidJjz+ulxBbTaZiAbHCYVChEPBvDxNBqKMjnfTqyir5slqtWK1uzHiYSYyQlxNEZ6NEVWTXOifwmJPYEsHcAF6qJvec9PgqM8912azoRjyt19PplI4LEYMBnIz9rC2WeZSresv5Qx4qZXz2IUQQmzcNV1U26rb6J2eLdqa5J2g0GUlxZyVK7QYWe24YDCYNyaP20mvxcxgfw89z12mec8RXHtewfDUMAN9z1Htq2L33v3UTQ+ja9OEwhFqqr2LtnKePzvurPDRUq3w5JmLPP78MDVVHkajFnx1dfgbm+YK8IFhBvuuMB5KgtlKIDDDbYea8FbNzWwbTUZ8HhszBeQpW7yGh0JYKvwEpmP8+PRlwnGNsaiBW+s06j0KVQ2tOF1VPNsfIkw9yeRcf/ClZpQVi4VYKoOqGbBZry5DWesscynW9Zeys02plfPYhRBCbNw1XVQ3NTVTXV1d9P61O8Fqy0qKOStXaDGi6zpRVWM6EKShrmbRcQaDIW9MJpOJjvZW6mqqOX1xjD2HbsLtdvPMEz+moaOahroakqkkQ8lpvM4KhqbHSTQ2YLUqua2cFxbqADXVXm674QAXRxPsPngDlY17SE11EwpHGZuYYrz3LCZd40hnF3ankakrVxgbtxIKRwhNj6GldVIZA1MxE22d16+ap2zxOj3aS8QUpj8RIqrOEg/2ge6nprmNurp6TEYTraqBsxHmdoisrV1yRnk2phLUHGhpndlYHIPBsK5Z5lKs6y/VDPhmKOexCyGE2LhruqiGa7d/7UZlC9yZYIj62urc4+uZlcsWI5d7n6E2EsVXVUlK03LFiMlk4nL3JUITA4Rnxnjsyii729toa2tDTSSZCkTw+A/idruXLM5Tmoaz0pdbQqIYdfz1tSiKBdDBZMFozEA6mVsOEYurYLYuKtSznBUOFGMcq9XKvv2d9PYoPN93keeefJxaW4yammq0WADNbMbntvHUUz+nc1cN+1uqMVgcTEwHGZ+YZGx0BK/Xu2J+csVrMkldZJJbr38N8bjK97/3r1TaDSQSSTLpDCajCYNx8fOXmlFuP/LLAHk3ga53lrlYf4ayN3L6G5sYobgz4JulFLP3QgghysM1X1SLtZm/vjgwNcbP+kbZu7uNjo4O4mpiXbNymqaRTqcZDcTp6bmMngG7t5HOIzfPFSk9V3LLLw40dnH5so1LV/oYmknR0NSK78WixWQyrTpTqOt6XuFttVpRnD7OdZ8hYXKz12BgJhDKbWG+XKE+/+IhW/ROTU/jdpi47Wgntd4qItFZnu8+xeh4gJ4LF6k276beY8bmhFRaZ+/uXcSD4yQSe1bNV3aHyQO7/XPryaOz2Cs8DI5cIhwKokZmMNsrGY3bwFafd4PoSjPKiUT7ln9Tk06nF90o6qltofP6W0ilUmX1LVIpZu+FEEKUBymqxZrMvznxQGMX5y7YeOFSH32TKv6WjnXNyvX19qCOX+CXDregWNqZDoaYDMQxmUykUqlFyy8OHeqipq6eF4ZVWvceor7+aiu51WYK539Fr2kakXCAseE+Lg8FiGRSxI3n8Te3UVE3t5VzoV/pq6pKJhag2V+P3WrHYjEzG4vhIoTXlqS2to7aSju9V7qhcjctu/fT1FDHC/3BgpbKLFxuE5iZor7KTlirZHpWxTQVZCY6g+rZj6uBvJZ9WUvNKG+Hb2qGhgaJj3fT7s+/4XWE8m1Dtx3yKoQQYnNJUS0KttTNiTde30Wjv45Lo4ncmuWNxnQ6K3BVhOidGMTtqVxy+YW30oNldJZIJILdbgfIzQquNlOYLbyfOP04yaluqn1V3PqyX8bjdtI/MoPT56elddei41f6Sj+RSGA16VQ2tjI4NUAilWRmagKXQ6FvQqW2qZ32vU1kMhojUSvV1TXE1UTBS2Xmrzuv0G1EZ8Z4yaF2egadvNA3ie5qwOU2YVaa1pT/raaqKtHpEZqqXdKGTgghRFm7potqVVWJRqNFjRmLxYoaby2xE4kEyWRybknDEjOV642bFYlE0BIqBlMlUVXLPW6zO7FZNGZnZzEa8xf1xuPx3L/N5sWn23IxDSYFLREkHo+jGSxMBqJ4PC4A0prGlSs9DA4EGJuYJq1GcDjdVNc14qltprm5BaPRmJvpXmpb5iqvD291DbUtVdRUe3P5ajUqDE2PEqqswmKx5I6vb/Dj9VXPFc8v5jf73mBuCYtmsOB0eYgY2jk/OsTkaAqv246ttoHW5nYGA+PUuO2k0hmGJ2ZQExnsdXuWHeNCtsp6eka6cVdEmVU1IooCtir2He7AW1WJTVHom0owE8ssm++NKOa5nT1Xk8kkWjKBweRe8vOfmZnB5XKt+3VK+edxtXN7I7by98h2jV2qfJdrPsox11C+OSlVbMn15sZWF+xPUmw7vqg+ceIEJ06cyHssk8lw7Ngxurq6tmhUxZVdkxqdHgEtCWYFp8+fKy6LIVcE6QZicRWPcrXgzN7Ut54ZRUVRwKwsG9PlchH1+Rkd7wbAYbfR29vLQO8V7DYvNfY4NdVmYokQespKfFxlEGidN9O8lGQyiWLQqa32YZn3utmuH8lkMq+ozo51/sVKJBIhGo3icrlwOp04fX4mxrtpqHbjcu4jOhtDUdLsat9PXV09g8MKl0cGmZ7VqXWYqfG3LtpgZiXNzS0MAuNj/YxMJJiZ1TCY7VQQZWYsRDSeImKsxmBdfxFaCvMv9kwmU965mtRheiZIrduM23l1xn4j55QQQgixFXZ8UX38+HGOHz+e91g4HObkyZPYbLaCd/xbq1LFXSr25e5LaFPd7Knz4Kxwv7jmt5uJAjYXWSkuLN41cWZqkuBY9MWNUlxEZ2NMBSL4/AeX7GKhaXOzj3a7fcn4TqeTQMMupkbOYVeMuTXL82N6PB56FYWxiUESExP09Y7S2tCEQddo9Zpo9NkJRaKMBKNU1dQyHBzH0rHyzX9ms5kRqw09ncRps+cen4nPYrba8Xg8KIqy5JhVVeVnP3mUiZ4zGLQYutlBbfsRbr39ZQy/OE40jYy9nhizVLpd2CxGGmoqiakarl2tdOzZs2rXj/mvl90+/eDBLhIde3ihqp7eZ39CjT7B7nofRiP0DodRdQcarmXzXQyFxl1qx81gLE2VKcIevzd3rj45NcT5y7P43NYlP//NHPNarHZuF8Nm/h7Z7rFLne9yy0cpY8u5vXmxJdebGzsUChU95nw7vqje6Uq9NfLCXRNbqhV+cfYSPzs7THNDTVFahq22Znl+R4Xx8XEMupEOv5Oeyxdx2OZ2CnTYbJAOYTGbQFNXvflvtRsQV1o+87OfPEqk+yS3dNRQ421mcibEme6TPA7cceddufXcnTdZGBkeYmBiEKbm3lfVriPU1tXnvkGYXzCvZRv4vfv2M9B9FrNJYyaaBpNCQ3sXNcYKnhtSc5u/bKWF5850IEjf80/iaW3DW9UGzJ2rXXvbeKZ7nIujCRRjXNrQCSGEKEtSVJe5Um6NvFTBXlPt5eYjnVwcS9DceQMej2fDX9EX2obMarVSW1vL5KCTlKaB0UxMTVBVYSemqmBSSGnpVW/+K6Qf8vz10vMFg0Emes5wS0cNu5rqAKhwzL3W4z3PMTFxfW578OVumoxGo6TT6Vzv7YUFs8lkAlbeBr6mto6m+hr2NbWjo2N9cWnKZDAGbH1RveQNqBV2/JUKmhomMW97dJezgvpqL20Hb8jLnRBCCFFOpKguc6XcGnmlgl0xxJdtGzZ/9nUtCmlDlp1hnhw5h252MDgxSSoeJhpPoVc0MD4TW7ZP9nIzv2vphxwOhzFoMWq8zXmPV3mcBMfP8vRPH6be58krkue/L1VViUQijI2NYQz3LVkwd+zZu+o3EDW1dWC2kkxpuZ8DxONzN2Gs5UbVUljq3FEsFhwVTgKhcG6THbi6froYF2hCCCHEVpGiusyVamtkVZ1bQpHMGAou2JcqWhVXzcLQG5ZdLjI71MNEIEHPVACXu4o6bwPe+l3LLhtYbuZ3Lf2Q3W43utnB5EwoN0MNcOlyD7HZMAdbnPjrFhfJ83MTmw0zPNBHR5MPj7sRk8m0aMnOat9AAEt+7mPTUcC45UX1Uhd7VqsVo83D+ECAWDyO3Tb38+xGO1JQCyGEKGdSVO8AxdwaeWFhPDExydRI/o2JyxXsSxWtl4d7gOJ0IMnKLhfx+qpp23+YiooKdF1fcaa5WGvPKysrqW0/wpnukwDUeD0MT0zxixf62L33enY1Ny4Ze3CgP5ebmNMJwQzMjtHb76KjvRVYYsnOKt9ALPW522vaIdq3rrwW03IXeymTk+o9L2UkYmYk8OKYX9xoRwghhChnUlTvAMXcGjlbGPur7CgWK/WVdTx3fnbVGxOXK1rr1TSj0VhJ1vhmW9wVcodwMdee/9KxV/AT5tZQG7sHmdVM4D3AnS+/dcnYwWAwPzfhGG6XC48pyvT0OInGBqxWJa9gtlqtBX0DsfBzj8fj9PT2FfQ+Sm3Ji72mQxxu342mabkxF9KjWwghhNjupKjeQTa6NbKqqkyP9OJIhQmOjkI6BSYLTdVOwoZqmjtvWnbd63JFq91uA0pTVK9FMdeeK4rCHXfeRTh8C8FgEJvNxmD3cyRTWt5x2dgGgyEvN4qi4KisIToRIBKdIRyZxRSLMzgewubryDWnL/QbiPmfe7Zd0EbzvVJXkkKtdLFnMply/y1FtRBCiJ1AimqRk0gkmBjpo80RwF9ficPmIaaqDI6NMhNTsVpvX7bAWq5o3S43zpVi7bnb7c5tyx4OLR/b7XYvyk1dXT39sxFGxiawjkQxKg6iSQeumREuTw/k3eioFfANRHbZzuRILwBXzj9DONSW102kECu18VuvjV7sCSGEEOVAimqRo+s60XAQp8+CxzW3pMJjcRIIzRIZC8/NuC5juaJ1u9w4B8Vde76W2CaTKS83BtPcDpIZi5sjt99AY1Mzw0OD2Ka6aa714KzwLLrRcbWiNLtsp9HjZCIIjR4jgXnPL9RKbfzqG/zrTY8QQgix40lRfY3LtnjLbiFtd1YyFQniDkZxOmxEYypTEQ2HsxJd13PPWWppwHa+cQ6Ku/Z8rbHn50ZLBMFsxfdi0Z1KpYgHx9Z9E+X89exGxQ7EcLudOG2mNd2EudrNnF5f9ba4OBJCCCG2Iymqd4i1roGd/zW/llDBrOD0NlDnb4aEjd6ZGEyGwKRART3+mgbMZvOKG5YsVVhupxvnskq5HGG52PNzMzMzg9VqxeFwEI1GN3wT5fznx1L6mp+/VJylxpFIJKSoFkIIIZYhRXWZW2kN7Epraed/zW8wVRKLq0xNXyamOai2u6mtqsNsMqOlNSYCcSoadjE6Mrzs0oD5SwzmF5bL7Ux4rcoW00NDg6jBMdASJDIwMT5BS7VCTbU3d2yhN1HOX88+N1O9tucvFWepmzllXbQQQgixvGu6qFZVlWg0WtSYsVisqPFWi93f30d8vJuGahcOu4dYXGV08BwXkklaW3ctGSeRSDA92kdTlQvFXkEsoWGx2amugtkZjYx7FwPBKdDmdrpzVu/BU1lFz/lncs9JZkCxV1BdlWFotH/ZpQHZojoej2M2F/d02+xcF0tPTw+J6T6aa69+ZsGJBE88e4Ubugw47La5z3Eqgr1uD6lUatUOGbbKenpGuvG45o6bnA4TisQKfv7COPFkZtE4NE1D07TVg6xRuX6Ocm5vbuxS5btc81GOuYbyzUmpYkuuNzd2trtWqez4ovrEiROcOHEi77FMJsOxY8fo6uraolEVRyKRIDo9QlO1C4/HBYBHsQAwND1KssG/ZKGbTCZBS+KwV+Y97rDbMGWC1NfXY22d29XParWiKAqRSGTZ5zAVlKUBBUokEsSC49RXVeR9Zl1723ime5yeySSK4cWLmTVsitLc3MIgMDY+BMBYRMe7jk1VsnGGpkdhKpg3jlL/MhJCCCHK2Y4vqo8fP87x48fzHguHw5w8eRKbzVbQxiHrUaq482On02nMeoqaKh+KcvWjVIxOxgLTmEymJcdhNpsZsdrQ00mctqvLBZLxWcxWO16vd9FX/cs9Z2aF5wC5mU273V7WuS6Wuc9Mw+uuxGmb95lVe2gKazR33ojVal3XTZQHD3YxUVPLE088wb6uo9TW1q5rjAcPdpFI7Fl0w6XROLczpnyOc+Tc3tzYpc53ueWjlLHl3N682JLrzY2d3cuhVHZ8Ub2TrXdDk4Xt77It3qYCkWV7Npeiz/O1aO4zm8t3lfvqxcl0IEg0oWGz2XK9r9cj+23BRr81kN7SQgghxNpIUV3GNlLortTirZDnFLvPMxRnF7/t8BorsdlsOH1+Rse7sStGbFaFK1eucOlKLyZnA91nnyroRtPVJJNJQqHQlr1PIYQQ4lojRXWZW2+hu1SLN6/XW/Bzitnneb0dTLbbaxQqu265d3qckYFzxAJj7G5v4+D+DuJqYsmOKoVKp9PA3I6KCtqWvk8hhBDiWiJFdZnbaKFrtVpxuVxres1iLw1YaRe/9RSWW/UaK5k/Q240Gmlt3UW6qZloNMqNB1tpqKsBwG6fW7Kzlk1b5hsZnrtRsdFjpN63+e9TCCGEuFZJUb1DlOsa2NV28VtPYVmq11jP0pGlZshtlfW5rhxOmxlfVWXec9a6acv88UUDYwC43U4UxVL0XAohhBBiaVJUiy210d0EV5Itgjf6GhtZOrLUDHnPSDeDwO7dHeu60XQ5c+9zcT/qYuRSCCGEECuTolpsqfV2MFnJwiI4kTYwOTm57h0L17t0ZLkZ8ngyw9D0KIaOPUXtqDKXSwuQznt8I7kUQgghRGGMWz2A7UBVVUKh0NxMn9hUuQ4m4yFmAiGSyRQzgdBcYVnbvK6Z1VwR7DNyqN3Hfr8NoxblF2cvrfk1soVx84uFsaJY8FZ5aK7zEJoYXPGcuTpD7sh73GG3gZZAVVXa2ndT4T9I77TO2Z5peqd1KtbZUcVms+GsqgcgHI4WJZdCCCGEKMw1PVOdTqe53H1pW3SEKEfFak+3VAcTm68Dr686t6vjWsa01OzwS4/s42dnh7k4lkAxxAvukrKRpSPLzcLH4nM7JtpstqJ3VGlsaqant4/hkM5kqPhtD4UQQgixtGu6qB4dHcGmjm5ZR4hyVez2dPMLy2g0yvjYKPHgGL3TA2uOvVwR7HG7aG6oobnzhjXtWLiR5SnL9REfnYrgrNuT9/rFutE0u+vh7s4j696ZUQghhBBrd00X1dHAOHt2la7rxE5VqvZ0VquVwYF+UlPd6469sAhW1QSJZIpY/MXZaY9nTZ/rRneSXGoW3l63J9f9o1QURcHj8ax+oBBCCCGK4pouqkmnFq13lU4JKytlC7xixM4Wwb0Dz9HTN4gWD6HGIoyHUlTvuQWzee2n/EZ2klxqeUcqtbhDhxBCCCHK2zVdVGeMFiYDUTyeq5ufhEJRNINCOp0mGo2uOWYsFivmEDcl9lriRiIRtISKwVRJVNVyjxtMCloiyMzMTN5mMvF4PPfv1QratcZebty1dfX09lwhPNRNrduC0+3FXeMkZYxy4cJ5Wlt3rfo+F8aub/DnrfFWFCX33gplMplIpVIlPUfWku+12g7n33aKXY65LufYpcp3ueajHHMN5ZuTUsWWXG9ubFVVSxYbroGi+sSJE5w4cSLvsUwmw7Fjx7jnnrczOjUJzHVkiMXV3HpXRVG2YrjbnqIoYFaIxVU8iiX3ePbmu43M7hcrdiqVwm03sefoEew2K4rFgkVRCIUiDE2Pkmzwr+vzVRRFzgshhBBCLGnHF9XHjx/n+PHjeY+Fw2FOnjxJc3MLyUQtYxODEAiB2UZl88GidP9wOp0ben4xYxfapaOQuE6nk0DDLqZGzmFXjLk1xlOBCD7/Qbxeb97xmjY342y321eNv9bYy407nU5j1lP4a3wo84pzxehkLDCNyWQqOIel+hwTiQTpdLroNxKuJd/rVW5xSxW7nHNdjrFLne9yy0cpY8u5vXmxJdebGzsUChU95nw7vqheSbHbmW03xe7SkbWRNcabEbsUG8oUi6Zp9Pf3EZ0ewaynpI2jEEIIsUNc00V1VrHamW2GtcxwlqpLRykvRooRe6MdO0qpr7eH+Hg3TdUuaqqkjaMQQgixU0hRXSbWOsNZyi4dWWu5GIlGo9jt9oKP3+iFTiln09cr+5k0VLvweFwoilnaOAohhBA7hBTVZWKtM5wb2QmwWDRNY3CgH4DBi2cY77dt2lKH7bi0J/uZOOz5/aOljaMQQghR/oxbPQCxusUznBa8VR6a6zyEJgbnirUF5q8rnq/QdcWqqhIKhZaMXai+3h7ikz0AdDR5aPMZmR05R2/PlXXHXCur1brmDV9KORbM1rluJvNsh7XeQgghhNgYmakuA+uZ4VzvuuJi3dyYvRCo9zkZjcawWMxUvrjRzoWhy7g9ldum2F1Nod1TVpP9TEYH5z4TxejcNmu9hRBCCLExUlSXgfkznPP7N682w7medcXFurkxeyFgt7uBudlyTdMIzEwycPEyqVgUZ6V3W3e+SKfTXO6+VNTuKW3tu7mQTDI0PcpYYHus9RZCCCHExklRXQbWO8O51nXFxby5MXshEJ+31GF0ZJjpwYvUVTo4uq+elKZt684XQ0ODaFPdRe2eYjKZaG3dRbLBj8lk2hZrvYUQQgixcVJUl4m1znAuXLJQSOFWzJsbsxcCYwPnACOx2RhD/VfQNJ3m9nZcrorcsdux80UikSA6PcKeEnVPURSlpE3zhRBCCLG5tnVR/dGPfpS/+Iu/yHusrq6OsbGxLRrR1il0hnMja6KLvWlKW/tu4vE4RPs4PzDN+ESSI12dtLU25Y7Zrp0vkskkaEmcFe68x7freIUQQgixtbZ1UQ1w8OBBHn744dz/b8e1t5tptRnOjayJXs/NjSvdxGcymWhuaaWnt4+2zhtxOJzU19ryPsPt2vlCURQwK9tyV0YhhBBCbD/bvqg2m83U19dv9TDKQjHWRBd6c+NaZ8S9Xi+ZdAdX+p4hMjuLr9JDMqVt284XVqsVp8/P4Hg3sL12ZRRCCCHE9rPti+ru7m78fj9Wq5Wbb76ZT3ziE7S3ty97fCKRWLW3cjgcJpVKMTs7SzAYLOp4Q6EQqVQKt9s9N9tZRLHY1S4aS4lGoyRVlbTBQ3A2mXs8bbCQVENMTk4uOcu9MG51TS1uTyXJZBJFUVAUhUgkkvecwYF+4pM91Puc2O1u4nGVsYFzxONxmltac8dlnxcKhZidnWV4JsGVviEMBrC5a9m1twuvr3pdn8Nq+diIWCxGZWUVM+l2Lo6PgzYFZgVnVfu6xzs/NpRm3Nl8L/y8iqFU4y7151iq2OWY63KOXap8l2s+yjHXUL45KVVsyfXmxp6dnS16zPkMuq7rJX2FDXjooYeIxWLs3buX8fFx/vIv/5ILFy5w7tw5fD7fks9Zah32Ut785jdz9913F3vIQgghhBBim3rjG99IKBTC7XavfvAabeuieqHZ2Vl2797NBz7wAf7oj/5oyWMKnal+8sknue6666itrS3K2LIzt5VuBzarFTIpxqaj2Gva82ZuNyJ79eZwOFYdx9wMsm1uBnmVcRQSd75oNMrgxTN0NHmwWK5+2ZFKaVweCtG870huRjwSiXD69GmqnAq7fGbc7qsz5eFwlOGQzu7OI+ua1V9p3MlkMm+mvZixN2q9sdPpNCPDQ0QDY6ClwGzBWVVPY1MzRuPc5qjZfB89ehSXy7Utxr1VcUsduxxzXc6xS5Xvcs1HOeYayjcnpYotud7c2BMTE+zbt69kRfW2X/4xX0VFBYcOHaK7u3vZYwptH2exWKioqKCysnLD41JVlWRkko5GD4p9rlWc0+bCaTPROz2F3b6/KGtwzea5j2ulGxVdLhe9PXYmJwYhFAazDW/LwRW7fxQSdz6bzcZ4vw2TnsrtkggwE4ij2OzU1NQser8W0tT7qlDmbV7jsLiYDE3nthJfq6XGXawdIdeak7VYb+zL3ZfIBHrYV+fBWeF5cY13DzN2+6KbUF0uV1HO7flKlZPtmOu1KKdcl3PsrGLnu1zzUY65hvLNSanzLbnenNilXv5RVkV1IpHg/Pnz/NIv/dJWDyXP/P7OyczVx7ei/dpaN3xZj3VtgW62bEonjWLtCLndFHNjHiGEEEIU37Yuqv/kT/6E173udbS0tDAxMcFf/uVfEg6Hecc73rHVQ8szv79zdqYatrb9WqEz9uu11i3QnVX1DI73zP33vCLc5utAVdXcmDdiJxeexdyYRwghhBDFt62L6qGhIe6++26mpqaoqanhpS99KU8++SStrcVZo1ws82duq6syOOw2ZuKzO7r92lpnxBubmpmx23NFuIaFaNKBa2aEy9MD616mMd9OLjyLvTGPEEIIIYprWxfVDzzwwFYPoWDZmduh0X6YCmK22lecud0pCp0RNxqNeUX48NAgtqlummvnrQ/e4DKNnVx4rmvJjRBCCCE2zbYuqstJdubW66smkUjg9Xql0FmC1WpF13XiwbGiL9PY6YXnWpfcCCGEEGLzSFFdZNkWbuVewJVSKZdp7OTCczNuQhVCCCHE+khRLTZdKZdpbGbhqaoqiURi04vbUt+EKoQQQoi1k6JabLrNWKZRysKzWL2whRBCCLFzSFEttsRmLtMo9ozyTu2FLYQQQoj1k6JabInNWKZRihnlndwLWwghhBDrZ9zqAYhrW3aL8lIUorkZZZ+RQ+0+2nxGZkfO0dtzZd0xr95k6ch73FnhAE3NbWQjhBBCiGuLFNXXAFVVCYVCcwXhNSI7o9z84oyyoljwVnlorvMQmhhcdy7m32Q5307ohS2EEEKI9buml3+oqko0Gi1qzFgstvpBmxQ7nU4zNDRIdHoEtCSYFZw+P83NLRiNV6+nSjnmeDye+7fZXNzTbaVxRyIRtISKwVRJVNVyjxtMCloiyMzMDC6Xa12xbZX19Ix0E0/O7Z4Zi6uMTkWw1+0hlUqRSqXWPe6N2qp8b8e4pY5djrku59ilyne55qMccw3lm5NSxZZcb27sUn+bvOOL6hMnTnDixIm8xzKZDMeOHaOrq2uLRrU5hoYGiY9301TtwmGvnCv+xrsZBFpbd2318EpKURQwK8TiKh7Fkns8FlfBvLHOIM3NLQwCQ9OjMBUEsxVn3R6am1s2PnAhhBBClKUdX1QfP36c48eP5z0WDoc5efIkNpsNp9NZktctVdxCY6uqihoco91/9Ya6Krcdu2Kkd3ocS8eeRYVlKcasaXOzxHa7fVNz7XQ6CTTsYmrkHHbFmGvbNxWI4PMfxOv1rjs2wMGDXSQSezZ0k+VOyvd2jluq2OWc63KMXep8l1s+Shlbzu3Niy253tzYoVCo6DHn2/FF9bWqlLsWrkcymSQUCm3qRimlbtsnm7AIIYQQIkuK6h2qlLsWrkU6nQbgyvlnUNA2daMU2dZbCCGEEJtFiuodajN2LSzEyPAQAI0eI/W+1TdKKcXW3zKjLIQQQohSk6J6B9vMXQuXoqoq0cAYAG63c66t3TIbpcjW30IIIYQoZ1JU72Bbvfxhbl334vZyS63rlq2/hRBCCFHOpKi+BmzV8oe5dd0WIJ33+MJ13bL1txBCCCHKneyoKErGZrPhrKoHIByOkkymmAmE5tZ11zbnCmXZ+lsIIYQQ5U6KalFSjU3NAAyHdM72TNM7rVOxYF23bP0thBBCiHInyz9ESWW3Q9/deQSr1brkuu7t0qlECCGEEGK9pKgWJZVMJnP/7fF4lj1uqzuVCCGEEEJshBTVoiSyLfImR3qBuc1fwqG2ZVvkbXWnEiGEEEKIjZA11aIksi3yGj1zp1ijx8jsyDl6e66s+Dyr1YrH45GCWgghhBBl5ZqeqVZVlWg0WtSYsVhs9YO2Wexix00kEkyP9tFU5cJosQIxLFYb1VUGhkb78fqqURRlw69Tjrkudex4PJ77t9lc3D/e5XL+bVbscsx1OccuVb7LNR/lmGso35yUKrbkenNjl7qb2I4vqk+cOMGJEyfyHstkMhw7doyurq4tGtXOlkwmQUvisFeianrucYfdBlNBEolEUYpqIYQQQojtYscX1cePH+f48eN5j4XDYU6ePDnXR9npLMnrlipuKWMXK67ZbGbEakNPJ7Fb7QDYrWYyyThmqx2v11vU5R3lmOtSxdY0DQC73b7tz5PNiluq2OWc63KMXep8l1s+Shlbzu3Niy253tzYoVCo6DHnkzXVouhyLfLGQ4TDc8trwuHook1fhBBCCCF2CimqRUm0te+mwn+Q4dDc8o/h0OJNX4QQQgghdgopqkVJZFvk7e48Asxt/tKxZ++S7fSEEEIIIcqdFNWipLI3JMqNiUIIIYTYyaSoFkIIIYQQYoOkqBZCCCGEEGKDpKgW66aqKqFQiEQisdVDEUIIIYTYUju+T7UoPk3T6OvtITQxAFoCzFY8tS20te+WGxGFEEIIcU2SmWqxZn29PcyOnKPNZ+RQu482n5HZkXP09lzZ6qEJIYQQQmwJmakWa6KqKqGJAdrqPHirPAB4lbl/904Mkmhplc1dhBBCCHHNkZlqsSaJRAK0BM4KR97jzgoHaCqqqm7RyIQQQgghto4U1WJNrFYrmK1EZ2N5j0dnY2C2YbPZtmhkQgghhBBb55pe/qGqKtFotKgxY7HY6gdts9hrjWurrKdnpJt4MoPDbiMWVxmdimCv20MqlSKVSuWOjcfjuX+bzcU93cox16WOXY75llwvVq45Kcd8l2s+yjHXUL45KVVsyfXmxi71t+k7vqg+ceIEJ06cyHssk8lw7Ngxurq6tmhU5a25uYVBYGh6FKaCYLbirNtDc3PLVg9NCCGEEGJL7Pii+vjx4xw/fjzvsXA4zMmTJ7HZbDidzpK8bqniljL2WuIePNhFIrEHVVWx2WyLbk5UVZVEIpFrsWe327fFuHd6bE3TgPLMt+R6sXLLSSljlzrf5ZaPUsaWc3vzYkuuNzd2KBQqesz5dnxRLUrHarUuKqYX9rBOvniKZTKZrRiiEEIIIcSmkBsVRVEt7GHd6Jk7xYaHBrd4ZEIIIYQQpSNFtSiabA/r5hd7WCuKBbd77uubaGBctjMXQgghxI4lRbUomuV6WAOgJaWHtRBCCCF2LCmqRdEs18MaALMiPayFEEIIsWPJjYqiaGw2G57aFgZHzgFzuyyGw3N9wJ1VdbJ9uRBCCCF2LCmqRVG1te+mF+idGITxaZJYAGhsat7agQkhhBBClJAU1aKoTCYTHXv2kmhpzfWqnnjiCYxGWWkkhBBCiJ1LKh1RElarFY/Hg6IoWz0UIYQQQoiSk6JaCCGEEEKIDZKiWgghhBBCiA2SoloIIYQQQogNuqZvVFRVlWg0WtSYsdgSPZq3eexSjjkej+f+bTYX93Qrx1yXOnY55ltyvVi55qQc812u+SjHXEP55qRUsSXXmxu71JvQ7fii+sSJE5w4cSLvsUwmw7Fjx+jq6tqiUQkhhBBCiJ1kxxfVx48f5/jx43mPhcNhTp48ic1mw+l0luR1SxW3lLFLEVfTNADsdntZjbtcY5dzviXXi5VbTkoZu9T5Lrd8lDK2nNubF1tyvbmxQ6FQ0WPOJ2uqhRBCCCGE2CApqoUQQgghhNggKaqFEEIIIYTYICmqhRBCCCGE2CApqoUQQgghhNiga7qoTqfTWz0EIYQQQgixA1zTRfXo6MhWD0EIIYQQQuwA13RRHQ2Mk0gktnoYQgghhBCizF3TRTXpVMm3rBRCCCGEEDtfWRXVn/zkJzEYDNx7773FCWiyYLPZihNLCCGEEEJcs8qmqH766af52te+xnXXXVe0mM6qOqxWa9HiCSGEEEKIa1NZFNXRaJS3vvWt/N3f/R1VVVVFi9vQ4C9aLCGEEEIIce0yb/UACnH8+HF+5Vd+hVe+8pX85V/+5YrHJhKJVW8+DIVCpFIpAoEAJpOpmEPNrdEOhUJFjVvK2OuNm0gkSKVSKIqCoihLHjM7OwvAxMRE7r+LpRxzXerY5ZhvyfVi5ZqTcsx3ueajHHMN5ZuTUsWWXG9u7KmpKQB0XS96bCiDovqBBx7g9OnTPP300wUd/8lPfpK/+Iu/KPGohBBCCCFEOZqamsLj8RQ9rkEvVbleBIODg9x444384Ac/4PDhwwC8/OUv58iRI3z+859f8jmFzFQHg0FaW1sZGBgoSVJf8pKX8NRTTxU9biljlypuOBymubmZwcFB3G530eOXY65LGbtc8y25Xqwcc1LK2KXMdznmo5Sx5dzevNiS682NHQqFaGlpIRAIUFlZWfT423qm+tSpU0xMTHDDDTfkHkun0zz22GN88YtfJJFILFq+YbVaC7750OPxlOQkNhqNJYlbytilHDOA2+0uu3GXa2wov3xLrhcr15yUY77LNR/lmGso35yUMrbkevNiZ+OXwrYuqu+44w7Onj2b99hv//Zvs3//fu67776ir4cWQgghhBBiPbZ1Ue1yuejq6sp7rKKiAp/Pt+hxIYQQQgghtkpZtNQTQgghhBBiO9vWM9VLeeSRR7Z6CKs6fvx42cUu5ZhLqRxzXerYpVSO55/keufELpVyzUc55hrKNyflmO9yzUc55hq2efePUgmHw3g8HkKhUEkXwgvJ9WaTfG8eyfXmknxvHsn15pFcb65S51uWfwghhBBCCLFBUlQLIYQQQgixQddkUW21WvnIRz5ScD9rsX6S680l+d48kuvNJfnePJLrzSO53lylzvc1uaZaCCGEEEKIYromZ6qFEEIIIYQoJimqhRBCCCGE2CApqoUQQgghhNggKaqFEEIIIYTYoB1dVA8PD/O2t70Nn8+Hw+HgyJEjnDp1KvdzXdf56Ec/it/vx2638/KXv5xz585t4YjLk6ZpfPjDH6atrQ273U57ezsf+9jHyGQyuWMk1+v32GOP8brXvQ6/34/BYOC73/1u3s8LyW0ikeA973kP1dXVVFRU8PrXv56hoaFNfBflYaVcp1Ip7rvvPg4dOkRFRQV+v5977rmHkZGRvBiS68Ktdm7P93u/93sYDAY+//nP5z0u+S5MIbk+f/48r3/96/F4PLhcLl760pcyMDCQ+7nkunCr5TsajfLud7+bpqYm7HY7nZ2dfPnLX847RvJdmE9+8pPcdNNNuFwuamtreeMb38jFixfzjtmsvyd3bFEdCAS47bbbsFgsPPTQQ7zwwgt89rOfpbKyMnfMZz7zGT73uc/xxS9+kaeffpr6+nruvPNOIpHI1g28DH3605/mK1/5Cl/84hc5f/48n/nMZ/hf/+t/8bd/+7e5YyTX6zc7O8vhw4f54he/uOTPC8ntvffey3e+8x0eeOABfvrTnxKNRnnta19LOp3erLdRFlbKdSwW4/Tp0/zZn/0Zp0+f5tvf/jaXLl3i9a9/fd5xkuvCrXZuZ333u9/l5z//OX6/f9HPJN+FWS3XV65c4fbbb2f//v088sgjPPvss/zZn/0ZNpstd4zkunCr5ft973sf//mf/8k3vvENzp8/z/ve9z7e85738O///u+5YyTfhXn00Uc5fvw4Tz75JD/84Q/RNI1XvepVzM7O5o7ZtL8n9R3qvvvu02+//fZlf57JZPT6+nr9U5/6VO4xVVV1j8ejf+UrX9mMIe4Yv/Irv6K/853vzHvs137t1/S3ve1tuq5LrosJ0L/zne/k/r+Q3AaDQd1isegPPPBA7pjh4WHdaDTq//mf/7lpYy83C3O9lKeeekoH9P7+fl3XJdcbsVy+h4aG9MbGRv3555/XW1tb9b/+67/O/UzyvT5L5frNb35z7nf2UiTX67dUvg8ePKh/7GMfy3vs6NGj+oc//GFd1yXfGzExMaED+qOPPqrr+ub+PbljZ6offPBBbrzxRt70pjdRW1vL9ddfz9/93d/lft7b28vY2BivetWrco9ZrVaOHTvG448/vhVDLlu33347P/rRj7h06RIAzz77LD/96U95zWteA0iuS6mQ3J46dYpUKpV3jN/vp6urS/K/QaFQCIPBkPsGTHJdXJlMhre//e28//3v5+DBg4t+Lvkujkwmw//7f/+PvXv3ctddd1FbW8vNN9+ct2RBcl1ct99+Ow8++CDDw8Pous7Jkye5dOkSd911FyD53ohQKASA1+sFNvfvyR1bVPf09PDlL3+ZPXv28P3vf5/f//3f573vfS//9E//BMDY2BgAdXV1ec+rq6vL/UwU5r777uPuu+9m//79WCwWrr/+eu69917uvvtuQHJdSoXkdmxsDEVRqKqqWvYYsXaqqvLBD36Q3/zN38TtdgOS62L79Kc/jdls5r3vfe+SP5d8F8fExATRaJRPfepTvPrVr+YHP/gBv/qrv8qv/dqv8eijjwKS62L7whe+wIEDB2hqakJRFF796lfzpS99idtvvx2QfK+Xruv80R/9EbfffjtdXV3A5v49ad7I4LezTCbDjTfeyCc+8QkArr/+es6dO8eXv/xl7rnnntxxBoMh73m6ri96TKzsX/7lX/jGN77Bt771LQ4ePMiZM2e499578fv9vOMd78gdJ7kunfXkVvK/fqlUire85S1kMhm+9KUvrXq85HrtTp06xd/8zd9w+vTpNedO8r022ZvK3/CGN/C+970PgCNHjvD444/zla98hWPHji37XMn1+nzhC1/gySef5MEHH6S1tZXHHnuMP/iDP6ChoYFXvvKVyz5P8r2yd7/73Tz33HP89Kc/XfSzzfh7csfOVDc0NHDgwIG8xzo7O3N3MtfX1wMsugKZmJhYdDUjVvb+97+fD37wg7zlLW/h0KFDvP3tb+d973sfn/zkJwHJdSkVktv6+nqSySSBQGDZY0ThUqkUv/Ebv0Fvby8//OEPc7PUILkupp/85CdMTEzQ0tKC2WzGbDbT39/PH//xH7Nr1y5A8l0s1dXVmM3mVf/OlFwXRzwe53/8j//B5z73OV73utdx3XXX8e53v5s3v/nN/NVf/RUg+V6P97znPTz44IOcPHmSpqam3OOb+ffkji2qb7vttkUtVS5dukRraysAbW1t1NfX88Mf/jD382QyyaOPPsqtt966qWMtd7FYDKMx/1QymUy52Q/JdekUktsbbrgBi8WSd8zo6CjPP/+85H+NsgV1d3c3Dz/8MD6fL+/nkuviefvb385zzz3HmTNncv/4/X7e//738/3vfx+QfBeLoijcdNNNK/6dKbkunlQqRSqVWvHvTcl34XRd593vfjff/va3+fGPf0xbW1vezzf178n131+5vT311FO62WzWP/7xj+vd3d36N7/5Td3hcOjf+MY3csd86lOf0j0ej/7tb39bP3v2rH733XfrDQ0Nejgc3sKRl593vOMdemNjo/69731P7+3t1b/97W/r1dXV+gc+8IHcMZLr9YtEIvozzzyjP/PMMzqgf+5zn9OfeeaZXMeJQnL7+7//+3pTU5P+8MMP66dPn9Z/+Zd/WT98+LCuadpWva1taaVcp1Ip/fWvf73e1NSknzlzRh8dHc39k0gkcjEk14Vb7dxeaGH3D12XfBdqtVx/+9vf1i0Wi/61r31N7+7u1v/2b/9WN5lM+k9+8pNcDMl14VbL97Fjx/SDBw/qJ0+e1Ht6evSvf/3rus1m07/0pS/lYki+C/Pf//t/1z0ej/7II4/k/V6OxWK5Yzbr78kdW1Truq7/3//7f/Wuri7darXq+/fv17/2ta/l/TyTyegf+chH9Pr6et1qteove9nL9LNnz27RaMtXOBzW//AP/1BvaWnRbTab3t7erv/pn/5pXqEhuV6/kydP6sCif97xjnfoul5YbuPxuP7ud79b93q9ut1u11/72tfqAwMDW/ButreVct3b27vkzwD95MmTuRiS68Ktdm4vtFRRLfkuTCG5vv/++/WOjg7dZrPphw8f1r/73e/mxZBcF261fI+Ojuq/9Vu/pfv9ft1ms+n79u3TP/vZz+qZTCYXQ/JdmOV+L3/961/PHbNZf08aXhyQEEIIIYQQYp127JpqIYQQQgghNosU1UIIIYQQQmyQFNVCCCGEEEJskBTVQgghhBBCbJAU1UIIIYQQQmyQFNVCCCGEEEJskBTVQgghhBBCbJAU1UKIa4bBYOC73/0uAH19fRgMBs6cObOlY7qWvPzlL+fee+/dcJwf//jH7N+/P7elczF98Ytf5PWvf33R4wohdj4pqoUQO8LExAS/93u/R0tLC1arlfr6eu666y6eeOKJ3DGjo6P8l//yX7ZwlKv7xCc+gclk4lOf+lRJX+fy5cu8853vzOWrsbGRO+64g29+85tomlbS196oD3zgA/zpn/4pRuPa/wr76Ec/ylve8hYg/yIr613vehdPP/00P/3pT4sxVCHENUSKaiHEjvDrv/7rPPvss/zjP/4jly5d4sEHH+TlL385MzMzuWPq6+uxWq2bNqZUKrXm53z961/nAx/4AH//939fghHNeeqppzh69Cjnz5/nxIkTPP/883zve9/jne98J1/5ylc4d+7css9dz3sqpscff5zu7m7e9KY3rev5Dz74IG94wxuW/bnVauU3f/M3+du//dv1DlEIca3a+K7rQgixtQKBgA7ojzzyyIrHAfp3vvMdXdd1vbe3Vwf0Z555Rk+n03pjY6P+5S9/Oe/4U6dO6YB+5coVXdd1PRgM6u9617v0mpoa3eVy6a94xSv0M2fO5I7/yEc+oh8+fFi///779ba2Nt1gMOiZTKbg9/HII4/ojY2NejKZ1P1+v/7oo48uOuZ//s//qdfU1OhOp1P/nd/5Hf2+++7TDx8+XPBrZDIZvbOzU7/hhhv0dDq97DG6fjVH//Iv/6IfO3ZMt1qt+t///d/rU1NT+lve8ha9sbFRt9vteldXl/6tb30rL0Y0GtXf/va36xUVFXp9fb3+V3/1V/qxY8f0P/zDP8wdk0gk9Pe///263+/XHQ6H/pKXvEQ/efLkiuN/z3veo//X//pf15WXgYEB3WKx6IFAQG9tbdWB3D+tra254x555BFdURQ9FoutOBYhhJhPZqqFEGXP6XTidDr57ne/SyKRWPPzjUYjb3nLW/jmN7+Z9/i3vvUtbrnlFtrb29F1nV/5lV9hbGyM//iP/+DUqVMcPXqUO+64I282/PLly/yf//N/+Ld/+7c1r9e+//77ufvuu7FYLNx9993cf//9eT//5je/ycc//nE+/elPc+rUKVpaWvjyl7+8ptc4c+YM58+f50/+5E+WXT5hMBjy/v++++7jve99L+fPn+euu+5CVVVuuOEGvve97/H888/zu7/7u7z97W/n5z//ee4573//+zl58iTf+c53+MEPfsAjjzzCqVOn8uL+9m//Nj/72c944IEHeO6553jTm97Eq1/9arq7u5cd/2OPPcaNN964rrw8+OCDvOxlL6OyspKnn34amPtmYHR0NPf/ADfeeCOpVIqnnnpq2XEIIcQiW13VCyFEMfzrv/6rXlVVpdtsNv3WW2/VP/ShD+nPPvts3jEsM1Ot67p++vRp3WAw6H19fbqu67nZ6xMnTui6rus/+tGPdLfbrauqmhdz9+7d+le/+lVd1+dmqi0Wiz4xMbHm8YdCId3hcORmvp955hnd4XDooVAod8zNN9+sHz9+PO95t91225pmqh944AEd0E+fPp17bHx8XK+oqMj9k33P2Rx9/vOfXzXua17zGv2P//iPdV3X9UgkoiuKoj/wwAO5n09PT+t2uz03U3358mXdYDDow8PDeXHuuOMO/UMf+tCyr+PxePR/+qd/ynus0Lzceeed+he+8IXc/88/HxaqqqrS/+Ef/mHZcQghxEIyUy2E2BF+/dd/nZGRER588EHuuusuHnnkEY4ePco//MM/FPT866+/nv379/PP//zPADz66KNMTEzwG7/xGwCcOnWKaDSKz+fLzYw7nU56e3u5cuVKLk5rays1NTVrHv+3vvUt2tvbOXz4MABHjhyhvb2dBx54IHfMxYsXeclLXpL3vIX/X6j5s9E+n48zZ85w5swZKisrSSaTeccunBlOp9N8/OMf57rrrsvl4wc/+AEDAwMAXLlyhWQyyS233JJ7jtfrZd++fbn/P336NLqus3fv3rx8Pvroo3n5XCgej2Oz2fIeKyQv4XCYRx99tODOHna7nVgsVtCxQggBYN7qAQghRLHYbDbuvPNO7rzzTv78z/+c//bf/hsf+chH+K3f+q2Cnv/Wt76Vb33rW3zwgx/kW9/6FnfddRfV1dUAZDIZGhoaeOSRRxY9r7KyMvffFRUV6xr73//933Pu3DnM5qu/ljOZDPfffz+/+7u/m3ts4dIMXdfX9Dp79uwB4MKFCxw5cgQAk8lER0cHQN7rZy18T5/97Gf567/+az7/+c9z6NAhKioquPfee3PFeCFjymQymEwmTp06hclkyvuZ0+lc9nnV1dUEAoFFj6+Wl4ceeojOzk5aW1tXHRvAzMzMui6OhBDXLpmpFkLsWAcOHGB2drbg43/zN3+Ts2fPcurUKf71X/+Vt771rbmfHT16lLGxMcxmMx0dHXn/ZAvv9Tp79iy/+MUveOSRR3IzxmfOnOGxxx7j6aef5vnnnwdg3759i9b5/uIXv1jTa2Vn5P/qr/5q3X2ef/KTn/CGN7yBt73tbRw+fJj29va8ddAdHR1YLBaefPLJ3GOBQIBLly7ljSOdTjMxMbEon/X19SuO/4UXXsh7rJC8/Pu///uiWWqLxUI6nV70GleuXEFVVa6//voVsiCEEPlkploIUfamp6d505vexDvf+U6uu+46XC4Xv/jFL/jMZz6zYvu0hdra2rj11lv5nd/5HTRNy3vuK1/5Sm655Rbe+MY38ulPf5p9+/YxMjLCf/zHf/DGN75x0RKJtbj//vt5yUtewste9rJFP7vlllu4//77+eu//mve85738K53vYsbb7yRW2+9lX/5l3/hueeeo729veDXMhgMfP3rX+fOO+/ktttu40Mf+hCdnZ2kUikee+wxJicnF80cL9TR0cG//du/8fjjj1NVVcXnPvc5xsbG6OzsBOZmmn/nd36H97///fh8Purq6hb1ld67dy9vfetbueeee/jsZz/L9ddfz9TUFD/+8Y85dOgQr3nNa5Z87bvuuot//Md/zHtstbxomsZDDz3Eww8/nPe8Xbt28aMf/YjbbrsNq9VKVVUVMHfR0N7ezu7duwvOqxBCyI2KQoiyp6qq/sEPflA/evSo7vF4dIfDoe/bt0//8Ic/nNcWjRVuVMw6ceKEDuj33HPPotcJh8P6e97zHt3v9+sWi0Vvbm7W3/rWt+oDAwO6rl9tqbfQ17/+dX25X7eJREL3+Xz6Zz7zmSV//tnPflavrq7WE4mEruu6/rGPfUyvrq7WnU6n/s53vlN/73vfq7/0pS/NHX/y5Ekd0Ht7e5dLl67run7x4kX9He94h97U1KSbzWbd4/HoL3vZy/SvfvWreiqVWjFH09PT+hve8Abd6XTqtbW1+oc//GH9nnvu0d/whjfkjolEIvrb3vY23eFw6HV1dfpnPvOZRS31ksmk/ud//uf6rl27dIvFotfX1+u/+qu/qj/33HPLjntmZka32+36hQsX8h5fKS8PP/yw3tTUtCjWgw8+qHd0dOhmszmvpd6rXvUq/ZOf/OSK+RNCiIUMur7GBXlCCCHW5KMf/SiPPPLIkuuxN+rOO++kvr6e//2//zcA//AP/8DHP/5xXnjhBSwWS9Ffbzv4wAc+QCgU4qtf/eqyx8zPy3vf+140TeNLX/rSqrGff/557rjjDi5duoTH4ynmsIUQO5ws/xBCiBL7/ve/z9/8zd9sOE4sFuMrX/kKd911FyaTiX/+53/m4Ycf5oc//GHumP/8z//kE5/4xI4tqAH+9E//lBMnTpBOpzGZTKvmpaurK68TyUpGRkb4p3/6JymohRBrJjPVQghRJuLxOK973es4ffo0iUSCffv28eEPf5hf+7Vf2+qhbSnJixBiO5CiWgghhBBCiA2SlnpCCCGEEEJskBTVQgghhBBCbJAU1UIIIYQQQmyQFNVCCCGEEEJskBTVQgghhBBCbJAU1UIIIYQQQmyQFNVCCCGEEEJskBTVQgghhBBCbJAU1UIIIYQQQmzQ/we7wz8VozfP7AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "seed = 73073; n = 5000\n", "Ag_mean = 125; Au_mean = 8\n", "Ag_stdev = 20; Au_stdev = 1; wt_poly = 0.002\n", "np.random.seed(seed=seed)\n", "X = np.random.multivariate_normal([Au_mean,Ag_mean],[[9, 0],[0, 400]],size = n)\n", "X[:,0] = (1.0-wt_poly)*X[:,0] + wt_poly*(-0.5*np.power(X[:,1]-200,2) + 10)\n", "X[:,0] = (X[:,0] - np.mean(X[:,0])) * Au_stdev/np.std(X[:,0]) + Au_mean\n", "\n", "plt.subplot(111)\n", "plt.scatter(X[:,1],X[:,0],c='darkorange',s = 20,alpha=0.2,edgecolor='black')\n", "plt.annotate('Correlation = ' + str(np.round(np.corrcoef(X[:,1],X[:,0])[0,1],3)),[70,10.5])\n", "plt.xlabel('Silver, Ag, Grade (g/t)'); plt.ylabel('Gold, Au, Grade (g/t)'); plt.title('Mineral Grades')\n", "plt.xlim([60,200]); plt.ylim([4,11])\n", "\n", "plt.gca().grid(True, which='major',linewidth = 1.0); plt.gca().grid(True, which='minor',linewidth = 0.2) # add y grids\n", "plt.gca().tick_params(which='major',length=7); plt.gca().tick_params(which='minor', length=4)\n", "plt.gca().xaxis.set_minor_locator(AutoMinorLocator()); plt.gca().yaxis.set_minor_locator(AutoMinorLocator()) # turn on minor ticks\n", "plt.subplots_adjust(left=0.0,bottom=0.0,right=1.0,top=1.1); plt.show() # set plot size" ] }, { "cell_type": "markdown", "id": "14640512", "metadata": {}, "source": [ "#### Build the Interactive Dashboard to Demonstrate Joint Probability\n", "\n", "The following code:\n", "\n", "* take the previous synthetic dataset and specifiy events:\n", " * A - silver grade within a bin\n", " * B - gold grade within a bin\n", " \n", "* calculate conditional probability, $P\\{B , A\\}$" ] }, { "cell_type": "code", "execution_count": 4, "id": "689ab6e1", "metadata": {}, "outputs": [], "source": [ "l = widgets.Text(value=' Joint Probability Demo, Prof. Michael Pyrcz, The University of Texas at Austin',\n", " layout=Layout(width='750px', height='30px'))\n", "\n", "n = widgets.IntSlider(min=0, max = 5000, value=1000, step = 100, description = '$n$',orientation='horizontal', style = {'description_width': 'initial'}, continuous_update=False)\n", "ix = widgets.IntSlider(min=0, max = 6, value=1, step = 1, description = r'Silver Bin, $i_{\\theta_{Ag}}$',orientation='horizontal', style = {'description_width': 'initial'}, continuous_update=False)\n", "iy = widgets.IntSlider(min=0, max = 6, value=1, step = 1, description = r'Gold Bin, $i_{\\theta_{Au}}$',orientation='horizontal', style = {'description_width': 'initial'}, continuous_update=False)\n", "\n", "ui = widgets.HBox([n,ix,iy],)\n", "ui2 = widgets.VBox([l,ui],)\n", "\n", "def run_plot(n,ix,iy):\n", " seed = 73073\n", " Ag_mean = 125; Au_mean = 8\n", " Ag_stdev = 20; Au_stdev = 1; wt_poly = 0.002\n", " np.random.seed(seed=seed)\n", " X = np.random.multivariate_normal([Au_mean,Ag_mean],[[9, 0],[0, 400]],size = n)\n", " X[:,0] = (1.0-wt_poly)*X[:,0] + wt_poly*(-0.5*np.power(X[:,1]-200,2) + 10)\n", " X[:,0] = (X[:,0] - np.mean(X[:,0])) * Au_stdev/np.std(X[:,0]) + Au_mean\n", " \n", " xsiz = 20; ysiz=1;\n", " x_start = ix*xsiz + 60; x_end = (ix+1)*xsiz + 60\n", " y_start = iy*ysiz + 4; y_end = (iy+1)*ysiz + 4\n", " \n", " count = ((y_start < X[:,0]) & (X[:,0] < y_end) & (x_start < X[:,1]) & (X[:,1] < x_end)).sum()\n", " \n", " Xsub = X[((y_start < X[:,0]) & (X[:,0] < y_end) & (x_start < X[:,1]) & (X[:,1] < x_end))]\n", " \n", " fig, axs = plt.subplots(1,2,figsize=(16,7), gridspec_kw={'width_ratios': [0.8, 1]})\n", " \n", " axs[0].scatter(X[:,1],X[:,0],c='r',s = 20,alpha=0.2,edgecolor='black')\n", " axs[0].scatter(Xsub[:,1],Xsub[:,0],c='black',s = 20,alpha=0.6,edgecolor='black')\n", " axs[0].set_xlabel('Silver, Ag, Grade (g/t)'); axs[0].set_ylabel('Gold, Au, Grade (g/t)'); axs[0].set_title('Mineral Grades Scatter Plot')\n", " axs[0].set_xlim([60,200]); axs[0].set_ylim([4,11])\n", " \n", " axs[0].grid(True, which='major',linewidth = 1.0); axs[0].grid(True, which='minor',linewidth = 0.2) # add y grids\n", " axs[0].tick_params(which='major',length=7); axs[0].tick_params(which='minor', length=4)\n", " axs[0].xaxis.set_minor_locator(AutoMinorLocator(n=10)); axs[0].yaxis.set_minor_locator(AutoMinorLocator(n=10)) # turn on minor ticks\n", " axs[0].xaxis.set_major_locator(MultipleLocator(xsiz)); axs[0].yaxis.set_major_locator(MultipleLocator(ysiz)) # turn on minor ticks\n", " \n", " rect = patches.Rectangle((x_start, 4), xsiz, 7*ysiz, linewidth=3, edgecolor='green', facecolor='none'); axs[0].add_patch(rect)\n", " rect = patches.Rectangle((60, y_start), 7*xsiz, ysiz, linewidth=3, edgecolor='blue', facecolor='none'); axs[0].add_patch(rect)\n", " rect = patches.Rectangle((x_start, y_start), xsiz, ysiz, linewidth=5, edgecolor='black', facecolor='none'); axs[0].add_patch(rect)\n", " \n", " axs[0].annotate(r'A = [' + str(x_start) + r' ≀ $\\bf{\\theta_{Ag}}$ ≀ ' + str(x_end) + ']',\n", " (150,4.6),color='green',weight=\"bold\")\n", " \n", " axs[0].annotate(r'B = [' + str(y_start) + r' ≀ $\\bf{\\theta_{Au}}$ ≀ ' + str(y_end) + ']',\n", " (150,4.3),color='blue',weight=\"bold\")\n", " \n", " axs[0].annotate(r'$\\bf{A}$',(x_start+0.4*xsiz,10.7),size=15,color='green')\n", " axs[0].annotate(r'$\\bf{B}$',(61.5,y_start+0.4*ysiz),size=15,color='blue')\n", " axs[0].annotate(r'$\\bf{A \\bigcap B}$',(x_start+0.2*xsiz,y_start+0.4*ysiz),size=10,color='black')\n", " \n", " if ix <= 3:\n", " axs[0].annotate(r'n{A $\\bigcap$ B} = ' + str(count),\n", " (x_end+0.2*xsiz,y_start+ysiz*0.5),color='black',weight=\"bold\")\n", " else:\n", " axs[0].annotate(r'n{A $\\bigcap$ B} = ' + str(count),\n", " (x_end-2.8*xsiz,y_start+ysiz*0.5),color='black',weight=\"bold\")\n", " \n", " hist2d = axs[1].hist2d(X[:,1],X[:,0], bins=7, range=[[60,200],[4,11]], density=False, weights=None, cmin=None, cmax=None,\n", " cmap=plt.cm.Reds)\n", " axs[1].set_xlabel('Silver, Ag, Grade (g/t)'); axs[1].set_ylabel('Gold, Au, Grade (g/t)'); axs[1].set_title('Mineral Grades Frequency Table')\n", " axs[1].set_xlim([60,200]); axs[1].set_ylim([4,11])\n", " \n", " cbar = plt.colorbar(hist2d[3], orientation=\"vertical\")\n", " cbar.set_label('Frequency', rotation=270, labelpad=20)\n", " \n", " axs[1].grid(True, which='major',linewidth = 1.0); axs[1].grid(True, which='minor',linewidth = 0.2) # add y grids\n", " axs[1].tick_params(which='major',length=7); axs[1].tick_params(which='minor', length=4)\n", " axs[1].xaxis.set_minor_locator(AutoMinorLocator(n=10)); axs[1].yaxis.set_minor_locator(AutoMinorLocator(n=10)) # turn on minor ticks\n", " axs[1].xaxis.set_major_locator(MultipleLocator(xsiz)); axs[1].yaxis.set_major_locator(MultipleLocator(ysiz)) # turn on minor ticks\n", " \n", " rect = patches.Rectangle((x_start, 4), xsiz, 7*ysiz, linewidth=3, edgecolor='green', facecolor='none'); axs[1].add_patch(rect)\n", " rect = patches.Rectangle((60, y_start), 7*xsiz, ysiz, linewidth=3, edgecolor='blue', facecolor='none'); axs[1].add_patch(rect)\n", " rect = patches.Rectangle((x_start, y_start), xsiz, ysiz, linewidth=5, edgecolor='black', facecolor='none'); axs[1].add_patch(rect)\n", " \n", " axs[1].scatter(X[:,1],X[:,0],c='black',s = 20,alpha=0.1,edgecolor='black')\n", " axs[1].scatter(Xsub[:,1],Xsub[:,0],c='black',s = 20,alpha=0.3,edgecolor='black')\n", " \n", " axs[1].annotate(r'A = [' + str(x_start) + r' ≀ $\\bf{\\theta_{Ag}}$ ≀ ' + str(x_end) + ']',\n", " (150,4.6),color='green',weight=\"bold\")\n", " \n", " axs[1].annotate(r'$\\bf{A}$',(x_start+0.4*xsiz,10.7),size=15,color='green')\n", " axs[1].annotate(r'$\\bf{B}$',(61.5,y_start+0.4*ysiz),size=15,color='blue')\n", " axs[1].annotate(r'$\\bf{A \\bigcap B}$',(x_start+0.2*xsiz,y_start+0.4*ysiz),size=10,color='black')\n", " \n", " axs[1].annotate(r'B = [' + str(y_start) + r' ≀ $\\bf{\\theta_{Au}}$ ≀ ' + str(y_end) + ']',\n", " (150,4.3),color='blue',weight=\"bold\")\n", " \n", " if ix <= 3:\n", " z = axs[1].annotate(r'P{A $\\bigcap$ B} = ' + str(count) + '/' + str(n),\n", " (x_end+0.2*xsiz,y_start+ysiz*0.5),color='black',weight=\"bold\")\n", " else:\n", " z = axs[1].annotate(r'P{A $\\bigcap$ B} = ' + str(count) + '/' + str(n),\n", " (x_end-3.5*xsiz,y_start+ysiz*0.5),color='black',weight=\"bold\")\n", "\n", "# connect the function to make the samples and plot to the widgets \n", "interactive_plot = widgets.interactive_output(run_plot, {'n':n,'ix':ix,'iy':iy,})\n", "interactive_plot.clear_output(wait = True) # reduce flickering by delaying plot updating " ] }, { "cell_type": "markdown", "id": "99d7bf3a", "metadata": {}, "source": [ "### Interactive Joint Probability Demonstation \n", "\n", "#### Michael Pyrcz, Professor, The University of Texas at Austin \n", "\n", "Change the number of sample data, select silver and gold bins.\n", "\n", "### The Inputs\n", "\n", "* **n** - number of data, **$i_{\\theta_{Ag}}$** - silver bin, and **$i_{\\theta_{Au}}$** - gold bin " ] }, { "cell_type": "code", "execution_count": 5, "id": "29a2bd4b", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "13bcd658c92343d89b7323277db7ec7e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Text(value=' Joint Probability Demo, Prof. Michael Pyrcz, The Uni…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2a1b5916ac904b6a99841bfe6f909b1a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(ui2, interactive_plot) # display the interactive plot" ] }, { "cell_type": "markdown", "id": "2221bc84", "metadata": {}, "source": [ "#### Build the Interactive Dashboard to Demonstrate Conditional Probability\n", "\n", "The following code:\n", "\n", "* take the previous synthetic dataset and specifiy events:\n", " * A - silver grade within a bin\n", " * B - gold grade within a bin\n", " \n", "* calculate conditional probability, $P\\{B | A\\}$" ] }, { "cell_type": "code", "execution_count": 6, "id": "b314a066", "metadata": {}, "outputs": [], "source": [ "l = widgets.Text(value=' Conditional Probability Demo, Prof. Michael Pyrcz, The University of Texas at Austin',\n", " layout=Layout(width='750px', height='30px'))\n", "\n", "n = widgets.IntSlider(min=0, max = 5000, value=1000, step = 100, description = '$n$',orientation='horizontal', style = {'description_width': 'initial'}, continuous_update=False)\n", "ix = widgets.IntSlider(min=0, max = 6, value=1, step = 1, description = r'Silver Bin, $i_{\\theta_{Ag}}$',orientation='horizontal', style = {'description_width': 'initial'}, continuous_update=False)\n", "iy = widgets.IntSlider(min=0, max = 6, value=1, step = 1, description = r'Gold Bin, $i_{\\theta_{Au}}$',orientation='horizontal', style = {'description_width': 'initial'}, continuous_update=False)\n", "\n", "ui = widgets.HBox([n,ix,iy],)\n", "ui3 = widgets.VBox([l,ui],)\n", "\n", "def run_plot(n,ix,iy):\n", " seed = 73073\n", " Ag_mean = 125; Au_mean = 8\n", " Ag_stdev = 20; Au_stdev = 1; wt_poly = 0.002\n", " np.random.seed(seed=seed)\n", " X = np.random.multivariate_normal([Au_mean,Ag_mean],[[9, 0],[0, 400]],size = n)\n", " X[:,0] = (1.0-wt_poly)*X[:,0] + wt_poly*(-0.5*np.power(X[:,1]-200,2) + 10)\n", " X[:,0] = (X[:,0] - np.mean(X[:,0])) * Au_stdev/np.std(X[:,0]) + Au_mean\n", " \n", " xsiz = 20; ysiz=1;\n", " x_start = ix*xsiz + 60; x_end = (ix+1)*xsiz + 60\n", " y_start = iy*ysiz + 4; y_end = (iy+1)*ysiz + 4\n", " \n", " count = ((y_start < X[:,0]) & (X[:,0] < y_end) & (x_start < X[:,1]) & (X[:,1] < x_end)).sum()\n", " count_a = ((x_start < X[:,1]) & (X[:,1] < x_end)).sum()\n", " count_b = ((y_start < X[:,0]) & (X[:,0] < y_end)).sum()\n", " \n", " Xsub_a = X[((x_start < X[:,1]) & (X[:,1] < x_end))]\n", " Xsub = X[((y_start < X[:,0]) & (X[:,0] < y_end) & (x_start < X[:,1]) & (X[:,1] < x_end))]\n", " \n", " fig, axs = plt.subplots(1,2,figsize=(16,7), gridspec_kw={'width_ratios': [0.8, 1]})\n", " \n", " axs[0].scatter(Xsub_a[:,1],Xsub_a[:,0],c='black',s = 20,alpha=0.4,edgecolor='black')\n", " axs[0].scatter(X[:,1],X[:,0],c='r',s = 20,alpha=0.2,edgecolor='black')\n", " axs[0].scatter(Xsub[:,1],Xsub[:,0],c='black',s = 20,alpha=0.8,edgecolor='black')\n", " axs[0].set_xlabel('Silver, Ag, Grade (g/t)'); axs[0].set_ylabel('Gold, Au, Grade (g/t)'); axs[0].set_title('Mineral Grades Scatter Plot')\n", " axs[0].set_xlim([60,200]); axs[0].set_ylim([4,11])\n", " \n", " axs[0].grid(True, which='major',linewidth = 1.0); axs[0].grid(True, which='minor',linewidth = 0.2) # add y grids\n", " axs[0].tick_params(which='major',length=7); axs[0].tick_params(which='minor', length=4)\n", " axs[0].xaxis.set_minor_locator(AutoMinorLocator(n=10)); axs[0].yaxis.set_minor_locator(AutoMinorLocator(n=10)) # turn on minor ticks\n", " axs[0].xaxis.set_major_locator(MultipleLocator(xsiz)); axs[0].yaxis.set_major_locator(MultipleLocator(ysiz)) # turn on minor ticks\n", " \n", " rect = patches.Rectangle((x_start, 4), xsiz, 7*ysiz, linewidth=3, edgecolor='green', facecolor='none'); axs[0].add_patch(rect)\n", " rect = patches.Rectangle((60, y_start), 7*xsiz, ysiz, linewidth=3,ls='--',edgecolor='blue', alpha=0.4, facecolor='none'); axs[0].add_patch(rect)\n", " rect = patches.Rectangle((x_start, y_start), xsiz, ysiz, linewidth=5, edgecolor='black', facecolor='none'); axs[0].add_patch(rect)\n", " \n", " axs[0].annotate(r'A = [' + str(x_start) + r' ≀ $\\bf{\\theta_{Ag}}$ ≀ ' + str(x_end) + ']',\n", " (150,4.6),color='green',weight=\"bold\")\n", " \n", " axs[0].annotate(r'B = [' + str(y_start) + r' ≀ $\\bf{\\theta_{Au}}$ ≀ ' + str(y_end) + ']',\n", " (150,4.3),color='blue',weight=\"bold\")\n", " \n", " axs[0].annotate(r'$\\bf{A}$',(x_start+0.4*xsiz,10.7),size=15,color='green')\n", " axs[0].annotate(r'$\\bf{B}$',(61.5,y_start+0.4*ysiz),size=15,color='blue')\n", " axs[0].annotate(r'$\\bf{A \\bigcap B}$',(x_start+0.2*xsiz,y_start+0.4*ysiz),size=10,color='black')\n", " \n", " if ix <= 3:\n", " axs[0].annotate(r'n{A $\\bigcap$ B} = ' + str(count),\n", " (x_end+0.2*xsiz,y_start+ysiz*0.6),color='black',weight=\"bold\")\n", " axs[0].annotate(r'n{A} = ' + str(count_a),\n", " (x_end+0.2*xsiz,y_start+ysiz*0.2),color='black',weight=\"bold\")\n", " else:\n", " axs[0].annotate(r'n{A $\\bigcap$ B} = ' + str(count),\n", " (x_end-2.8*xsiz,y_start+ysiz*0.5),color='black',weight=\"bold\")\n", " \n", " hist2d = axs[1].hist2d(X[:,1],X[:,0], bins=7, range=[[60,200],[4,11]], density=False, weights=None, cmin=None, cmax=None,\n", " cmap=plt.cm.Reds)\n", " axs[1].set_xlabel('Silver, Ag, Grade (g/t)'); axs[1].set_ylabel('Gold, Au, Grade (g/t)'); axs[1].set_title('Mineral Grades Conditional Frequency Table')\n", " axs[1].set_xlim([60,200]); axs[1].set_ylim([4,11])\n", " \n", " cbar = plt.colorbar(hist2d[3], orientation=\"vertical\")\n", " cbar.set_label('Frequency', rotation=270, labelpad=20)\n", " \n", " axs[1].grid(True, which='major',linewidth = 1.0); axs[1].grid(True, which='minor',linewidth = 0.2) # add y grids\n", " axs[1].tick_params(which='major',length=7); axs[1].tick_params(which='minor', length=4)\n", " axs[1].xaxis.set_minor_locator(AutoMinorLocator(n=10)); axs[1].yaxis.set_minor_locator(AutoMinorLocator(n=10)) # turn on minor ticks\n", " axs[1].xaxis.set_major_locator(MultipleLocator(xsiz)); axs[1].yaxis.set_major_locator(MultipleLocator(ysiz)) # turn on minor ticks\n", " \n", " rect = patches.Rectangle((60, 4), xsiz*ix, 7*ysiz, linewidth=0, edgecolor='none', facecolor='white'); axs[1].add_patch(rect)\n", " rect = patches.Rectangle((60+xsiz*(ix+1), 4), 60+xsiz*(7 - (ix+1)), 7*ysiz, linewidth=0, edgecolor='none', facecolor='white'); axs[1].add_patch(rect)\n", " \n", " rect = patches.Rectangle((x_start, 4), xsiz, 7*ysiz, linewidth=3, edgecolor='green', facecolor='none'); axs[1].add_patch(rect)\n", " rect = patches.Rectangle((60, y_start), 7*xsiz, ysiz, linewidth=3,ls='--',edgecolor='blue', alpha=0.4, facecolor='none'); axs[1].add_patch(rect)\n", " rect = patches.Rectangle((x_start, y_start), xsiz, ysiz, linewidth=5, edgecolor='black', facecolor='none'); axs[1].add_patch(rect)\n", " \n", " axs[1].scatter(Xsub_a[:,1],Xsub_a[:,0],c='black',s = 20,alpha=0.2,edgecolor='black')\n", " axs[1].scatter(X[:,1],X[:,0],c='black',s = 20,alpha=0.03,edgecolor='black')\n", " axs[1].scatter(Xsub[:,1],Xsub[:,0],c='black',s = 20,alpha=0.6,edgecolor='black')\n", " \n", " axs[1].annotate(r'A = [' + str(x_start) + r' ≀ $\\bf{\\theta_{Ag}}$ ≀ ' + str(x_end) + ']',\n", " (150,4.6),color='green',weight=\"bold\")\n", " \n", " axs[1].annotate(r'$\\bf{A}$',(x_start+0.4*xsiz,10.7),size=15,color='green')\n", " axs[1].annotate(r'$\\bf{B}$',(61.5,y_start+0.4*ysiz),size=15,color='blue')\n", " axs[1].annotate(r'$\\bf{A \\bigcap B}$',(x_start+0.2*xsiz,y_start+0.4*ysiz),size=10,color='black')\n", " \n", " axs[1].annotate(r'B = [' + str(y_start) + r' ≀ $\\bf{\\theta_{Au}}$ ≀ ' + str(y_end) + ']',\n", " (150,4.3),color='blue',weight=\"bold\")\n", " \n", " if ix <= 3:\n", " z = axs[1].annotate(r'P{B | A} = ' + str(count) + '/' + str(count_a),\n", " (x_end+0.2*xsiz,y_start+ysiz*0.5),color='black',weight=\"bold\")\n", " else:\n", " z = axs[1].annotate(r'P{B | A} = ' + str(count) + '/' + str(count_a),\n", " (x_end-3.5*xsiz,y_start+ysiz*0.5),color='black',weight=\"bold\")\n", " \n", "# connect the function to make the samples and plot to the widgets \n", "interactive_plot2 = widgets.interactive_output(run_plot, {'n':n,'ix':ix,'iy':iy,})\n", "interactive_plot2.clear_output(wait = True) # reduce flickering by delaying plot updating " ] }, { "cell_type": "markdown", "id": "f2563998", "metadata": {}, "source": [ "### Interactive Conditional Probability Demonstation \n", "\n", "#### Michael Pyrcz, Professor, The University of Texas at Austin \n", "\n", "Change the number of sample data, select silver and gold bins.\n", "\n", "### The Inputs\n", "\n", "* **n** - number of data, **$i_{\\theta_{Ag}}$** - silver bin, and **$i_{\\theta_{Au}}$** - gold bin " ] }, { "cell_type": "code", "execution_count": 7, "id": "adc93d16", "metadata": { "scrolled": false }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "67d88f046c2348afbed83d22639eb08e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Text(value=' Conditional Probability Demo, Prof. Michael Pyrcz, T…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ec16f0a0dcd24b979180aaaf3c192a19", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(ui3, interactive_plot2) # display the interactive plot" ] }, { "cell_type": "markdown", "id": "88a29876", "metadata": {}, "source": [ "#### Build the Interactive Dashboard to Demonstrate Conditional Distributions\n", "\n", "The following code:\n", "\n", "* take the previous synthetic dataset and specifiy events:\n", " * A - silver grade within a bin\n", " * B - gold grade within a bin\n", " \n", "* calculate conditional distributions, $f_{(B | A)}$ and $f_{(A | B)}$, as histograms and compare to the marginals, $f_B$ and $f_A$ respectively." ] }, { "cell_type": "code", "execution_count": 8, "id": "b124a8cf", "metadata": {}, "outputs": [], "source": [ "l = widgets.Text(value=' Conditional Distributions Demo, Prof. Michael Pyrcz, The University of Texas at Austin',\n", " layout=Layout(width='750px', height='30px'))\n", "\n", "n = widgets.IntSlider(min=0, max = 5000, value=1000, step = 100, description = '$n$',orientation='horizontal', style = {'description_width': 'initial'}, continuous_update=False)\n", "ix = widgets.IntSlider(min=0, max = 6, value=1, step = 1, description = r'Silver Bin, $i_{\\theta_{Ag}}$',orientation='horizontal', style = {'description_width': 'initial'}, continuous_update=False)\n", "iy = widgets.IntSlider(min=0, max = 6, value=1, step = 1, description = r'Gold Bin, $i_{\\theta_{Au}}$',orientation='horizontal', style = {'description_width': 'initial'}, continuous_update=False)\n", "\n", "ui = widgets.HBox([n,ix,iy],)\n", "ui5 = widgets.VBox([l,ui],)\n", "\n", "def run_plot5(n,ix,iy):\n", " seed = 73073\n", " Ag_mean = 125; Au_mean = 8;\n", " Ag_stdev = 20; Au_stdev = 1; wt_poly = 0.002\n", " np.random.seed(seed=seed)\n", " X = np.random.multivariate_normal([Au_mean,Ag_mean],[[9, 0],[0, 400]],size = n)\n", " X[:,0] = (1.0-wt_poly)*X[:,0] + wt_poly*(-0.5*np.power(X[:,1]-200,2) + 10)\n", " X[:,0] = (X[:,0] - np.mean(X[:,0])) * Au_stdev/np.std(X[:,0]) + Au_mean\n", " \n", " xsiz = 20; ysiz=1;\n", " x_start = ix*xsiz + 60; x_end = (ix+1)*xsiz + 60\n", " y_start = iy*ysiz + 4; y_end = (iy+1)*ysiz + 4\n", " \n", " count = ((y_start < X[:,0]) & (X[:,0] < y_end) & (x_start < X[:,1]) & (X[:,1] < x_end)).sum()\n", " count_a = ((x_start < X[:,1]) & (X[:,1] < x_end)).sum()\n", " count_b = ((y_start < X[:,0]) & (X[:,0] < y_end)).sum()\n", " \n", " Xsub_a = X[((x_start < X[:,1]) & (X[:,1] < x_end))]\n", " Xsub_b = X[((y_start < X[:,0]) & (X[:,0] < y_end))]\n", " Xsub = X[((y_start < X[:,0]) & (X[:,0] < y_end) & (x_start < X[:,1]) & (X[:,1] < x_end))]\n", " \n", " plt_scatter = plt.subplot2grid((3, 3), (1, 0), rowspan=2, colspan=2)\n", " plt_x1 = plt.subplot2grid((3, 3), (0, 0), colspan=2,\n", " sharex=plt_scatter)\n", " plt_x2 = plt.subplot2grid((3, 3), (1, 2), rowspan=2,\n", " sharey=plt_scatter) \n", " \n", " #plt.plot([0,0],[1.0,1.0],color = 'black')\n", " plt_scatter.scatter(Xsub_a[:,1],Xsub_a[:,0],color = 'none',edgecolor='green',alpha=0.9)\n", " plt_scatter.scatter(Xsub_b[:,1],Xsub_b[:,0],color = 'none',edgecolor='blue',alpha=0.9)\n", " plt_scatter.scatter(X[:,1],X[:,0],color = 'red',edgecolor='black',alpha=0.1,label='samples')\n", " #plt_scatter.scatter(sample[:,0],sample[:,1],color = 'red',alpha = 0.8,edgecolors='black',label = 'Samples')\n", " plt_scatter.legend(loc='upper left') \n", " plt_scatter.set_xlabel('Silver, Ag, Grade (g/t)'); plt_scatter.set_ylabel('Gold, Au, Grade (g/t)'); \n", " plt_scatter.set_title('Mineral Grades Conditional Frequency Table')\n", " plt_scatter.set_xlim([60,200]); plt_scatter.set_ylim([4,11]); plt_scatter.legend(loc='upper right')\n", " \n", " plt_scatter.grid(True, which='major',linewidth = 1.0); plt_scatter.grid(True, which='minor',linewidth = 0.2) # add y grids\n", " plt_scatter.tick_params(which='major',length=7); plt_scatter.tick_params(which='minor', length=4)\n", " plt_scatter.xaxis.set_minor_locator(AutoMinorLocator(n=10)); plt_scatter.yaxis.set_minor_locator(AutoMinorLocator(n=10)) # turn on minor ticks\n", " plt_scatter.xaxis.set_major_locator(MultipleLocator(xsiz)); plt_scatter.yaxis.set_major_locator(MultipleLocator(ysiz)) # turn on minor ticks\n", " \n", " #rect = patches.Rectangle((60, 4), xsiz*ix, 7*ysiz, linewidth=0, edgecolor='none', facecolor='white'); plt_scatter.add_patch(rect)\n", " #rect = patches.Rectangle((60+xsiz*(ix+1), 4), 60+xsiz*(7 - (ix+1)), 7*ysiz, linewidth=0, edgecolor='none', facecolor='white'); plt_scatter.add_patch(rect)\n", " \n", " rect = patches.Rectangle((x_start, 4), xsiz, 7*ysiz, linewidth=3, edgecolor='green', facecolor='none'); plt_scatter.add_patch(rect)\n", " rect = patches.Rectangle((60, y_start), 7*xsiz, ysiz, linewidth=3,edgecolor='blue', alpha=0.4, facecolor='none'); plt_scatter.add_patch(rect)\n", " \n", " plt_scatter.annotate(r'A = [' + str(x_start) + r' ≀ $\\bf{\\theta_{Ag}}$ ≀ ' + str(x_end) + ']',\n", " (140,4.6),color='green',weight=\"bold\")\n", " \n", " plt_scatter.annotate(r'B = [' + str(y_start) + r' ≀ $\\bf{\\theta_{Au}}$ ≀ ' + str(y_end) + ']',\n", " (140,4.2),color='blue',weight=\"bold\")\n", " plt_scatter.annotate(r'$\\bf{A}$',(x_start+0.4*xsiz,10.6),size=15,color='green')\n", " plt_scatter.annotate(r'$\\bf{B}$',(61.5,y_start+0.4*ysiz),size=15,color='blue')\n", " \n", " plt_x1.hist(X[:,1],density = True,color='red',alpha=0.3,edgecolor='black',bins=np.linspace(60,200,30),label='marginal')\n", " plt_x1.hist(Xsub_b[:,1],density = True,color='blue',alpha=0.3,edgecolor='black',bins=np.linspace(60,200,30),label='conditional')\n", " \n", " plt_x1.set_xlim([60,200]); plt_x1.legend(loc='upper right')\n", " #plt_x1.set_xlabel('Silver, Ag, Grade (g/t)'); plt_x1.set_ylabel(r'Density')\n", " plt_x1.set_title(r'Marginal and Conditional Distributions')\n", " \n", " plt_x2.hist(X[:,0],orientation='horizontal',density = True,color='red',alpha=0.3,edgecolor='black',bins=np.linspace(4,11,30),label='marginal')\n", " plt_x2.hist(Xsub_a[:,0],orientation='horizontal',density = True,color='green',alpha=0.3,edgecolor='black',bins=np.linspace(4,11,30),label='conditional')\n", " \n", " plt_x2.set_ylim([4,11]); plt_x2.legend(loc='upper right')\n", " #plt_x2.set_ylabel('Gold, Au, Grade (g/t)'); plt_x2.set_xlabel(r'Density')\n", " \n", " plt.subplots_adjust(left=0.0, bottom=0.0, right=1., top=1.2, wspace=0.3, hspace=0.4); plt.show()\n", " \n", "# connect the function to make the samples and plot to the widgets \n", "interactive_plot5 = widgets.interactive_output(run_plot5, {'n':n,'ix':ix,'iy':iy,})\n", "interactive_plot5.clear_output(wait = True) # reduce flickering by delaying plot updating" ] }, { "cell_type": "markdown", "id": "9c14021d", "metadata": {}, "source": [ "### Interactive Conditional Distribution Demonstration \n", "\n", "#### Michael Pyrcz, Professor, The University of Texas at Austin \n", "\n", "Change the number of sample data, select silver and gold bins.\n", "\n", "### The Inputs\n", "\n", "* **n** - number of data, **$i_{\\theta_{Ag}}$** - silver bin, and **$i_{\\theta_{Au}}$** - gold bin " ] }, { "cell_type": "code", "execution_count": 9, "id": "ad8e0c81", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f0d28720b1ca446abedbbb96b9574fcf", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Text(value=' Conditional Distributions Demo, Prof. Michael Pyrcz,…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a444e5f9f2284aa1a66cf7ace3dc9f70", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(ui5, interactive_plot5) # display the interactive plot" ] }, { "cell_type": "markdown", "id": "6d2dfdf7", "metadata": {}, "source": [ "#### Comments\n", "\n", "This was a basic demonstration marginal, joint and conditional probabilities. I have many other demonstrations and even basics of working with DataFrames, ndarrays, univariate statistics, plotting data, declustering, data transformations and many other workflows available at https://github.com/GeostatsGuy/PythonNumericalDemos and https://github.com/GeostatsGuy/GeostatsPy. \n", " \n", "#### The Author:\n", "\n", "### Michael Pyrcz, Professor, The University of Texas at Austin \n", "*Novel Data Analytics, Geostatistics and Machine Learning Subsurface Solutions*\n", "\n", "With over 17 years of experience in subsurface consulting, research and development, Michael has returned to academia driven by his passion for teaching and enthusiasm for enhancing engineers' and geoscientists' impact in subsurface resource development. \n", "\n", "For more about Michael check out these links:\n", "\n", "#### [Twitter](https://twitter.com/geostatsguy) | [GitHub](https://github.com/GeostatsGuy) | [Website](http://michaelpyrcz.com) | [GoogleScholar](https://scholar.google.com/citations?user=QVZ20eQAAAAJ&hl=en&oi=ao) | [Book](https://www.amazon.com/Geostatistical-Reservoir-Modeling-Michael-Pyrcz/dp/0199731446) | [YouTube](https://www.youtube.com/channel/UCLqEr-xV-ceHdXXXrTId5ig) | [LinkedIn](https://www.linkedin.com/in/michael-pyrcz-61a648a1)\n", "\n", "#### Want to Work Together?\n", "\n", "I hope this content is helpful to those that want to learn more about subsurface modeling, data analytics and machine learning. Students and working professionals are welcome to participate.\n", "\n", "* Want to invite me to visit your company for training, mentoring, project review, workflow design and / or consulting? I'd be happy to drop by and work with you! \n", "\n", "* Interested in partnering, supporting my graduate student research or my Subsurface Data Analytics and Machine Learning consortium (co-PIs including Profs. Foster, Torres-Verdin and van Oort)? My research combines data analytics, stochastic modeling and machine learning theory with practice to develop novel methods and workflows to add value. We are solving challenging subsurface problems!\n", "\n", "* I can be reached at mpyrcz@austin.utexas.edu.\n", "\n", "I'm always happy to discuss,\n", "\n", "*Michael*\n", "\n", "Michael Pyrcz, Ph.D., P.Eng. Professor, Cockrell School of Engineering and The Jackson School of Geosciences, The University of Texas at Austin\n", "\n", "#### More Resources Available at: [Twitter](https://twitter.com/geostatsguy) | [GitHub](https://github.com/GeostatsGuy) | [Website](http://michaelpyrcz.com) | [GoogleScholar](https://scholar.google.com/citations?user=QVZ20eQAAAAJ&hl=en&oi=ao) | [Book](https://www.amazon.com/Geostatistical-Reservoir-Modeling-Michael-Pyrcz/dp/0199731446) | [YouTube](https://www.youtube.com/channel/UCLqEr-xV-ceHdXXXrTId5ig) | [LinkedIn](https://www.linkedin.com/in/michael-pyrcz-61a648a1)" ] }, { "cell_type": "code", "execution_count": null, "id": "b87dae84", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 5 }